/*******************************************************************************
* Copyright 2010-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
// Intel(R) Integrated Performance Primitives. Cryptography Primitives.
// EC over GF(p^m) definitinons
//
// Context:
// ippsGFpECVerify()
//
*/
#include "owndefs.h"
#include "owncp.h"
#include "pcpgfpecstuff.h"
#include "pcpeccp.h"
//tbcd: temporary excluded: #include <assert.h>
/*F*
// Name: ippsGFpECVerify
//
// Purpose: Verifies the parameters of an elliptic curve.
//
// Returns: Reason:
// ippStsNullPtrErr pEC == NULL
// pResult == NULL
// pScratchBuffer == NULL
// ippStsContextMatchErr invalid pEC->idCtx
// ippStsNoErr no error
//
// Parameters:
// pResult Pointer to the verification result
// pEC Pointer to the context of the elliptic curve
// pScratchBuffer Pointer to the scratch buffer
//
*F*/
IPPFUN(IppStatus, ippsGFpECVerify,(IppECResult* pResult, IppsGFpECState* pEC, Ipp8u* pScratchBuffer))
{
IPP_BAD_PTR3_RET(pEC, pResult, pScratchBuffer);
pEC = (IppsGFpECState*)( IPP_ALIGNED_PTR(pEC, ECGFP_ALIGNMENT) );
IPP_BADARG_RET( !ECP_TEST_ID(pEC), ippStsContextMatchErr );
*pResult = ippECValid;
{
IppsGFpState* pGF = ECP_GFP(pEC);
gsModEngine* pGFE = GFP_PMA(pGF);
int elemLen = GFP_FELEN(pGFE);
mod_mul mulF = GFP_METHOD(pGFE)->mul;
mod_sqr sqrF = GFP_METHOD(pGFE)->sqr;
mod_add addF = GFP_METHOD(pGFE)->add;
/*
// check discriminant ( 4*A^3 + 27*B^2 != 0 mod P)
*/
if(ippECValid == *pResult) {
BNU_CHUNK_T* pT = cpGFpGetPool(1, pGFE);
BNU_CHUNK_T* pU = cpGFpGetPool(1, pGFE);
//tbcd: temporary excluded: assert(NULL!=pT && NULL!=pU);
if(ECP_SPECIFIC(pEC)==ECP_EPID2)
cpGFpElementPadd(pT, elemLen, 0); /* T = 4*A^3 = 0 */
else {
addF(pT, ECP_A(pEC), ECP_A(pEC), pGFE); /* T = 4*A^3 */
sqrF(pT, pT, pGFE);
mulF(pT, ECP_A(pEC), pT, pGFE);
}
addF(pU, ECP_B(pEC), ECP_B(pEC), pGFE); /* U = 9*B^2 */
addF(pU, pU, ECP_B(pEC), pGFE);
sqrF(pU, pU, pGFE);
addF(pT, pU, pT, pGFE); /* T += 3*U */
addF(pT, pU, pT, pGFE);
addF(pT, pU, pT, pGFE);
*pResult = GFP_IS_ZERO(pT, elemLen)? ippECIsZeroDiscriminant: ippECValid;
cpGFpReleasePool(2, pGFE);
}
if(ECP_SUBGROUP(pEC)) {
/*
// check base point and it order
*/
if(ippECValid == *pResult) {
IppsGFpECPoint G;
cpEcGFpInitPoint(&G, ECP_G(pEC), ECP_AFFINE_POINT|ECP_FINITE_POINT, pEC);
/* check G != infinity */
*pResult = gfec_IsPointAtInfinity(&G)? ippECPointIsAtInfinite : ippECValid;
/* check G lies on EC */
if(ippECValid == *pResult)
*pResult = gfec_IsPointOnCurve(&G, pEC)? ippECValid : ippECPointIsNotValid;
/* check Gorder*G = infinity */
if(ippECValid == *pResult) {
IppsGFpECPoint T;
cpEcGFpInitPoint(&T, cpEcGFpGetPool(1, pEC),0, pEC);
gfec_MulBasePoint(&T, MOD_MODULUS(ECP_MONT_R(pEC)), BITS_BNU_CHUNK(ECP_ORDBITSIZE(pEC)), pEC, pScratchBuffer);
*pResult = gfec_IsPointAtInfinity(&T)? ippECValid : ippECInvalidOrder;
cpEcGFpReleasePool(1, pEC);
}
}
/*
// check order==P
*/
if(ippECValid == *pResult) {
BNU_CHUNK_T* pPrime = GFP_MODULUS(pGFE);
int primeLen = GFP_FELEN(pGFE);
gsModEngine* pR = ECP_MONT_R(pEC);
BNU_CHUNK_T* pOrder = MOD_MODULUS(pR);
int orderLen = MOD_LEN(pR);
*pResult = (primeLen==orderLen && GFP_EQ(pPrime, pOrder, primeLen))? ippECIsWeakSSSA : ippECValid;
}
}
return ippStsNoErr;
}
}