/*****************************************************************************/
// Copyright 2006 Adobe Systems Incorporated
// All Rights Reserved.
//
// NOTICE: Adobe permits you to use, modify, and distribute this file in
// accordance with the terms of the Adobe license agreement accompanying it.
/*****************************************************************************/
/* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_resample.cpp#1 $ */
/* $DateTime: 2012/05/30 13:28:51 $ */
/* $Change: 832332 $ */
/* $Author: tknoll $ */
/*****************************************************************************/
#include "dng_resample.h"
#include "dng_assertions.h"
#include "dng_bottlenecks.h"
#include "dng_filter_task.h"
#include "dng_host.h"
#include "dng_image.h"
#include "dng_memory.h"
#include "dng_pixel_buffer.h"
#include "dng_safe_arithmetic.h"
#include "dng_tag_types.h"
#include "dng_utils.h"
/******************************************************************************/
real64 dng_resample_bicubic::Extent () const
{
return 2.0;
}
/******************************************************************************/
real64 dng_resample_bicubic::Evaluate (real64 x) const
{
const real64 A = -0.75;
x = Abs_real64 (x);
if (x >= 2.0)
return 0.0;
else if (x >= 1.0)
return (((A * x - 5.0 * A) * x + 8.0 * A) * x - 4.0 * A);
else
return (((A + 2.0) * x - (A + 3.0)) * x * x + 1.0);
}
/******************************************************************************/
const dng_resample_function & dng_resample_bicubic::Get ()
{
static dng_resample_bicubic static_dng_resample_bicubic;
return static_dng_resample_bicubic;
}
/*****************************************************************************/
dng_resample_coords::dng_resample_coords ()
: fOrigin (0)
, fCoords ()
{
}
/*****************************************************************************/
dng_resample_coords::~dng_resample_coords ()
{
}
/*****************************************************************************/
void dng_resample_coords::Initialize (int32 srcOrigin,
int32 dstOrigin,
uint32 srcCount,
uint32 dstCount,
dng_memory_allocator &allocator)
{
fOrigin = dstOrigin;
uint32 dstEntries = 0;
uint32 bufferSize = 0;
if (!RoundUpUint32ToMultiple(dstCount, 8, &dstEntries) ||
!SafeUint32Mult(dstEntries, sizeof(int32), &bufferSize)) {
ThrowMemoryFull("Arithmetic overflow computing size for coordinate "
"buffer");
}
fCoords.Reset (allocator.Allocate (bufferSize));
int32 *coords = fCoords->Buffer_int32 ();
real64 invScale = (real64) srcCount /
(real64) dstCount;
for (uint32 j = 0; j < dstCount; j++)
{
real64 x = (real64) j + 0.5;
real64 y = x * invScale - 0.5 + (real64) srcOrigin;
coords [j] = Round_int32 (y * (real64) kResampleSubsampleCount);
}
// Pad out table by replicating last entry.
for (uint32 k = dstCount; k < dstEntries; k++)
{
coords [k] = coords [dstCount - 1];
}
}
/*****************************************************************************/
dng_resample_weights::dng_resample_weights ()
: fRadius (0)
, fWeightStep (0)
, fWeights32 ()
, fWeights16 ()
{
}
/*****************************************************************************/
dng_resample_weights::~dng_resample_weights ()
{
}
/*****************************************************************************/
void dng_resample_weights::Initialize (real64 scale,
const dng_resample_function &kernel,
dng_memory_allocator &allocator)
{
uint32 j;
// We only adjust the kernel size for scale factors less than 1.0.
scale = Min_real64 (scale, 1.0);
// Find radius of this kernel.
fRadius = (uint32) (kernel.Extent () / scale + 0.9999);
// Width is twice the radius.
uint32 width = fRadius * 2;
// Round to each set to weights to a multiple of 8 entries.
if (!RoundUpUint32ToMultiple (width, 8, &fWeightStep))
{
ThrowMemoryFull ("Arithmetic overflow computing fWeightStep");
}
// Allocate and zero weight tables.
