// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class SparseMatrix
*
* \brief A versatible sparse matrix representation
*
* This class implements a more versatile variants of the common \em compressed row/column storage format.
* Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
* All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
* space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
* can be done with limited memory reallocation and copies.
*
* A call to the function makeCompressed() turns the matrix into the standard \em compressed format
* compatible with many library.
*
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
*
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
* is ColMajor or RowMajor. The default is 0 which means column-major.
* \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
*
* \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int),
* whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index.
* Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
*/
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct traits<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Sparse StorageKind;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = Dynamic,
Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit,
SupportedAccessPatterns = InnerRandomAccessPattern
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType;
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef _StorageIndex StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = Dynamic,
MaxColsAtCompileTime = 1,
Flags = LvalueBit
};
};
template<typename _Scalar, int _Options, typename _StorageIndex, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
: public traits<Diagonal<SparseMatrix<_Scalar, _Options, _StorageIndex>, DiagIndex> >
{
enum {
Flags = 0
};
};
} // end namespace internal
template<typename _Scalar, int _Options, typename _StorageIndex>
class SparseMatrix
: public SparseCompressedBase<SparseMatrix<_Scalar, _Options, _StorageIndex> >
{
typedef SparseCompressedBase<SparseMatrix> Base;
using Base::convert_index;
friend class SparseVector<_Scalar,0,_StorageIndex>;
public:
using Base::isCompressed;
using Base::nonZeros;
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
using Base::operator+=;
using Base::operator-=;
typedef MappedSparseMatrix<Scalar,Flags> Map;
typedef Diagonal<SparseMatrix> DiagonalReturnType;
typedef Diagonal<const SparseMatrix> ConstDiagonalReturnType;
typedef typename Base::InnerIterator InnerIterator;
typedef typename Base::ReverseInnerIterator ReverseInnerIterator;
using Base::IsRowMajor;
typedef internal::CompressedStorage<Scalar,StorageIndex> Storage;
enum {
Options = _Options
};
typedef typename Base::IndexVector IndexVector;
typedef typename Base::ScalarVector ScalarVector;
protected:
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
Index m_outerSize;
Index m_innerSize;
StorageIndex* m_outerIndex;
StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed
Storage m_data;
public:
/** \returns the number of rows of the matrix */
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
/** \returns the number of columns of the matrix */
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
/** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
inline Index innerSize() const { return m_innerSize; }
/** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
inline Index outerSize() const { return m_outerSize; }
/** \returns a const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline const Scalar* valuePtr() const { return m_data.valuePtr(); }
/** \returns a non-const pointer to the array of values.
* This function is aimed at interoperability with other libraries.
* \sa innerIndexPtr(), outerIndexPtr() */
inline Scalar* valuePtr() { return m_data.valuePtr(); }
/** \returns a const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); }
/** \returns a non-const pointer to the array of inner indices.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), outerIndexPtr() */
inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); }
/** \returns a const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), innerIndexPtr() */
inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \sa valuePtr(), innerIndexPtr() */
inline StorageIndex* outerIndexPtr() { return m_outerIndex; }
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
* This function is aimed at interoperability with other libraries.
* \warning it returns the null pointer 0 in compressed mode */
inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; }
/** \internal */
inline Storage& data() { return m_data; }
/** \internal */
inline const Storage& data() const { return m_data; }
/** \returns the value of the matrix at position \a i, \a j
* This function returns Scalar(0) if the element is an explicit \em zero */
inline Scalar coeff(Index row, Index col) const
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
return m_data.atInRange(m_outerIndex[outer], end, StorageIndex(inner));
}
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
*
* If the element does not exist then it is inserted via the insert(Index,Index) function
* which itself turns the matrix into a non compressed form if that was not the case.
*
* This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
* function if the element does not already exist.
*/
inline Scalar& coeffRef(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
if(end<=start)
return insert(row,col);
const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner));
if((p<end) && (m_data.index(p)==inner))
return m_data.value(p);
else
return insert(row,col);
}
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
* The non zero coefficient must \b not already exist.
*
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
* mode while reserving room for 2 x this->innerSize() non zeros if reserve(Index) has not been called earlier.
* In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be
* inserted by increasing outer-indices.
*
* If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first
* call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector.
*
* Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1)
* if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
*
*/
Scalar& insert(Index row, Index col);
public:
/** Removes all non zeros but keep allocated memory
*
* This function does not free the currently allocated memory. To release as much as memory as possible,
* call \code mat.data().squeeze(); \endcode after resizing it.
