//===--- MacroExpansion.cpp - Top level Macro Expansion -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the top level handling of macro expansion for the
// preprocessor.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/Attributes.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/ExternalPreprocessorSource.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/MacroArgs.h"
#include "clang/Lex/MacroInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cstdio>
#include <ctime>
using namespace clang;
MacroDirective *
Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
if (!II->hadMacroDefinition())
return nullptr;
auto Pos = CurSubmoduleState->Macros.find(II);
return Pos == CurSubmoduleState->Macros.end() ? nullptr
: Pos->second.getLatest();
}
void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
assert(MD && "MacroDirective should be non-zero!");
assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
MacroState &StoredMD = CurSubmoduleState->Macros[II];
auto *OldMD = StoredMD.getLatest();
MD->setPrevious(OldMD);
StoredMD.setLatest(MD);
StoredMD.overrideActiveModuleMacros(*this, II);
if (needModuleMacros()) {
// Track that we created a new macro directive, so we know we should
// consider building a ModuleMacro for it when we get to the end of
// the module.
PendingModuleMacroNames.push_back(II);
}
// Set up the identifier as having associated macro history.
II->setHasMacroDefinition(true);
if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
II->setHasMacroDefinition(false);
if (II->isFromAST())
II->setChangedSinceDeserialization();
}
void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
MacroDirective *MD) {
assert(II && MD);
MacroState &StoredMD = CurSubmoduleState->Macros[II];
assert(!StoredMD.getLatest() &&
"the macro history was modified before initializing it from a pch");
StoredMD = MD;
// Setup the identifier as having associated macro history.
II->setHasMacroDefinition(true);
if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
II->setHasMacroDefinition(false);
}
ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
MacroInfo *Macro,
ArrayRef<ModuleMacro *> Overrides,
bool &New) {
llvm::FoldingSetNodeID ID;
ModuleMacro::Profile(ID, Mod, II);
void *InsertPos;
if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
New = false;
return MM;
}
auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
ModuleMacros.InsertNode(MM, InsertPos);
// Each overridden macro is now overridden by one more macro.
bool HidAny = false;
for (auto *O : Overrides) {
HidAny |= (O->NumOverriddenBy == 0);
++O->NumOverriddenBy;
}
// If we were the first overrider for any macro, it's no longer a leaf.
auto &LeafMacros = LeafModuleMacros[II];
if (HidAny) {
LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
[](ModuleMacro *MM) {
return MM->NumOverriddenBy != 0;
}),
LeafMacros.end());
}
// The new macro is always a leaf macro.
LeafMacros.push_back(MM);
// The identifier now has defined macros (that may or may not be visible).
II->setHasMacroDefinition(true);
New = true;
return MM;
}
ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
llvm::FoldingSetNodeID ID;
ModuleMacro::Profile(ID, Mod, II);
void *InsertPos;
return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
}
void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
ModuleMacroInfo &Info) {
assert(Info.ActiveModuleMacrosGeneration !=
CurSubmoduleState->VisibleModules.getGeneration() &&
"don't need to update this macro name info");
Info.ActiveModuleMacrosGeneration =
CurSubmoduleState->VisibleModules.getGeneration();
auto Leaf = LeafModuleMacros.find(II);
if (Leaf == LeafModuleMacros.end()) {
// No imported macros at all: nothing to do.
return;
}
Info.ActiveModuleMacros.clear();
// Every macro that's locally overridden is overridden by a visible macro.
llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
for (auto *O : Info.OverriddenMacros)
NumHiddenOverrides[O] = -1;
// Collect all macros that are not overridden by a visible macro.
llvm::SmallVector<ModuleMacro *, 16> Worklist;
for (auto *LeafMM : Leaf->second) {
assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
if (NumHiddenOverrides.lookup(LeafMM) == 0)
Worklist.push_back(LeafMM);
}
while (!Worklist.empty()) {
auto *MM = Worklist.pop_back_val();
if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
// We only care about collecting definitions; undefinitions only act
// to override other definitions.
if (MM->getMacroInfo())
Info.ActiveModuleMacros.push_back(MM);
} else {
for (auto *O : MM->overrides())
if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
Worklist.push_back(O);
}
}
// Our reverse postorder walk found the macros in reverse order.
std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
// Determine whether the macro name is ambiguous.