uint32 bufferSize = 0;
if (!SafeUint32Mult (fWeightStep, kResampleSubsampleCount, &bufferSize) ||
!SafeUint32Mult (bufferSize, (uint32) sizeof (real32), &bufferSize))
{
ThrowMemoryFull("Arithmetic overflow computing buffer size.");
}
fWeights32.Reset (allocator.Allocate (bufferSize));
DoZeroBytes (fWeights32->Buffer (),
fWeights32->LogicalSize ());
if (!SafeUint32Mult (fWeightStep, kResampleSubsampleCount, &bufferSize) ||
!SafeUint32Mult (bufferSize, (uint32) sizeof (int16), &bufferSize))
{
ThrowMemoryFull("Arithmetic overflow computing buffer size.");
}
fWeights16.Reset (allocator.Allocate (bufferSize));
DoZeroBytes (fWeights16->Buffer (),
fWeights16->LogicalSize ());
// Compute kernel for each subsample values.
for (uint32 sample = 0; sample < kResampleSubsampleCount; sample++)
{
real64 fract = sample * (1.0 / (real64) kResampleSubsampleCount);
real32 *w32 = fWeights32->Buffer_real32 () + fWeightStep * sample;
// Evaluate kernel function for 32 bit weights.
{
real64 t32 = 0.0;
for (j = 0; j < width; j++)
{
int32 k = (int32) j - (int32) fRadius + 1;
real64 x = (k - fract) * scale;
w32 [j] = (real32) kernel.Evaluate (x);
t32 += w32 [j];
}
// Scale 32 bit weights so total of weights is 1.0.
real32 s32 = (real32) (1.0 / t32);
for (j = 0; j < width; j++)
{
w32 [j] *= s32;
}
}
// Round off 32 bit weights to 16 bit weights.
{
int16 *w16 = fWeights16->Buffer_int16 () + fWeightStep * sample;
int32 t16 = 0;
for (j = 0; j < width; j++)
{
w16 [j] = (int16) Round_int32 (w32 [j] * 16384.0);
t16 += w16 [j];
}
// Adjust center entry for any round off error so total is
// exactly 16384.
w16 [fRadius - (fract >= 0.5 ? 0 : 1)] += (int16) (16384 - t16);
}
}
}
/*****************************************************************************/
dng_resample_weights_2d::dng_resample_weights_2d ()
: fRadius (0)
, fRowStep (0)
, fColStep (0)
, fWeights32 ()
, fWeights16 ()
{
}
/*****************************************************************************/
dng_resample_weights_2d::~dng_resample_weights_2d ()
{
}
/*****************************************************************************/
void dng_resample_weights_2d::Initialize (const dng_resample_function &kernel,
dng_memory_allocator &allocator)
{
// Find radius of this kernel. Unlike with 1d resample weights (see
// dng_resample_weights), we never scale up the kernel size.
fRadius = (uint32) (kernel.Extent () + 0.9999);
// Width is twice the radius.
uint32 width = 0;
uint32 widthSqr = 0;
uint32 step = 0;
if (!SafeUint32Mult (fRadius, 2, &width) ||
!SafeUint32Mult (width, width, &widthSqr) ||
!RoundUpUint32ToMultiple (widthSqr, 8, &step) ||
!SafeUint32Mult (step, kResampleSubsampleCount2D, &fRowStep))
{
ThrowMemoryFull ("Arithmetic overflow computing row step.");
}
fColStep = step;
// Allocate and zero weight tables.
uint32 bufferSize = 0;
if (!SafeUint32Mult (step, kResampleSubsampleCount2D, &bufferSize) ||
!SafeUint32Mult (bufferSize, kResampleSubsampleCount2D, &bufferSize) ||
!SafeUint32Mult (bufferSize, (uint32) sizeof (real32), &bufferSize))
{
ThrowMemoryFull ("Arithmetic overflow computing buffer size.");
}
fWeights32.Reset (allocator.Allocate (bufferSize));
DoZeroBytes (fWeights32->Buffer (),
fWeights32->LogicalSize ());
if (!SafeUint32Mult (step, kResampleSubsampleCount2D, &bufferSize) ||
!SafeUint32Mult (bufferSize, kResampleSubsampleCount2D, &bufferSize) ||
!SafeUint32Mult (bufferSize, (uint32) sizeof (int16), &bufferSize))
{
ThrowMemoryFull ("Arithmetic overflow computing buffer size.");
}
fWeights16.Reset (allocator.Allocate (bufferSize));
DoZeroBytes (fWeights16->Buffer (),
fWeights16->LogicalSize ());
// Compute kernel for each subsample values.