*
* \sa resize(Index,Index), data()
*/
inline void setZero()
{
m_data.clear();
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
if(m_innerNonZeros)
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
}
/** Preallocates \a reserveSize non zeros.
*
* Precondition: the matrix must be in compressed mode. */
inline void reserve(Index reserveSize)
{
eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
m_data.reserve(reserveSize);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
*
* This function turns the matrix in non-compressed mode.
*
* The type \c SizesType must expose the following interface:
\code
typedef value_type;
const value_type& operator[](i) const;
\endcode
* for \c i in the [0,this->outerSize()[ range.
* Typical choices include std::vector<int>, Eigen::VectorXi, Eigen::VectorXi::Constant, etc.
*/
template<class SizesType>
inline void reserve(const SizesType& reserveSizes);
#else
template<class SizesType>
inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif =
#if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename
typename
#endif
SizesType::value_type())
{
EIGEN_UNUSED_VARIABLE(enableif);
reserveInnerVectors(reserveSizes);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
template<class SizesType>
inline void reserveInnerVectors(const SizesType& reserveSizes)
{
if(isCompressed())
{
Index totalReserveSize = 0;
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
// temporarily use m_innerSizes to hold the new starting points.
StorageIndex* newOuterIndex = m_innerNonZeros;
StorageIndex count = 0;
for(Index j=0; j<m_outerSize; ++j)
{
newOuterIndex[j] = count;
count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
totalReserveSize += reserveSizes[j];
}
m_data.reserve(totalReserveSize);
StorageIndex previousOuterIndex = m_outerIndex[m_outerSize];
for(Index j=m_outerSize-1; j>=0; --j)
{
StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j];
for(Index i=innerNNZ-1; i>=0; --i)
{
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
}
previousOuterIndex = m_outerIndex[j];
m_outerIndex[j] = newOuterIndex[j];
m_innerNonZeros[j] = innerNNZ;
}
m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
m_data.resize(m_outerIndex[m_outerSize]);
}
else
{
StorageIndex* newOuterIndex = static_cast<StorageIndex*>(std::malloc((m_outerSize+1)*sizeof(StorageIndex)));
if (!newOuterIndex) internal::throw_std_bad_alloc();
StorageIndex count = 0;
for(Index j=0; j<m_outerSize; ++j)
{
newOuterIndex[j] = count;
StorageIndex alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
StorageIndex toReserve = std::max<StorageIndex>(reserveSizes[j], alreadyReserved);
count += toReserve + m_innerNonZeros[j];
}
newOuterIndex[m_outerSize] = count;
m_data.resize(count);
for(Index j=m_outerSize-1; j>=0; --j)
{
Index offset = newOuterIndex[j] - m_outerIndex[j];
if(offset>0)
{
StorageIndex innerNNZ = m_innerNonZeros[j];
for(Index i=innerNNZ-1; i>=0; --i)
{
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
}
}
}
std::swap(m_outerIndex, newOuterIndex);
std::free(newOuterIndex);
}
}
public:
//--- low level purely coherent filling ---
/** \internal
* \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
* - the nonzero does not already exist
* - the new coefficient is the last one according to the storage order
*
* Before filling a given inner vector you must call the statVec(Index) function.
*
* After an insertion session, you should call the finalize() function.
*
* \sa insert, insertBackByOuterInner, startVec */
inline Scalar& insertBack(Index row, Index col)
{
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
}
/** \internal
* \sa insertBack, startVec */
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
{
eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
Index p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(Scalar(0), inner);
return m_data.value(p);
}
/** \internal
* \warning use it only if you know what you are doing */
inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
{
Index p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
m_data.append(Scalar(0), inner);
return m_data.value(p);
}
/** \internal
* \sa insertBack, insertBackByOuterInner */
inline void startVec(Index outer)
{
eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
m_outerIndex[outer+1] = m_outerIndex[outer];
}
/** \internal
* Must be called after inserting a set of non zero entries using the low level compressed API.
