/*############################################################################
# Copyright 2016 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
############################################################################*/
/*!
* \file
* \brief NrVerfy implementation.
*/
#include "epid/common/src/memory.h"
#include "epid/verifier/api.h"
#include "epid/verifier/src/context.h"
/// Handle SDK Error with Break
#define BREAK_ON_EPID_ERROR(ret) \
if (kEpidNoErr != (ret)) { \
break; \
}
#pragma pack(1)
/// Storage for values to create commitment in NrVerify algorithm
typedef struct NrVerifyCommitValues {
BigNumStr p; //!< A large prime (256-bit)
G1ElemStr g1; //!< Generator of G1 (512-bit)
G1ElemStr b; //!< (element of G1): part of basic signature Sigma0
G1ElemStr k; //!< (element of G1): part of basic signature Sigma0
G1ElemStr bp; //!< (element of G1): one entry in SigRL
G1ElemStr kp; //!< (element of G1): one entry in SigRL
G1ElemStr t; //!< element of G1
G1ElemStr r1; //!< element of G1
G1ElemStr r2; //!< element of G1
uint8_t msg[1]; //!< message
} NrVerifyCommitValues;
#pragma pack()
EpidStatus EpidNrVerify(VerifierCtx const* ctx, BasicSignature const* sig,
void const* msg, size_t msg_len,
SigRlEntry const* sigrl_entry, NrProof const* proof) {
size_t const cv_header_len = sizeof(NrVerifyCommitValues) - sizeof(uint8_t);
EpidStatus sts = kEpidErr;
NrVerifyCommitValues* commit_values = NULL;
size_t const commit_len = sizeof(*commit_values) + msg_len - 1;
EcPoint* t_pt = NULL;
EcPoint* k_pt = NULL;
EcPoint* b_pt = NULL;
EcPoint* kp_pt = NULL;
EcPoint* bp_pt = NULL;
EcPoint* r1_pt = NULL;
EcPoint* r2_pt = NULL;
FfElement* c_el = NULL;
FfElement* nc_el = NULL;
FfElement* smu_el = NULL;
FfElement* snu_el = NULL;
FfElement* commit_hash = NULL;
if (!ctx || !sig || !proof || !sigrl_entry) {
return kEpidBadArgErr;
}
if (!msg && (0 != msg_len)) {
return kEpidBadArgErr;
}
if (msg_len > (SIZE_MAX - cv_header_len)) {
return kEpidBadArgErr;
}
if (!ctx->epid2_params || !ctx->epid2_params->G1 || !ctx->epid2_params->Fp) {
return kEpidBadArgErr;
}
do {
EcGroup* G1 = ctx->epid2_params->G1;
FiniteField* Fp = ctx->epid2_params->Fp;
G1ElemStr const* b = &sig->B;
G1ElemStr const* k = &sig->K;
G1ElemStr const* bp = &sigrl_entry->b;
G1ElemStr const* kp = &sigrl_entry->k;
EcPoint const* r1p[2];
FpElemStr const* r1b[2];
EcPoint const* r2p[3];
FpElemStr const* r2b[3];
FpElemStr nc_str;
bool t_is_identity;
bool c_is_equal;
commit_values = SAFE_ALLOC(commit_len);
if (commit_values == NULL) {
sts = kEpidMemAllocErr;
break;
}
// allocate local memory
sts = NewEcPoint(G1, &t_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &k_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &b_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &kp_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &bp_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &r1_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewEcPoint(G1, &r2_pt);
BREAK_ON_EPID_ERROR(sts);
sts = NewFfElement(Fp, &c_el);
BREAK_ON_EPID_ERROR(sts);
sts = NewFfElement(Fp, &nc_el);
BREAK_ON_EPID_ERROR(sts);
sts = NewFfElement(Fp, &smu_el);
BREAK_ON_EPID_ERROR(sts);
sts = NewFfElement(Fp, &snu_el);
BREAK_ON_EPID_ERROR(sts);
sts = NewFfElement(Fp, &commit_hash);
BREAK_ON_EPID_ERROR(sts);
// 1. The verifier verifies that G1.inGroup(T) = true.
sts = ReadEcPoint(G1, &proof->T, sizeof(proof->T), t_pt);
if (kEpidNoErr != sts) {
sts = kEpidBadArgErr;
break;
}
// 2. The verifier verifies that G1.isIdentity(T) = false.
sts = EcIsIdentity(G1, t_pt, &t_is_identity);
BREAK_ON_EPID_ERROR(sts);
if (t_is_identity) {
sts = kEpidBadArgErr;
break;
}
// 3. The verifier verifies that c, smu, snu in [0, p-1].