for (uint32 y = 0; y < kResampleSubsampleCount2D; y++)
{
real64 yFract = y * (1.0 / (real64) kResampleSubsampleCount2D);
for (uint32 x = 0; x < kResampleSubsampleCount2D; x++)
{
real64 xFract = x * (1.0 / (real64) kResampleSubsampleCount2D);
real32 *w32 = (real32 *) Weights32 (dng_point ((int32) y,
(int32) x));
// Evaluate kernel function for 32 bit weights.
{
real64 t32 = 0.0;
uint32 index = 0;
for (uint32 i = 0; i < width; i++)
{
int32 yInt = ((int32) i) - (int32) fRadius + 1;
real64 yPos = yInt - yFract;
for (uint32 j = 0; j < width; j++)
{
int32 xInt = ((int32) j) - (int32) fRadius + 1;
real64 xPos = xInt - xFract;
#if 0
// Radial.
real64 dy2 = yPos * yPos;
real64 dx2 = xPos * xPos;
real64 r = sqrt (dx2 + dy2);
w32 [index] = (real32) kernel.Evaluate (r);
#else
// Separable.
w32 [index] = (real32) kernel.Evaluate (xPos) *
(real32) kernel.Evaluate (yPos);
#endif
t32 += w32 [index];
index++;
}
}
// Scale 32 bit weights so total of weights is 1.0.
const real32 s32 = (real32) (1.0 / t32);
for (uint32 i = 0; i < widthSqr; i++)
{
w32 [i] *= s32;
}
}
// Round off 32 bit weights to 16 bit weights.
{
int16 *w16 = (int16 *) Weights16 (dng_point ((int32) y,
(int32) x));
int32 t16 = 0;
for (uint32 j = 0; j < widthSqr; j++)
{
w16 [j] = (int16) Round_int32 (w32 [j] * 16384.0);
t16 += w16 [j];
}
// Adjust one of the center entries for any round off error so total
// is exactly 16384.
const uint32 xOffset = fRadius - ((xFract >= 0.5) ? 0 : 1);
const uint32 yOffset = fRadius - ((yFract >= 0.5) ? 0 : 1);
const uint32 centerOffset = width * yOffset + xOffset;
w16 [centerOffset] += (int16) (16384 - t16);
}
}
}
}
/*****************************************************************************/
class dng_resample_task: public dng_filter_task
{
protected:
dng_rect fSrcBounds;
dng_rect fDstBounds;
const dng_resample_function &fKernel;
real64 fRowScale;
real64 fColScale;
dng_resample_coords fRowCoords;
dng_resample_coords fColCoords;
dng_resample_weights fWeightsV;
dng_resample_weights fWeightsH;
dng_point fSrcTileSize;
AutoPtr<dng_memory_block> fTempBuffer [kMaxMPThreads];
public:
dng_resample_task (const dng_image &srcImage,
dng_image &dstImage,
const dng_rect &srcBounds,
const dng_rect &dstBounds,
const dng_resample_function &kernel);
virtual dng_rect SrcArea (const dng_rect &dstArea);
virtual dng_point SrcTileSize (const dng_point &dstTileSize);
virtual void Start (uint32 threadCount,
const dng_point &tileSize,
dng_memory_allocator *allocator,
dng_abort_sniffer *sniffer);
virtual void ProcessArea (uint32 threadIndex,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer);
};
/*****************************************************************************/
dng_resample_task::dng_resample_task (const dng_image &srcImage,
dng_image &dstImage,
const dng_rect &srcBounds,
const dng_rect &dstBounds,
const dng_resample_function &kernel)
: dng_filter_task (srcImage,
dstImage)
, fSrcBounds (srcBounds)
, fDstBounds (dstBounds)
, fKernel (kernel)