*/
inline void finalize()
{
if(isCompressed())
{
StorageIndex size = internal::convert_index<StorageIndex>(m_data.size());
Index i = m_outerSize;
// find the last filled column
while (i>=0 && m_outerIndex[i]==0)
--i;
++i;
while (i<=m_outerSize)
{
m_outerIndex[i] = size;
++i;
}
}
}
//---
template<typename InputIterators>
void setFromTriplets(const InputIterators& begin, const InputIterators& end);
template<typename InputIterators,typename DupFunctor>
void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func);
void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op<Scalar,Scalar>()); }
template<typename DupFunctor>
void collapseDuplicates(DupFunctor dup_func = DupFunctor());
//---
/** \internal
* same as insert(Index,Index) except that the indices are given relative to the storage order */
Scalar& insertByOuterInner(Index j, Index i)
{
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
}
/** Turns the matrix into the \em compressed format.
*/
void makeCompressed()
{
if(isCompressed())
return;
eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0);
Index oldStart = m_outerIndex[1];
m_outerIndex[1] = m_innerNonZeros[0];
for(Index j=1; j<m_outerSize; ++j)
{
Index nextOldStart = m_outerIndex[j+1];
Index offset = oldStart - m_outerIndex[j];
if(offset>0)
{
for(Index k=0; k<m_innerNonZeros[j]; ++k)
{
m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
}
}
m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
oldStart = nextOldStart;
}
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
m_data.resize(m_outerIndex[m_outerSize]);
m_data.squeeze();
}
/** Turns the matrix into the uncompressed mode */
void uncompress()
{
if(m_innerNonZeros != 0)
return;
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
for (Index i = 0; i < m_outerSize; i++)
{
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
}
}
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
{
prune(default_prunning_func(reference,epsilon));
}
/** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
* The functor type \a KeepFunc must implement the following function:
* \code
* bool operator() (const Index& row, const Index& col, const Scalar& value) const;
* \endcode
* \sa prune(Scalar,RealScalar)
*/
template<typename KeepFunc>
void prune(const KeepFunc& keep = KeepFunc())
{
// TODO optimize the uncompressed mode to avoid moving and allocating the data twice
makeCompressed();
StorageIndex k = 0;
for(Index j=0; j<m_outerSize; ++j)
{
Index previousStart = m_outerIndex[j];
m_outerIndex[j] = k;
Index end = m_outerIndex[j+1];
for(Index i=previousStart; i<end; ++i)
{
if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
{
m_data.value(k) = m_data.value(i);
m_data.index(k) = m_data.index(i);
++k;
}
}
}
m_outerIndex[m_outerSize] = k;
m_data.resize(k,0);
}
/** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
*
* If the sizes of the matrix are decreased, then the matrix is turned to \b uncompressed-mode
* and the storage of the out of bounds coefficients is kept and reserved.
* Call makeCompressed() to pack the entries and squeeze extra memory.
*
* \sa reserve(), setZero(), makeCompressed()
*/
void conservativeResize(Index rows, Index cols)
{
// No change
if (this->rows() == rows && this->cols() == cols) return;
// If one dimension is null, then there is nothing to be preserved
if(rows==0 || cols==0) return resize(rows,cols);
Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows);
// Deals with inner non zeros
if (m_innerNonZeros)
{
// Resize m_innerNonZeros
StorageIndex *newInnerNonZeros = static_cast<StorageIndex*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex)));
if (!newInnerNonZeros) internal::throw_std_bad_alloc();
m_innerNonZeros = newInnerNonZeros;
for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)
m_innerNonZeros[i] = 0;
}
else if (innerChange < 0)
{
// Inner size decreased: allocate a new m_innerNonZeros
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex)));
if (!m_innerNonZeros) internal::throw_std_bad_alloc();
for(Index i = 0; i < m_outerSize; i++)
m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
}
// Change the m_innerNonZeros in case of a decrease of inner size
if (m_innerNonZeros && innerChange < 0)
{
for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
{
StorageIndex &n = m_innerNonZeros[i];
StorageIndex start = m_outerIndex[i];
while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n;
}
}
m_innerSize = newInnerSize;
// Re-allocate outer index structure if necessary
if (outerChange == 0)
return;
StorageIndex *newOuterIndex = static_cast<StorageIndex*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex)));
if (!newOuterIndex) internal::throw_std_bad_alloc();
m_outerIndex = newOuterIndex;
if (outerChange > 0)
{
StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)
m_outerIndex[i] = last;
}
m_outerSize += outerChange;
}
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
*
* This function does not free the currently allocated memory. To release as much as memory as possible,
* call \code mat.data().squeeze(); \endcode after resizing it.
