HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
eigen
Eigen
src
Core
util
XprHelper.h
// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud
// Copyright (C) 2006-2008 Benoit Jacob
// // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled // so currently we simply disable this optimization for gcc 4.3 #if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3) #define EIGEN_EMPTY_STRUCT_CTOR(X) \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {} #else #define EIGEN_EMPTY_STRUCT_CTOR(X) #endif namespace Eigen { namespace internal { template
EIGEN_DEVICE_FUNC inline IndexDest convert_index(const IndexSrc& idx) { // for sizeof(IndexDest)>=sizeof(IndexSrc) compilers should be able to optimize this away: eigen_internal_assert(idx <= NumTraits
::highest() && "Index value to big for target type"); return IndexDest(idx); } // promote_scalar_arg is an helper used in operation between an expression and a scalar, like: // expression * scalar // Its role is to determine how the type T of the scalar operand should be promoted given the scalar type ExprScalar of the given expression. // The IsSupported template parameter must be provided by the caller as: internal::has_ReturnType
>::value using the proper order for ExprScalar and T. // Then the logic is as follows: // - if the operation is natively supported as defined by IsSupported, then the scalar type is not promoted, and T is returned. // - otherwise, NumTraits
::Literal is returned if T is implicitly convertible to NumTraits
::Literal AND that this does not imply a float to integer conversion. // - otherwise, ExprScalar is returned if T is implicitly convertible to ExprScalar AND that this does not imply a float to integer conversion. // - In all other cases, the promoted type is not defined, and the respective operation is thus invalid and not available (SFINAE). template
struct promote_scalar_arg; template
struct promote_scalar_arg
{ typedef T type; }; // Recursively check safe conversion to PromotedType, and then ExprScalar if they are different. template
::value, bool IsSafe = NumTraits
::IsInteger || !NumTraits
::IsInteger> struct promote_scalar_arg_unsupported; // Start recursion with NumTraits
::Literal template
struct promote_scalar_arg
: promote_scalar_arg_unsupported
::Literal> {}; // We found a match! template
struct promote_scalar_arg_unsupported
{ typedef PromotedType type; }; // No match, but no real-to-integer issues, and ExprScalar and current PromotedType are different, // so let's try to promote to ExprScalar template
struct promote_scalar_arg_unsupported
: promote_scalar_arg_unsupported
{}; // Unsafe real-to-integer, let's stop. template
struct promote_scalar_arg_unsupported
{}; // T is not even convertible to ExprScalar, let's stop. template
struct promote_scalar_arg_unsupported
{}; //classes inheriting no_assignment_operator don't generate a default operator=. class no_assignment_operator { private: no_assignment_operator& operator=(const no_assignment_operator&); }; /** \internal return the index type with the largest number of bits */ template
struct promote_index_type { typedef typename conditional<(sizeof(I1)
::type type; }; /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that * can be accessed using value() and setValue(). * Otherwise, this class is an empty structure and value() just returns the template parameter Value. */ template
class variable_if_dynamic { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {} }; template
class variable_if_dynamic
{ T m_value; EIGEN_DEVICE_FUNC variable_if_dynamic() { eigen_assert(false); } public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamic(T value) : m_value(value) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T value() const { return m_value; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } }; /** \internal like variable_if_dynamic but for DynamicIndex */ template
class variable_if_dynamicindex { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); eigen_assert(v == T(Value)); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE T value() { return T(Value); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T) {} }; template
class variable_if_dynamicindex
{ T m_value; EIGEN_DEVICE_FUNC variable_if_dynamicindex() { eigen_assert(false); } public: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit variable_if_dynamicindex(T value) : m_value(value) {} EIGEN_DEVICE_FUNC T EIGEN_STRONG_INLINE value() const { return m_value; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void setValue(T value) { m_value = value; } }; template
struct functor_traits { enum { Cost = 10, PacketAccess = false, IsRepeatable = false }; }; template
struct packet_traits; template
struct unpacket_traits { typedef T type; typedef T half; enum { size = 1, alignment = 1 }; }; template
::size)==0 || is_same