, fRowScale ((srcBounds.H () != 0) ? dstBounds.H () / (real64) srcBounds.H () : 0)
, fColScale ((srcBounds.W () != 0) ? dstBounds.W () / (real64) srcBounds.W () : 0)
, fRowCoords ()
, fColCoords ()
, fWeightsV ()
, fWeightsH ()
, fSrcTileSize ()
{
if (fRowScale == 0 || fColScale == 0)
{
ThrowBadFormat ();
}
if (srcImage.PixelSize () <= 2 &&
dstImage.PixelSize () <= 2 &&
srcImage.PixelRange () == dstImage.PixelRange ())
{
fSrcPixelType = ttShort;
fDstPixelType = ttShort;
}
else
{
fSrcPixelType = ttFloat;
fDstPixelType = ttFloat;
}
fUnitCell = dng_point (8, 8);
fMaxTileSize.v = Pin_int32 (fUnitCell.v,
Round_int32 (fMaxTileSize.v * fRowScale),
fMaxTileSize.v);
fMaxTileSize.h = Pin_int32 (fUnitCell.h,
Round_int32 (fMaxTileSize.h * fColScale),
fMaxTileSize.h);
}
/*****************************************************************************/
dng_rect dng_resample_task::SrcArea (const dng_rect &dstArea)
{
int32 offsetV = fWeightsV.Offset ();
int32 offsetH = fWeightsH.Offset ();
uint32 widthV = fWeightsV.Width ();
uint32 widthH = fWeightsH.Width ();
dng_rect srcArea;
srcArea.t = SafeInt32Add (fRowCoords.Pixel (dstArea.t), offsetV);
srcArea.l = SafeInt32Add (fColCoords.Pixel (dstArea.l), offsetH);
srcArea.b = SafeInt32Add (SafeInt32Add (
fRowCoords.Pixel (SafeInt32Sub (dstArea.b, 1)),
offsetV),
ConvertUint32ToInt32 (widthV));;
srcArea.r = SafeInt32Add(SafeInt32Add(
fColCoords.Pixel (SafeInt32Sub (dstArea.r, 1)),
offsetH),
ConvertUint32ToInt32(widthH));;
return srcArea;
}
/*****************************************************************************/
dng_point dng_resample_task::SrcTileSize (const dng_point & /* dstTileSize */)
{
return fSrcTileSize;
}
/*****************************************************************************/
void dng_resample_task::Start (uint32 threadCount,
const dng_point &tileSize,
dng_memory_allocator *allocator,
dng_abort_sniffer *sniffer)
{
// Compute sub-pixel resolution coordinates in the source image for
// each row and column of the destination area.
fRowCoords.Initialize (fSrcBounds.t,
fDstBounds.t,
fSrcBounds.H (),
fDstBounds.H (),
*allocator);
fColCoords.Initialize (fSrcBounds.l,
fDstBounds.l,
fSrcBounds.W (),
fDstBounds.W (),
*allocator);
// Compute resampling kernels.
fWeightsV.Initialize (fRowScale,
fKernel,
*allocator);
fWeightsH.Initialize (fColScale,
fKernel,
*allocator);
// Find upper bound on source source tile.
fSrcTileSize.v = Round_int32 (tileSize.v / fRowScale) + fWeightsV.Width () + 2;
fSrcTileSize.h = Round_int32 (tileSize.h / fColScale) + fWeightsH.Width () + 2;
// Allocate temp buffers.
uint32 tempBufferSize = 0;
if (!RoundUpUint32ToMultiple (fSrcTileSize.h, 8, &tempBufferSize) ||
!SafeUint32Mult (tempBufferSize,
static_cast<uint32> (sizeof (real32)),
&tempBufferSize))
{
ThrowMemoryFull("Arithmetic overflow computing buffer size.");
}
for (uint32 threadIndex = 0; threadIndex < threadCount; threadIndex++)
{
fTempBuffer [threadIndex] . Reset (allocator->Allocate (tempBufferSize));
}
// Allocate the pixel buffers.