*
* \sa reserve(), setZero()
*/
void resize(Index rows, Index cols)
{
const Index outerSize = IsRowMajor ? rows : cols;
m_innerSize = IsRowMajor ? cols : rows;
m_data.clear();
if (m_outerSize != outerSize || m_outerSize==0)
{
std::free(m_outerIndex);
m_outerIndex = static_cast<StorageIndex*>(std::malloc((outerSize + 1) * sizeof(StorageIndex)));
if (!m_outerIndex) internal::throw_std_bad_alloc();
m_outerSize = outerSize;
}
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex));
}
/** \internal
* Resize the nonzero vector to \a size */
void resizeNonZeros(Index size)
{
m_data.resize(size);
}
/** \returns a const expression of the diagonal coefficients. */
const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); }
/** \returns a read-write expression of the diagonal coefficients.
* \warning If the diagonal entries are written, then all diagonal
* entries \b must already exist, otherwise an assertion will be raised.
*/
DiagonalReturnType diagonal() { return DiagonalReturnType(*this); }
/** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
inline SparseMatrix()
: m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
resize(0, 0);
}
/** Constructs a \a rows \c x \a cols empty matrix */
inline SparseMatrix(Index rows, Index cols)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
resize(rows, cols);
}
/** Constructs a sparse matrix from the sparse expression \a other */
template<typename OtherDerived>
inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
check_template_parameters();
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
if (needToTranspose)
*this = other.derived();
else
{
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
internal::call_assignment_no_alias(*this, other.derived());
}
}
/** Constructs a sparse matrix from the sparse selfadjoint view \a other */
template<typename OtherDerived, unsigned int UpLo>
inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
Base::operator=(other);
}
/** Copy constructor (it performs a deep copy) */
inline SparseMatrix(const SparseMatrix& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
*this = other.derived();
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
SparseMatrix(const ReturnByValue<OtherDerived>& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
initAssignment(other);
other.evalTo(*this);
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
explicit SparseMatrix(const DiagonalBase<OtherDerived>& other)
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
{
check_template_parameters();
*this = other.derived();
}
/** Swaps the content of two sparse matrices of the same type.
* This is a fast operation that simply swaps the underlying pointers and parameters. */
inline void swap(SparseMatrix& other)
{
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
std::swap(m_outerIndex, other.m_outerIndex);
std::swap(m_innerSize, other.m_innerSize);
std::swap(m_outerSize, other.m_outerSize);
std::swap(m_innerNonZeros, other.m_innerNonZeros);
m_data.swap(other.m_data);
}
/** Sets *this to the identity matrix.
* This function also turns the matrix into compressed mode, and drop any reserved memory. */
inline void setIdentity()
{
eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
this->m_data.resize(rows());
Eigen::Map<IndexVector>(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1));
Eigen::Map<ScalarVector>(this->m_data.valuePtr(), rows()).setOnes();
Eigen::Map<IndexVector>(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows()));
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
inline SparseMatrix& operator=(const SparseMatrix& other)
{
if (other.isRValue())
{
swap(other.const_cast_derived());
}
else if(this!=&other)
{
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
initAssignment(other);
if(other.isCompressed())
{
internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
m_data = other.m_data;
}
else
{
Base::operator=(other);
}
}
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
{ return Base::operator=(other.derived()); }
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
{
EIGEN_DBG_SPARSE(
s << "Nonzero entries:\n";
if(m.isCompressed())
{
for (Index i=0; i<m.nonZeros(); ++i)
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
}
else
{
for (Index i=0; i<m.outerSize(); ++i)
{
Index p = m.m_outerIndex[i];
Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
Index k=p;
