// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef TEST_TEST_FIXTURE_H_
#define TEST_TEST_FIXTURE_H_
#include <string>
#include <vector>
#include "test/unit_spirv.h"
namespace spvtest {
// RAII for spv_context.
struct ScopedContext {
ScopedContext(spv_target_env env = SPV_ENV_UNIVERSAL_1_0)
: context(spvContextCreate(env)) {}
~ScopedContext() { spvContextDestroy(context); }
spv_context context;
};
// Common setup for TextToBinary tests. SetText() should be called to populate
// the actual test text.
template <typename T>
class TextToBinaryTestBase : public T {
public:
// Shorthand for SPIR-V compilation result.
using SpirvVector = std::vector<uint32_t>;
// Offset into a SpirvVector at which the first instruction starts.
static const SpirvVector::size_type kFirstInstruction = 5;
TextToBinaryTestBase() : diagnostic(nullptr), text(), binary(nullptr) {
char textStr[] = "substitute the text member variable with your test";
text = {textStr, strlen(textStr)};
}
virtual ~TextToBinaryTestBase() {
DestroyBinary();
if (diagnostic) spvDiagnosticDestroy(diagnostic);
}
// Returns subvector v[from:end).
SpirvVector Subvector(const SpirvVector& v, SpirvVector::size_type from) {
assert(from <= v.size());
return SpirvVector(v.begin() + from, v.end());
}
// Compiles SPIR-V text in the given assembly syntax format, asserting
// compilation success. Returns the compiled code.
SpirvVector CompileSuccessfully(const std::string& txt,
spv_target_env env = SPV_ENV_UNIVERSAL_1_0) {
spv_result_t status =
spvTextToBinary(ScopedContext(env).context, txt.c_str(), txt.size(),
&binary, &diagnostic);
EXPECT_EQ(SPV_SUCCESS, status) << txt;
SpirvVector code_copy;
if (status == SPV_SUCCESS) {
code_copy = SpirvVector(binary->code, binary->code + binary->wordCount);
DestroyBinary();
} else {
spvDiagnosticPrint(diagnostic);
}
return code_copy;
}
// Compiles SPIR-V text with the given format, asserting compilation failure.
// Returns the error message(s).
std::string CompileFailure(const std::string& txt,
spv_target_env env = SPV_ENV_UNIVERSAL_1_0) {
EXPECT_NE(SPV_SUCCESS,
spvTextToBinary(ScopedContext(env).context, txt.c_str(),
txt.size(), &binary, &diagnostic))
<< txt;
DestroyBinary();
return diagnostic->error;
}
// Encodes SPIR-V text into binary and then decodes the binary using
// given options. Returns the decoded text.
std::string EncodeAndDecodeSuccessfully(
const std::string& txt,
uint32_t disassemble_options = SPV_BINARY_TO_TEXT_OPTION_NONE,
spv_target_env env = SPV_ENV_UNIVERSAL_1_0) {
DestroyBinary();
ScopedContext context(env);
disassemble_options |= SPV_BINARY_TO_TEXT_OPTION_NO_HEADER;
spv_result_t error = spvTextToBinary(context.context, txt.c_str(),
txt.size(), &binary, &diagnostic);
if (error) {
spvDiagnosticPrint(diagnostic);
spvDiagnosticDestroy(diagnostic);
}
EXPECT_EQ(SPV_SUCCESS, error);
if (!binary) return "";
spv_text decoded_text;
error = spvBinaryToText(context.context, binary->code, binary->wordCount,
disassemble_options, &decoded_text, &diagnostic);
if (error) {
spvDiagnosticPrint(diagnostic);
spvDiagnosticDestroy(diagnostic);
}
EXPECT_EQ(SPV_SUCCESS, error) << txt;
const std::string decoded_string = decoded_text->str;
spvTextDestroy(decoded_text);
return decoded_string;
}
// Encodes SPIR-V text into binary. This is expected to succeed.
// The given words are then appended to the binary, and the result
// is then decoded. This is expected to fail.
// Returns the error message.
std::string EncodeSuccessfullyDecodeFailed(
const std::string& txt, const SpirvVector& words_to_append) {
SpirvVector code =
spvtest::Concatenate({CompileSuccessfully(txt), words_to_append});
spv_text decoded_text;
EXPECT_NE(SPV_SUCCESS,
spvBinaryToText(ScopedContext().context, code.data(), code.size(),
SPV_BINARY_TO_TEXT_OPTION_NONE, &decoded_text,
&diagnostic));
if (diagnostic) {
std::string error_message = diagnostic->error;
spvDiagnosticDestroy(diagnostic);
diagnostic = nullptr;
return error_message;
}
return "";
}
// Compiles SPIR-V text, asserts success, and returns the words representing
// the instructions. In particular, skip the words in the SPIR-V header.
SpirvVector CompiledInstructions(const std::string& txt,
spv_target_env env = SPV_ENV_UNIVERSAL_1_0) {
const SpirvVector code = CompileSuccessfully(txt, env);
SpirvVector result;
// Extract just the instructions.
// If the code fails to compile, then return the empty vector.
// In any case, don't crash or invoke undefined behaviour.
if (code.size() >= kFirstInstruction)
result = Subvector(code, kFirstInstruction);
return result;
}
void SetText(const std::string& code) {
textString = code;
text.str = textString.c_str();
text.length = textString.size();
}
// Destroys the binary, if it exists.
void DestroyBinary() {
spvBinaryDestroy(binary);
binary = nullptr;
}
spv_diagnostic diagnostic;
std::string textString;
spv_text_t text;
spv_binary binary;
};
using TextToBinaryTest = TextToBinaryTestBase<::testing::Test>;
} // namespace spvtest
using RoundTripTest =
spvtest::TextToBinaryTestBase<::testing::TestWithParam<std::string>>;
#endif // TEST_TEST_FIXTURE_H_