dng_filter_task::Start (threadCount,
tileSize,
allocator,
sniffer);
}
/*****************************************************************************/
void dng_resample_task::ProcessArea (uint32 threadIndex,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer)
{
dng_rect srcArea = srcBuffer.fArea;
dng_rect dstArea = dstBuffer.fArea;
uint32 srcCols = srcArea.W ();
uint32 dstCols = dstArea.W ();
uint32 widthV = fWeightsV.Width ();
uint32 widthH = fWeightsH.Width ();
int32 offsetV = fWeightsV.Offset ();
int32 offsetH = fWeightsH.Offset ();
uint32 stepH = fWeightsH.Step ();
const int32 *rowCoords = fRowCoords.Coords (0 );
const int32 *colCoords = fColCoords.Coords (dstArea.l);
if (fSrcPixelType == ttFloat)
{
const real32 *weightsH = fWeightsH.Weights32 (0);
real32 *tPtr = fTempBuffer [threadIndex]->Buffer_real32 ();
real32 *ttPtr = tPtr + offsetH - srcArea.l;
for (int32 dstRow = dstArea.t; dstRow < dstArea.b; dstRow++)
{
int32 rowCoord = rowCoords [dstRow];
int32 rowFract = rowCoord & kResampleSubsampleMask;
const real32 *weightsV = fWeightsV.Weights32 (rowFract);
int32 srcRow = (rowCoord >> kResampleSubsampleBits) + offsetV;
for (uint32 plane = 0; plane < dstBuffer.fPlanes; plane++)
{
const real32 *sPtr = srcBuffer.ConstPixel_real32 (srcRow,
srcArea.l,
plane);
DoResampleDown32 (sPtr,
tPtr,
srcCols,
srcBuffer.fRowStep,
weightsV,
widthV);
real32 *dPtr = dstBuffer.DirtyPixel_real32 (dstRow,
dstArea.l,
plane);
DoResampleAcross32 (ttPtr,
dPtr,
dstCols,
colCoords,
weightsH,
widthH,
stepH);
}
}
}
else
{
const int16 *weightsH = fWeightsH.Weights16 (0);
uint16 *tPtr = fTempBuffer [threadIndex]->Buffer_uint16 ();
uint16 *ttPtr = tPtr + offsetH - srcArea.l;
uint32 pixelRange = fDstImage.PixelRange ();
for (int32 dstRow = dstArea.t; dstRow < dstArea.b; dstRow++)
{
int32 rowCoord = rowCoords [dstRow];
int32 rowFract = rowCoord & kResampleSubsampleMask;
const int16 *weightsV = fWeightsV.Weights16 (rowFract);
int32 srcRow = (rowCoord >> kResampleSubsampleBits) + offsetV;
for (uint32 plane = 0; plane < dstBuffer.fPlanes; plane++)
{
const uint16 *sPtr = srcBuffer.ConstPixel_uint16 (srcRow,
srcArea.l,
plane);
DoResampleDown16 (sPtr,
tPtr,
srcCols,
srcBuffer.fRowStep,
weightsV,
widthV,
pixelRange);
uint16 *dPtr = dstBuffer.DirtyPixel_uint16 (dstRow,
dstArea.l,
plane);
DoResampleAcross16 (ttPtr,
dPtr,
dstCols,
colCoords,
weightsH,
widthH,
stepH,
pixelRange);
}
}
}
}
/*****************************************************************************/
void ResampleImage (dng_host &host,
const dng_image &srcImage,
dng_image &dstImage,
const dng_rect &srcBounds,
const dng_rect &dstBounds,
const dng_resample_function &kernel)
{
dng_resample_task task (srcImage,
dstImage,
srcBounds,
dstBounds,
kernel);
host.PerformAreaTask (task,
dstBounds);
}
/*****************************************************************************/