for (; k<pe; ++k) {
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
}
for (; k<m.m_outerIndex[i+1]; ++k) {
s << "(_,_) ";
}
}
}
s << std::endl;
s << std::endl;
s << "Outer pointers:\n";
for (Index i=0; i<m.outerSize(); ++i) {
s << m.m_outerIndex[i] << " ";
}
s << " $" << std::endl;
if(!m.isCompressed())
{
s << "Inner non zeros:\n";
for (Index i=0; i<m.outerSize(); ++i) {
s << m.m_innerNonZeros[i] << " ";
}
s << " $" << std::endl;
}
s << std::endl;
);
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
return s;
}
/** Destructor */
inline ~SparseMatrix()
{
std::free(m_outerIndex);
std::free(m_innerNonZeros);
}
/** Overloaded for performance */
Scalar sum() const;
# ifdef EIGEN_SPARSEMATRIX_PLUGIN
# include EIGEN_SPARSEMATRIX_PLUGIN
# endif
protected:
template<typename Other>
void initAssignment(const Other& other)
{
resize(other.rows(), other.cols());
if(m_innerNonZeros)
{
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
}
}
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);
/** \internal
* A vector object that is equal to 0 everywhere but v at the position i */
class SingletonVector
{
StorageIndex m_index;
StorageIndex m_value;
public:
typedef StorageIndex value_type;
SingletonVector(Index i, Index v)
: m_index(convert_index(i)), m_value(convert_index(v))
{}
StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; }
};
/** \internal
* \sa insert(Index,Index) */
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);
public:
/** \internal
* \sa insert(Index,Index) */
EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
eigen_assert(!isCompressed());
eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));
Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
m_data.index(p) = convert_index(inner);
return (m_data.value(p) = 0);
}
private:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
}
struct default_prunning_func {
default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
inline bool operator() (const Index&, const Index&, const Scalar& value) const
{
return !internal::isMuchSmallerThan(value, reference, epsilon);
}
Scalar reference;
RealScalar epsilon;
};
};
namespace internal {
template<typename InputIterator, typename SparseMatrixType, typename DupFunctor>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func)
{
enum { IsRowMajor = SparseMatrixType::IsRowMajor };
typedef typename SparseMatrixType::Scalar Scalar;
typedef typename SparseMatrixType::StorageIndex StorageIndex;
SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,StorageIndex> trMat(mat.rows(),mat.cols());
if(begin!=end)
{
// pass 1: count the nnz per inner-vector
typename SparseMatrixType::IndexVector wi(trMat.outerSize());
wi.setZero();
for(InputIterator it(begin); it!=end; ++it)
{
eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
wi(IsRowMajor ? it->col() : it->row())++;
}
// pass 2: insert all the elements into trMat
trMat.reserve(wi);
for(InputIterator it(begin); it!=end; ++it)
trMat.insertBackUncompressed(it->row(),it->col()) = it->value();
// pass 3:
trMat.collapseDuplicates(dup_func);
}
// pass 4: transposed copy -> implicit sorting
mat = trMat;
}
}
/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
*
* A \em triplet is a tuple (i,j,value) defining a non-zero element.
* The input list of triplets does not have to be sorted, and can contains duplicated elements.
* In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
* This is a \em O(n) operation, with \em n the number of triplet elements.
* The initial contents of \c *this is destroyed.
* The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
* or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
*
* The \a InputIterators value_type must provide the following interface:
* \code
* Scalar value() const; // the value
* Scalar row() const; // the row index i
* Scalar col() const; // the column index j
* \endcode
* See for instance the Eigen::Triplet template class.
*
* Here is a typical usage example:
* \code
typedef Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries);
for(...)
{
// ...
tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType m(rows,cols);
m.setFromTriplets(tripletList.begin(), tripletList.end());
// m is ready to go!
* \endcode
*
* \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
* an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
* be explicitely stored into a std::vector for instance.