::half>::value> struct find_best_packet_helper; template< int Size, typename PacketType> struct find_best_packet_helper
{ typedef PacketType type; }; template
struct find_best_packet_helper
{ typedef typename find_best_packet_helper
::half>::type type; }; template
struct find_best_packet { typedef typename find_best_packet_helper
::type>::type type; }; #if EIGEN_MAX_STATIC_ALIGN_BYTES>0 template
struct compute_default_alignment_helper { enum { value = 0 }; }; template
struct compute_default_alignment_helper
// Match { enum { value = AlignmentBytes }; }; template
struct compute_default_alignment_helper
// Try-half { // current packet too large, try with an half-packet enum { value = compute_default_alignment_helper
::value }; }; #else // If static alignment is disabled, no need to bother. // This also avoids a division by zero in "bool Match = bool((ArrayBytes%AlignmentBytes)==0)" template
struct compute_default_alignment_helper { enum { value = 0 }; }; #endif template
struct compute_default_alignment { enum { value = compute_default_alignment_helper
::value }; }; template
struct compute_default_alignment
{ enum { value = EIGEN_MAX_ALIGN_BYTES }; }; template
class make_proper_matrix_type { enum { IsColVector = _Cols==1 && _Rows!=1, IsRowVector = _Rows==1 && _Cols!=1, Options = IsColVector ? (_Options | ColMajor) & ~RowMajor : IsRowVector ? (_Options | RowMajor) & ~ColMajor : _Options }; public: typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type; }; template
class compute_matrix_flags { enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 }; public: // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<> // and then propagate this information to the evaluator's flags. // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage. enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit }; }; template
struct size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; template
struct size_of_xpr_at_compile_time { enum { ret = size_at_compile_time
::RowsAtCompileTime,traits
::ColsAtCompileTime>::ret }; }; /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, * whereas eval is a const reference in the case of a matrix */ template
::StorageKind> struct plain_matrix_type; template
struct plain_matrix_type_dense; template
struct plain_matrix_type
{ typedef typename plain_matrix_type_dense
::XprKind, traits
::Flags>::type type; }; template
struct plain_matrix_type
{ typedef typename T::PlainObject type; }; template
struct plain_matrix_type_dense
{ typedef Matrix
::Scalar, traits
::RowsAtCompileTime, traits
::ColsAtCompileTime, AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), traits
::MaxRowsAtCompileTime, traits
::MaxColsAtCompileTime > type; }; template
struct plain_matrix_type_dense
{ typedef Array
::Scalar, traits
::RowsAtCompileTime, traits
::ColsAtCompileTime, AutoAlign | (Flags&RowMajorBit ? RowMajor : ColMajor), traits
::MaxRowsAtCompileTime, traits
::MaxColsAtCompileTime > type; }; /* eval : the return type of eval(). For matrices, this is just a const reference * in order to avoid a useless copy */ template
::StorageKind> struct eval; template
struct eval
{ typedef typename plain_matrix_type
::type type; // typedef typename T::PlainObject type; // typedef T::Matrix
::Scalar, // traits
::RowsAtCompileTime, // traits
::ColsAtCompileTime, // AutoAlign | (traits
::Flags&RowMajorBit ? RowMajor : ColMajor), // traits
::MaxRowsAtCompileTime, // traits
::MaxColsAtCompileTime // > type; }; template
struct eval
{ typedef typename plain_matrix_type
::type type; }; // for matrices, no need to evaluate, just use a const reference to avoid a useless copy template
struct eval
, Dense> { typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; template
struct eval
, Dense> { typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; /* similar to plain_matrix_type, but using the evaluator's Flags */ template
::StorageKind> struct plain_object_eval; template
struct plain_object_eval
{ typedef typename plain_matrix_type_dense
::XprKind, evaluator
::Flags>::type type; }; /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major */ template
struct plain_matrix_type_column_major { enum { Rows = traits
::RowsAtCompileTime, Cols = traits
::ColsAtCompileTime, MaxRows = traits
::MaxRowsAtCompileTime, MaxCols = traits
::MaxColsAtCompileTime }; typedef Matrix
::Scalar, Rows, Cols, (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major */ template
struct plain_matrix_type_row_major { enum { Rows = traits
::RowsAtCompileTime, Cols = traits
::ColsAtCompileTime, MaxRows = traits
::MaxRowsAtCompileTime, MaxCols = traits
::MaxColsAtCompileTime }; typedef Matrix
::Scalar, Rows, Cols, (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; /** \internal The reference selector for template expressions. The idea is that we don't * need to use references for expressions since they are light weight proxy * objects which should generate no copying overhead. */ template