sts = ReadFfElement(Fp, &proof->c, sizeof(proof->c), c_el);
BREAK_ON_EPID_ERROR(sts);
sts = ReadFfElement(Fp, &proof->smu, sizeof(proof->smu), smu_el);
BREAK_ON_EPID_ERROR(sts);
sts = ReadFfElement(Fp, &proof->snu, sizeof(proof->snu), snu_el);
BREAK_ON_EPID_ERROR(sts);
// 4. The verifier computes nc = (- c) mod p.
sts = FfNeg(Fp, c_el, nc_el);
BREAK_ON_EPID_ERROR(sts);
sts = WriteFfElement(Fp, nc_el, &nc_str, sizeof(nc_str));
BREAK_ON_EPID_ERROR(sts);
// 5. The verifier computes R1 = G1.multiExp(K, smu, B, snu).
sts = ReadEcPoint(G1, k, sizeof(*k), k_pt);
if (kEpidNoErr != sts) {
sts = kEpidBadArgErr;
break;
}
sts = ReadEcPoint(G1, b, sizeof(*b), b_pt);
if (kEpidNoErr != sts) {
sts = kEpidBadArgErr;
break;
}
r1p[0] = k_pt;
r1p[1] = b_pt;
r1b[0] = &proof->smu;
r1b[1] = &proof->snu;
sts = EcMultiExp(G1, r1p, (const BigNumStr**)r1b, 2, r1_pt);
BREAK_ON_EPID_ERROR(sts);
// 6. The verifier computes R2 = G1.multiExp(K', smu, B', snu, T, nc).
sts = ReadEcPoint(G1, kp, sizeof(*kp), kp_pt);
if (kEpidNoErr != sts) {
sts = kEpidBadArgErr;
break;
}
sts = ReadEcPoint(G1, bp, sizeof(*bp), bp_pt);
if (kEpidNoErr != sts) {
sts = kEpidBadArgErr;
break;
}
r2p[0] = kp_pt;
r2p[1] = bp_pt;
r2p[2] = t_pt;
r2b[0] = &proof->smu;
r2b[1] = &proof->snu;
r2b[2] = &nc_str;
sts = EcMultiExp(G1, r2p, (const BigNumStr**)r2b, 3, r2_pt);
BREAK_ON_EPID_ERROR(sts);
// 7. The verifier verifies c = Fp.hash(p || g1 || B || K ||
// B' || K' || T || R1 || R2 || m).
// Refer to Section 7.1 for hash operation over a prime field.
// commit_values is allocated such that there are msg_len bytes available
// starting at commit_values->msg
if (msg) {
// Memory copy is used to copy a message of variable length
if (0 != memcpy_S(&commit_values->msg[0], msg_len, msg, msg_len)) {
sts = kEpidBadArgErr;
break;
}
}
commit_values->p = ctx->commit_values.p;
commit_values->g1 = ctx->commit_values.g1;
commit_values->b = sig->B;
commit_values->k = sig->K;
commit_values->bp = sigrl_entry->b;
commit_values->kp = sigrl_entry->k;
commit_values->t = proof->T;
sts =
WriteEcPoint(G1, r1_pt, &commit_values->r1, sizeof(commit_values->r1));
BREAK_ON_EPID_ERROR(sts);
sts =
WriteEcPoint(G1, r2_pt, &commit_values->r2, sizeof(commit_values->r2));
BREAK_ON_EPID_ERROR(sts);
sts = FfHash(Fp, commit_values, commit_len, ctx->hash_alg, commit_hash);
BREAK_ON_EPID_ERROR(sts);
sts = FfIsEqual(Fp, c_el, commit_hash, &c_is_equal);
BREAK_ON_EPID_ERROR(sts);
if (!c_is_equal) {
sts = kEpidBadArgErr;
break;
}
sts = kEpidNoErr;
} while (0);
SAFE_FREE(commit_values);
DeleteFfElement(&commit_hash);
DeleteFfElement(&snu_el);
DeleteFfElement(&smu_el);
DeleteFfElement(&nc_el);
DeleteFfElement(&c_el);
DeleteEcPoint(&r2_pt);
DeleteEcPoint(&r1_pt);
DeleteEcPoint(&bp_pt);
DeleteEcPoint(&kp_pt);
DeleteEcPoint(&b_pt);
DeleteEcPoint(&k_pt);
DeleteEcPoint(&t_pt);
return sts;
}