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex> >(begin, end, *this, internal::scalar_sum_op<Scalar,Scalar>());
}
/** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied:
* \code
* value = dup_func(OldValue, NewValue)
* \endcode
* Here is a C++11 example keeping the latest entry only:
* \code
* mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; });
* \endcode
*/
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename InputIterators,typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func)
{
internal::set_from_triplets<InputIterators, SparseMatrix<Scalar,_Options,_StorageIndex>, DupFunctor>(begin, end, *this, dup_func);
}
/** \internal */
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename DupFunctor>
void SparseMatrix<Scalar,_Options,_StorageIndex>::collapseDuplicates(DupFunctor dup_func)
{
eigen_assert(!isCompressed());
// TODO, in practice we should be able to use m_innerNonZeros for that task
IndexVector wi(innerSize());
wi.fill(-1);
StorageIndex count = 0;
// for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
for(Index j=0; j<outerSize(); ++j)
{
StorageIndex start = count;
Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j];
for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
{
Index i = m_data.index(k);
if(wi(i)>=start)
{
// we already meet this entry => accumulate it
m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k));
}
else
{
m_data.value(count) = m_data.value(k);
m_data.index(count) = m_data.index(k);
wi(i) = count;
++count;
}
}
m_outerIndex[j] = start;
}
m_outerIndex[m_outerSize] = count;
// turn the matrix into compressed form
std::free(m_innerNonZeros);
m_innerNonZeros = 0;
m_data.resize(m_outerIndex[m_outerSize]);
}
template<typename Scalar, int _Options, typename _StorageIndex>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_StorageIndex>& SparseMatrix<Scalar,_Options,_StorageIndex>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
#ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN
#endif
const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
if (needToTranspose)
{
#ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN
#endif
// two passes algorithm:
// 1 - compute the number of coeffs per dest inner vector
// 2 - do the actual copy/eval
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
typedef internal::evaluator<_OtherCopy> OtherCopyEval;
OtherCopy otherCopy(other.derived());
OtherCopyEval otherCopyEval(otherCopy);
SparseMatrix dest(other.rows(),other.cols());
Eigen::Map<IndexVector> (dest.m_outerIndex,dest.outerSize()).setZero();
// pass 1
// FIXME the above copy could be merged with that pass
for (Index j=0; j<otherCopy.outerSize(); ++j)
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
++dest.m_outerIndex[it.index()];
// prefix sum
StorageIndex count = 0;
IndexVector positions(dest.outerSize());
for (Index j=0; j<dest.outerSize(); ++j)
{
StorageIndex tmp = dest.m_outerIndex[j];
dest.m_outerIndex[j] = count;
positions[j] = count;
count += tmp;
}
dest.m_outerIndex[dest.outerSize()] = count;
// alloc
dest.m_data.resize(count);
// pass 2
for (StorageIndex j=0; j<otherCopy.outerSize(); ++j)
{
for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
{
Index pos = positions[it.index()]++;
dest.m_data.index(pos) = j;
dest.m_data.value(pos) = it.value();
}
}
this->swap(dest);
return *this;
}
else
{
if(other.isRValue())
{
initAssignment(other.derived());
}
// there is no special optimization
return Base::operator=(other.derived());
}
}
template<typename _Scalar, int _Options, typename _StorageIndex>
typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col)
{
eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
if(isCompressed())
{
if(nonZeros()==0)
{
// reserve space if not already done
if(m_data.allocatedSize()==0)
m_data.reserve(2*m_innerSize);
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex));
// pack all inner-vectors to the end of the pre-allocated space
// and allocate the entire free-space to the first inner-vector
StorageIndex end = convert_index(m_data.allocatedSize());
for(Index j=1; j<=m_outerSize; ++j)
m_outerIndex[j] = end;
}
else
{
// turn the matrix into non-compressed mode
m_innerNonZeros = static_cast<StorageIndex*>(std::malloc(m_outerSize * sizeof(StorageIndex)));
if(!m_innerNonZeros) internal::throw_std_bad_alloc();
for(Index j=0; j<m_outerSize; ++j)
m_innerNonZeros[j] = m_outerIndex[j+1]-m_outerIndex[j];
}
}
// check whether we can do a fast "push back" insertion
Index data_end = m_data.allocatedSize();
// First case: we are filling a new inner vector which is packed at the end.
// We assume that all remaining inner-vectors are also empty and packed to the end.
if(m_outerIndex[outer]==data_end)
{
eigen_internal_assert(m_innerNonZeros[outer]==0);
// pack previous empty inner-vectors to end of the used-space
// and allocate the entire free-space to the current inner-vector.
StorageIndex p = convert_index(m_data.size());
Index j = outer;
while(j>=0 && m_innerNonZeros[j]==0)
m_outerIndex[j--] = p;
// push back the new element
++m_innerNonZeros[outer];
m_data.append(Scalar(0), inner);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index k=outer+1; k<=m_outerSize; ++k)
if(m_outerIndex[k]==data_end)
m_outerIndex[k] = new_end;
}
return m_data.value(p);
}
// Second case: the next inner-vector is packed to the end
// and the current inner-vector end match the used-space.
if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size())
{
eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0);
// add space for the new element
++m_innerNonZeros[outer];
m_data.resize(m_data.size()+1);
// check for reallocation
if(data_end != m_data.allocatedSize())
{
// m_data has been reallocated
// -> move remaining inner-vectors back to the end of the free-space
// so that the entire free-space is allocated to the current inner-vector.