struct ref_selector { typedef typename conditional< bool(traits
::Flags & NestByRefBit), T const&, const T >::type type; typedef typename conditional< bool(traits
::Flags & NestByRefBit), T &, T >::type non_const_type; }; /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ template
struct transfer_constness { typedef typename conditional< bool(internal::is_const
::value), typename internal::add_const_on_value_type
::type, T2 >::type type; }; // However, we still need a mechanism to detect whether an expression which is evaluated multiple time // has to be evaluated into a temporary. // That's the purpose of this new nested_eval helper: /** \internal Determines how a given expression should be nested when evaluated multiple times. * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. * * \tparam T the type of the expression being nested. * \tparam n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. * \tparam PlainObject the type of the temporary if needed. */ template
::type> struct nested_eval { enum { ScalarReadCost = NumTraits
::Scalar>::ReadCost, CoeffReadCost = evaluator
::CoeffReadCost, // NOTE What if an evaluator evaluate itself into a tempory? // Then CoeffReadCost will be small (e.g., 1) but we still have to evaluate, especially if n>1. // This situation is already taken care by the EvalBeforeNestingBit flag, which is turned ON // for all evaluator creating a temporary. This flag is then propagated by the parent evaluators. // Another solution could be to count the number of temps? NAsInteger = n == Dynamic ? HugeCost : n, CostEval = (NAsInteger+1) * ScalarReadCost + CoeffReadCost, CostNoEval = NAsInteger * CoeffReadCost, Evaluate = (int(evaluator
::Flags) & EvalBeforeNestingBit) || (int(CostEval) < int(CostNoEval)) }; typedef typename conditional
::type>::type type; }; template
EIGEN_DEVICE_FUNC inline T* const_cast_ptr(const T* ptr) { return const_cast
(ptr); } template
::XprKind> struct dense_xpr_base { /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ }; template
struct dense_xpr_base
{ typedef MatrixBase
type; }; template
struct dense_xpr_base
{ typedef ArrayBase
type; }; template
::XprKind, typename StorageKind = typename traits
::StorageKind> struct generic_xpr_base; template
struct generic_xpr_base
{ typedef typename dense_xpr_base
::type type; }; template
struct cast_return_type { typedef typename XprType::Scalar CurrentScalarType; typedef typename remove_all
::type _CastType; typedef typename _CastType::Scalar NewScalarType; typedef typename conditional
::value, const XprType&,CastType>::type type; }; template
struct promote_storage_type; template
struct promote_storage_type
{ typedef A ret; }; template
struct promote_storage_type
{ typedef A ret; }; template
struct promote_storage_type
{ typedef A ret; }; /** \internal Specify the "storage kind" of applying a coefficient-wise * binary operations between two expressions of kinds A and B respectively. * The template parameter Functor permits to specialize the resulting storage kind wrt to * the functor. * The default rules are as follows: * \code * A op A -> A * A op dense -> dense * dense op B -> dense * sparse op dense -> sparse * dense op sparse -> sparse * \endcode */ template
struct cwise_promote_storage_type; template
struct cwise_promote_storage_type
{ typedef A ret; }; template
struct cwise_promote_storage_type
{ typedef Dense ret; }; template
struct cwise_promote_storage_type
{ typedef Dense ret; }; template
struct cwise_promote_storage_type
{ typedef Dense ret; }; template
struct cwise_promote_storage_type
{ typedef Sparse ret; }; template
struct cwise_promote_storage_type
{ typedef Sparse ret; }; template
struct cwise_promote_storage_order { enum { value = LhsOrder }; }; template
struct cwise_promote_storage_order
{ enum { value = RhsOrder }; }; template
struct cwise_promote_storage_order
{ enum { value = LhsOrder }; }; template
struct cwise_promote_storage_order
{ enum { value = Order }; }; /** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B. * The template parameter ProductTag permits to specialize the resulting storage kind wrt to * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct. * The default rules are as follows: * \code * K * K -> K * dense * K -> dense * K * dense -> dense * diag * K -> K * K * diag -> K * Perm * K -> K * K * Perm -> K * \endcode */ template
struct product_promote_storage_type; template
struct product_promote_storage_type
{ typedef A ret;}; template
struct product_promote_storage_type
{ typedef Dense ret;}; template
struct product_promote_storage_type
{ typedef Dense ret; }; template
struct product_promote_storage_type
{ typedef Dense ret; }; template
