/*******************************************************************************
* Copyright 2016-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Intel(R) Integrated Performance Primitives. Cryptography Primitives.
// GF(p) methods
//
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpbnumisc.h"
#include "gsmodstuff.h"
#include "pcpgfpstuff.h"
#include "pcpgfpmethod.h"
#include "pcpecprime.h"
//tbcd: temporary excluded: #include <assert.h>
#if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
/* arithmetic over P-192r1 NIST modulus */
#define p192r1_add OWNAPI(p192r1_add)
BNU_CHUNK_T* p192r1_add(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
#define p192r1_sub OWNAPI(p192r1_sub)
BNU_CHUNK_T* p192r1_sub(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
#define p192r1_neg OWNAPI(p192r1_neg)
BNU_CHUNK_T* p192r1_neg(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_div_by_2 OWNAPI(p192r1_div_by_2)
BNU_CHUNK_T* p192r1_div_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_mul_by_2 OWNAPI(p192r1_mul_by_2)
BNU_CHUNK_T* p192r1_mul_by_2 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_mul_by_3 OWNAPI(p192r1_mul_by_3)
BNU_CHUNK_T* p192r1_mul_by_3 (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#if(_IPP_ARCH ==_IPP_ARCH_EM64T)
#define p192r1_mul_montl OWNAPI(p192r1_mul_montl)
BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
#define p192r1_mul_montx OWNAPI(p192r1_mul_montx)
BNU_CHUNK_T* p192r1_mul_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
#define p192r1_sqr_montl OWNAPI(p192r1_sqr_montl)
BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_sqr_montx OWNAPI(p192r1_sqr_montx)
BNU_CHUNK_T* p192r1_sqr_montx(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_to_mont OWNAPI(p192r1_to_mont)
BNU_CHUNK_T* p192r1_to_mont (BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_mont_back OWNAPI(p192r1_mont_back)
BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#endif
#if(_IPP_ARCH ==_IPP_ARCH_IA32)
#define p192r1_mul_mont_slm OWNAPI(p192r1_mul_mont_slm)
BNU_CHUNK_T* p192r1_mul_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, const BNU_CHUNK_T* b, gsEngine* pGFE);
#define p192r1_sqr_mont_slm OWNAPI(p192r1_sqr_mont_slm)
BNU_CHUNK_T* p192r1_sqr_mont_slm(BNU_CHUNK_T* res, const BNU_CHUNK_T* a, gsEngine* pGFE);
#define p192r1_mred OWNAPI(p192r1_mred)
BNU_CHUNK_T* p192r1_mred(BNU_CHUNK_T* res, BNU_CHUNK_T* product);
#endif
#define OPERAND_BITSIZE (192)
#define LEN_P192 (BITS_BNU_CHUNK(OPERAND_BITSIZE))
/*
// ia32 multiplicative methods
*/
#if (_IPP_ARCH ==_IPP_ARCH_IA32)
static BNU_CHUNK_T* p192r1_mul_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsEngine* pGFE)
{
BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE);
//tbcd: temporary excluded: assert(NULL!=product);
cpMulAdc_BNU_school(product, pA,LEN_P192, pB,LEN_P192);
p192r1_mred(pR, product);
cpGFpReleasePool(2, pGFE);
return pR;
}
static BNU_CHUNK_T* p192r1_sqr_montl(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
BNU_CHUNK_T* product = cpGFpGetPool(2, pGFE);
//tbcd: temporary excluded: assert(NULL!=product);
cpSqrAdc_BNU_school(product, pA,LEN_P192);
p192r1_mred(pR, product);
cpGFpReleasePool(2, pGFE);
return pR;
}
/*
// Montgomery domain conversion constants
*/
static BNU_CHUNK_T RR[] = {
0x00000001,0x00000000,0x00000002,0x00000000,
0x00000001,0x00000000};
static BNU_CHUNK_T one[] = {
1,0,0,0,0,0};
static BNU_CHUNK_T* p192r1_to_mont(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
}
static BNU_CHUNK_T* p192r1_mont_back(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
return p192r1_mul_montl(pR, pA, (BNU_CHUNK_T*)one, pGFE);
}
static BNU_CHUNK_T* p192r1_to_mont_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)RR, pGFE);
}
static BNU_CHUNK_T* p192r1_mont_back_slm(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFE)
{
return p192r1_mul_mont_slm(pR, pA, (BNU_CHUNK_T*)one, pGFE);
}
#endif /* _IPP >= _IPP_P8 */
/*
// return specific gf p192r1 arith methods,
// p192r1 = 2^192 -2^64 -1 (NIST P192r1)
*/
static gsModMethod* gsArithGF_p192r1(void)
{
static gsModMethod m = {
p192r1_to_mont,
p192r1_mont_back,
p192r1_mul_montl,
p192r1_sqr_montl,
NULL,
p192r1_add,
p192r1_sub,
p192r1_neg,
p192r1_div_by_2,
p192r1_mul_by_2,
p192r1_mul_by_3,
};
#if(_IPP_ARCH==_IPP_ARCH_EM64T) && ((_ADCOX_NI_ENABLING_==_FEATURE_ON_) || (_ADCOX_NI_ENABLING_==_FEATURE_TICKTOCK_))
if(IsFeatureEnabled(ippCPUID_ADCOX)) {
m.mul = p192r1_mul_montx;
m.sqr = p192r1_sqr_montx;
}
#endif
#if(_IPP_ARCH==_IPP_ARCH_IA32)
if(IsFeatureEnabled(ippCPUID_SSSE3|ippCPUID_MOVBE) && !IsFeatureEnabled(ippCPUID_AVX)) {
m.mul = p192r1_mul_mont_slm;
m.sqr = p192r1_sqr_mont_slm;
m.encode = p192r1_to_mont_slm;
m.decode = p192r1_mont_back_slm;
}
#endif
return &m;
}
#endif /* (_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7) */
/*F*
// Name: ippsGFpMethod_p192r1
//
// Purpose: Returns a reference to an implementation of
// arithmetic operations over GF(q).
//
// Returns: Pointer to a structure containing an implementation of arithmetic
// operations over GF(q). q = 2^192 - 2^64 - 1
*F*/
IPPFUN( const IppsGFpMethod*, ippsGFpMethod_p192r1, (void) )
{
static IppsGFpMethod method = {
cpID_PrimeP192r1,
192,
secp192r1_p,
NULL
};
#if(_IPP >= _IPP_P8) || (_IPP32E >= _IPP32E_M7)
method.arith = gsArithGF_p192r1();
#else
method.arith = gsArithGFp();
#endif
return &method;
}
#undef LEN_P192
#undef OPERAND_BITSIZE