eigen_internal_assert(data_end < m_data.allocatedSize());
StorageIndex new_end = convert_index(m_data.allocatedSize());
for(Index k=outer+1; k<=m_outerSize; ++k)
if(m_outerIndex[k]==data_end)
m_outerIndex[k] = new_end;
}
// and insert it at the right position (sorted insertion)
Index startId = m_outerIndex[outer];
Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1;
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = convert_index(inner);
return (m_data.value(p) = 0);
}
if(m_data.size() != m_data.allocatedSize())
{
// make sure the matrix is compatible to random un-compressed insertion:
m_data.resize(m_data.allocatedSize());
this->reserveInnerVectors(Array<StorageIndex,Dynamic,1>::Constant(m_outerSize, 2));
}
return insertUncompressed(row,col);
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col)
{
eigen_assert(!isCompressed());
const Index outer = IsRowMajor ? row : col;
const StorageIndex inner = convert_index(IsRowMajor ? col : row);
Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
StorageIndex innerNNZ = m_innerNonZeros[outer];
if(innerNNZ>=room)
{
// this inner vector is full, we need to reallocate the whole buffer :(
reserve(SingletonVector(outer,std::max<StorageIndex>(2,innerNNZ)));
}
Index startId = m_outerIndex[outer];
Index p = startId + m_innerNonZeros[outer];
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");
m_innerNonZeros[outer]++;
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
template<typename _Scalar, int _Options, typename _StorageIndex>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col)
{
eigen_assert(isCompressed());
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index previousOuter = outer;
if (m_outerIndex[outer+1]==0)
{
// we start a new inner vector
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
{
m_outerIndex[previousOuter] = convert_index(m_data.size());
--previousOuter;
}
m_outerIndex[outer+1] = m_outerIndex[outer];
}
// here we have to handle the tricky case where the outerIndex array
// starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
// the 2nd inner vector...
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
&& (std::size_t(m_outerIndex[outer+1]) == m_data.size());
std::size_t startId = m_outerIndex[outer];
// FIXME let's make sure sizeof(long int) == sizeof(std::size_t)
std::size_t p = m_outerIndex[outer+1];
++m_outerIndex[outer+1];
double reallocRatio = 1;
if (m_data.allocatedSize()<=m_data.size())
{
// if there is no preallocated memory, let's reserve a minimum of 32 elements
if (m_data.size()==0)
{
m_data.reserve(32);
}
else
{
// we need to reallocate the data, to reduce multiple reallocations
// we use a smart resize algorithm based on the current filling ratio
// in addition, we use double to avoid integers overflows
double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
// furthermore we bound the realloc ratio to:
// 1) reduce multiple minor realloc when the matrix is almost filled
// 2) avoid to allocate too much memory when the matrix is almost empty
reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
}
}
m_data.resize(m_data.size()+1,reallocRatio);
if (!isLastVec)
{
if (previousOuter==-1)
{
// oops wrong guess.
// let's correct the outer offsets
for (Index k=0; k<=(outer+1); ++k)
m_outerIndex[k] = 0;
Index k=outer+1;
while(m_outerIndex[k]==0)
m_outerIndex[k++] = 1;
while (k<=m_outerSize && m_outerIndex[k]!=0)
m_outerIndex[k++]++;
p = 0;
--k;
k = m_outerIndex[k]-1;
while (k>0)
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
else
{
// we are not inserting into the last inner vec
// update outer indices:
Index j = outer+2;
while (j<=m_outerSize && m_outerIndex[j]!=0)
m_outerIndex[j++]++;
--j;
// shift data of last vecs:
Index k = m_outerIndex[j]-1;
while (k>=Index(p))
{
m_data.index(k) = m_data.index(k-1);
m_data.value(k) = m_data.value(k-1);
k--;
}
}
}
while ( (p > startId) && (m_data.index(p-1) > inner) )
{
m_data.index(p) = m_data.index(p-1);
m_data.value(p) = m_data.value(p-1);
--p;
}
m_data.index(p) = inner;
return (m_data.value(p) = 0);
}
namespace internal {
template<typename _Scalar, int _Options, typename _StorageIndex>
struct evaluator<SparseMatrix<_Scalar,_Options,_StorageIndex> >
: evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > >
{
typedef evaluator<SparseCompressedBase<SparseMatrix<_Scalar,_Options,_StorageIndex> > > Base;
typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType;
evaluator() : Base() {}
explicit evaluator(const SparseMatrixType &mat) : Base(mat) {}
};
}
} // end namespace Eigen
#endif // EIGEN_SPARSEMATRIX_H