//
// Copyright (C) 2016 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
//
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
// The SPIR-V spec requires code blocks to appear in an order satisfying the
// dominator-tree direction (ie, dominator before the dominated). This is,
// actually, easy to achieve: any pre-order CFG traversal algorithm will do it.
// Because such algorithms visit a block only after traversing some path to it
// from the root, they necessarily visit the block's idom first.
//
// But not every graph-traversal algorithm outputs blocks in an order that
// appears logical to human readers. The problem is that unrelated branches may
// be interspersed with each other, and merge blocks may come before some of the
// branches being merged.
//
// A good, human-readable order of blocks may be achieved by performing
// depth-first search but delaying merge nodes until after all their branches
// have been visited. This is implemented below by the inReadableOrder()
// function.
#include "spvIR.h"
#include <cassert>
#include <unordered_set>
using spv::Block;
using spv::Id;
namespace {
// Traverses CFG in a readable order, invoking a pre-set callback on each block.
// Use by calling visit() on the root block.
class ReadableOrderTraverser {
public:
explicit ReadableOrderTraverser(std::function<void(Block*)> callback) : callback_(callback) {}
// Visits the block if it hasn't been visited already and isn't currently
// being delayed. Invokes callback(block), then descends into its
// successors. Delays merge-block and continue-block processing until all
// the branches have been completed.
void visit(Block* block)
{
assert(block);
if (visited_.count(block) || delayed_.count(block))
return;
callback_(block);
visited_.insert(block);
Block* mergeBlock = nullptr;
Block* continueBlock = nullptr;
auto mergeInst = block->getMergeInstruction();
if (mergeInst) {
Id mergeId = mergeInst->getIdOperand(0);
mergeBlock = block->getParent().getParent().getInstruction(mergeId)->getBlock();
delayed_.insert(mergeBlock);
if (mergeInst->getOpCode() == spv::OpLoopMerge) {
Id continueId = mergeInst->getIdOperand(1);
continueBlock =
block->getParent().getParent().getInstruction(continueId)->getBlock();
delayed_.insert(continueBlock);
}
}
const auto successors = block->getSuccessors();
for (auto it = successors.cbegin(); it != successors.cend(); ++it)
visit(*it);
if (continueBlock) {
delayed_.erase(continueBlock);
visit(continueBlock);
}
if (mergeBlock) {
delayed_.erase(mergeBlock);
visit(mergeBlock);
}
}
private:
std::function<void(Block*)> callback_;
// Whether a block has already been visited or is being delayed.
std::unordered_set<Block *> visited_, delayed_;
};
}
void spv::inReadableOrder(Block* root, std::function<void(Block*)> callback)
{
ReadableOrderTraverser(callback).visit(root);
}