struct product_promote_storage_type
{ typedef A ret; }; template
struct product_promote_storage_type
{ typedef B ret; }; template
struct product_promote_storage_type
{ typedef Dense ret; }; template
struct product_promote_storage_type
{ typedef Dense ret; }; template
struct product_promote_storage_type
{ typedef A ret; }; template
struct product_promote_storage_type
{ typedef B ret; }; template
struct product_promote_storage_type
{ typedef Dense ret; }; template
struct product_promote_storage_type
{ typedef Dense ret; }; /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. * \tparam Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. */ template
struct plain_row_type { typedef Matrix
MatrixRowType; typedef Array
ArrayRowType; typedef typename conditional< is_same< typename traits
::XprKind, MatrixXpr >::value, MatrixRowType, ArrayRowType >::type type; }; template
struct plain_col_type { typedef Matrix
MatrixColType; typedef Array
ArrayColType; typedef typename conditional< is_same< typename traits
::XprKind, MatrixXpr >::value, MatrixColType, ArrayColType >::type type; }; template
struct plain_diag_type { enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime) }; typedef Matrix
MatrixDiagType; typedef Array
ArrayDiagType; typedef typename conditional< is_same< typename traits
::XprKind, MatrixXpr >::value, MatrixDiagType, ArrayDiagType >::type type; }; template
struct plain_constant_type { enum { Options = (traits
::Flags&RowMajorBit)?RowMajor:0 }; typedef Array
::RowsAtCompileTime, traits
::ColsAtCompileTime, Options, traits
::MaxRowsAtCompileTime,traits
::MaxColsAtCompileTime> array_type; typedef Matrix
::RowsAtCompileTime, traits
::ColsAtCompileTime, Options, traits
::MaxRowsAtCompileTime,traits
::MaxColsAtCompileTime> matrix_type; typedef CwiseNullaryOp
, const typename conditional
::XprKind, MatrixXpr >::value, matrix_type, array_type>::type > type; }; template
struct is_lvalue { enum { value = (!bool(is_const
::value)) && bool(traits
::Flags & LvalueBit) }; }; template
struct is_diagonal { enum { ret = false }; }; template
struct is_diagonal
> { enum { ret = true }; }; template
struct is_diagonal
> { enum { ret = true }; }; template
struct is_diagonal
> { enum { ret = true }; }; template
struct glue_shapes; template<> struct glue_shapes
{ typedef TriangularShape type; }; template
bool is_same_dense(const T1 &mat1, const T2 &mat2, typename enable_if
::ret&&has_direct_access
::ret, T1>::type * = 0) { return (mat1.data()==mat2.data()) && (mat1.innerStride()==mat2.innerStride()) && (mat1.outerStride()==mat2.outerStride()); } template
bool is_same_dense(const T1 &, const T2 &, typename enable_if::ret&&has_direct_access
::ret), T1>::type * = 0) { return false; } // Internal helper defining the cost of a scalar division for the type T. // The default heuristic can be specialized for each scalar type and architecture. template
struct scalar_div_cost { enum { value = 8*NumTraits
::MulCost }; }; template
struct scalar_div_cost
, Vectorized> { enum { value = 2*scalar_div_cost
::value + 6*NumTraits
::MulCost + 3*NumTraits
::AddCost }; }; template
struct scalar_div_cost
::type> { enum { value = 24 }; }; template
struct scalar_div_cost
::type> { enum { value = 21 }; }; #ifdef EIGEN_DEBUG_ASSIGN std::string demangle_traversal(int t) { if(t==DefaultTraversal) return "DefaultTraversal"; if(t==LinearTraversal) return "LinearTraversal"; if(t==InnerVectorizedTraversal) return "InnerVectorizedTraversal"; if(t==LinearVectorizedTraversal) return "LinearVectorizedTraversal"; if(t==SliceVectorizedTraversal) return "SliceVectorizedTraversal"; return "?"; } std::string demangle_unrolling(int t) { if(t==NoUnrolling) return "NoUnrolling"; if(t==InnerUnrolling) return "InnerUnrolling"; if(t==CompleteUnrolling) return "CompleteUnrolling"; return "?"; } std::string demangle_flags(int f) { std::string res; if(f&RowMajorBit) res += " | RowMajor"; if(f&PacketAccessBit) res += " | Packet"; if(f&LinearAccessBit) res += " | Linear"; if(f&LvalueBit) res += " | Lvalue"; if(f&DirectAccessBit) res += " | Direct"; if(f&NestByRefBit) res += " | NestByRef"; if(f&NoPreferredStorageOrderBit) res += " | NoPreferredStorageOrderBit"; return res; } #endif } // end namespace internal /** \class ScalarBinaryOpTraits * \ingroup Core_Module * * \brief Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. * * This class permits to control the scalar return type of any binary operation performed on two different scalar types through (partial) template specializations. * * For instance, let \c U1, \c U2 and \c U3 be three user defined scalar types for which most operations between instances of \c U1 and \c U2 returns an \c U3. * You can let %Eigen knows that by defining: \code template
struct ScalarBinaryOpTraits
{ typedef U3 ReturnType; }; template
struct ScalarBinaryOpTraits