MacroInfo *MI = nullptr;
bool IsSystemMacro = true;
bool IsAmbiguous = false;
if (auto *MD = Info.MD) {
while (MD && isa<VisibilityMacroDirective>(MD))
MD = MD->getPrevious();
if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
MI = DMD->getInfo();
IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
}
}
for (auto *Active : Info.ActiveModuleMacros) {
auto *NewMI = Active->getMacroInfo();
// Before marking the macro as ambiguous, check if this is a case where
// both macros are in system headers. If so, we trust that the system
// did not get it wrong. This also handles cases where Clang's own
// headers have a different spelling of certain system macros:
// #define LONG_MAX __LONG_MAX__ (clang's limits.h)
// #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
//
// FIXME: Remove the defined-in-system-headers check. clang's limits.h
// overrides the system limits.h's macros, so there's no conflict here.
if (MI && NewMI != MI &&
!MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
IsAmbiguous = true;
IsSystemMacro &= Active->getOwningModule()->IsSystem ||
SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
MI = NewMI;
}
Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
}
void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
ArrayRef<ModuleMacro*> Leaf;
auto LeafIt = LeafModuleMacros.find(II);
if (LeafIt != LeafModuleMacros.end())
Leaf = LeafIt->second;
const MacroState *State = nullptr;
auto Pos = CurSubmoduleState->Macros.find(II);
if (Pos != CurSubmoduleState->Macros.end())
State = &Pos->second;
llvm::errs() << "MacroState " << State << " " << II->getNameStart();
if (State && State->isAmbiguous(*this, II))
llvm::errs() << " ambiguous";
if (State && !State->getOverriddenMacros().empty()) {
llvm::errs() << " overrides";
for (auto *O : State->getOverriddenMacros())
llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
}
llvm::errs() << "\n";
// Dump local macro directives.
for (auto *MD = State ? State->getLatest() : nullptr; MD;
MD = MD->getPrevious()) {
llvm::errs() << " ";
MD->dump();
}
// Dump module macros.
llvm::DenseSet<ModuleMacro*> Active;
for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
Active.insert(MM);
llvm::DenseSet<ModuleMacro*> Visited;
llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
while (!Worklist.empty()) {
auto *MM = Worklist.pop_back_val();
llvm::errs() << " ModuleMacro " << MM << " "
<< MM->getOwningModule()->getFullModuleName();
if (!MM->getMacroInfo())
llvm::errs() << " undef";
if (Active.count(MM))
llvm::errs() << " active";
else if (!CurSubmoduleState->VisibleModules.isVisible(
MM->getOwningModule()))
llvm::errs() << " hidden";
else if (MM->getMacroInfo())
llvm::errs() << " overridden";
if (!MM->overrides().empty()) {
llvm::errs() << " overrides";
for (auto *O : MM->overrides()) {
llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
if (Visited.insert(O).second)
Worklist.push_back(O);
}
}
llvm::errs() << "\n";
if (auto *MI = MM->getMacroInfo()) {
llvm::errs() << " ";
MI->dump();
llvm::errs() << "\n";
}
}
}
/// RegisterBuiltinMacro - Register the specified identifier in the identifier
/// table and mark it as a builtin macro to be expanded.
static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
// Get the identifier.
IdentifierInfo *Id = PP.getIdentifierInfo(Name);
// Mark it as being a macro that is builtin.
MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
MI->setIsBuiltinMacro();
PP.appendDefMacroDirective(Id, MI);
return Id;
}
/// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
/// identifier table.
void Preprocessor::RegisterBuiltinMacros() {
Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
// C++ Standing Document Extensions.
if (LangOpts.CPlusPlus)
Ident__has_cpp_attribute =
RegisterBuiltinMacro(*this, "__has_cpp_attribute");
else
Ident__has_cpp_attribute = nullptr;
// GCC Extensions.
Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
// Microsoft Extensions.
if (LangOpts.MicrosoftExt) {
Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
} else {
Ident__identifier = nullptr;
Ident__pragma = nullptr;
}
// Clang Extensions.
Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
// Modules.
Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
if (!LangOpts.CurrentModule.empty())
Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
else
Ident__MODULE__ = nullptr;
}
/// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
/// in its expansion, currently expands to that token literally.
static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
const IdentifierInfo *MacroIdent,
Preprocessor &PP) {
IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
// If the token isn't an identifier, it's always literally expanded.
if (!II) return true;
// If the information about this identifier is out of date, update it from
// the external source.
if (II->isOutOfDate())
PP.getExternalSource()->updateOutOfDateIdentifier(*II);
// If the identifier is a macro, and if that macro is enabled, it may be
// expanded so it's not a trivial expansion.
if (auto *ExpansionMI = PP.getMacroInfo(II))
if (ExpansionMI->isEnabled() &&
// Fast expanding "#define X X" is ok, because X would be disabled.
II != MacroIdent)
return false;
// If this is an object-like macro invocation, it is safe to trivially expand
// it.
if (MI->isObjectLike()) return true;
// If this is a function-like macro invocation, it's safe to trivially expand
// as long as the identifier is not a macro argument.
return std::find(MI->arg_begin(), MI->arg_end(), II) == MI->arg_end();
}
/// isNextPPTokenLParen - Determine whether the next preprocessor token to be
/// lexed is a '('. If so, consume the token and return true, if not, this
/// method should have no observable side-effect on the lexed tokens.
bool Preprocessor::isNextPPTokenLParen() {
// Do some quick tests for rejection cases.
unsigned Val;
if (CurLexer)
Val = CurLexer->isNextPPTokenLParen();
else if (CurPTHLexer)
Val = CurPTHLexer->isNextPPTokenLParen();
else
Val = CurTokenLexer->isNextTokenLParen();
if (Val == 2) {
// We have run off the end. If it's a source file we don't
// examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
// macro stack.
if (CurPPLexer)
return false;
for (unsigned i = IncludeMacroStack.size(); i != 0; --i) {
IncludeStackInfo &Entry = IncludeMacroStack[i-1];
if (Entry.TheLexer)
Val = Entry.TheLexer->isNextPPTokenLParen();
else if (Entry.ThePTHLexer)
Val = Entry.ThePTHLexer->isNextPPTokenLParen();
else
Val = Entry.TheTokenLexer->isNextTokenLParen();
if (Val != 2)
break;
// Ran off the end of a source file?
if (Entry.ThePPLexer)
return false;
}
}
// Okay, if we know that the token is a '(', lex it and return. Otherwise we
// have found something that isn't a '(' or we found the end of the
// translation unit. In either case, return false.
return Val == 1;
}
/// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
/// expanded as a macro, handle it and return the next token as 'Identifier'.
bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
const MacroDefinition &M) {
MacroInfo *MI = M.getMacroInfo();
// If this is a macro expansion in the "#if !defined(x)" line for the file,
// then the macro could expand to different things in other contexts, we need
// to disable the optimization in this case.
if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
// If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
if (MI->isBuiltinMacro()) {
if (Callbacks)
Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
/*Args=*/nullptr);
ExpandBuiltinMacro(Identifier);
return true;
}
/// Args - If this is a function-like macro expansion, this contains,
/// for each macro argument, the list of tokens that were provided to the
/// invocation.
MacroArgs *Args = nullptr;
// Remember where the end of the expansion occurred. For an object-like
// macro, this is the identifier. For a function-like macro, this is the ')'.
SourceLocation ExpansionEnd = Identifier.getLocation();
// If this is a function-like macro, read the arguments.
if (MI->isFunctionLike()) {
// Remember that we are now parsing the arguments to a macro invocation.
// Preprocessor directives used inside macro arguments are not portable, and
// this enables the warning.
InMacroArgs = true;
Args = ReadFunctionLikeMacroArgs(Identifier, MI, ExpansionEnd);
// Finished parsing args.
InMacroArgs = false;
// If there was an error parsing the arguments, bail out.
if (!Args) return true;
++NumFnMacroExpanded;
} else {
++NumMacroExpanded;
}
// Notice that this macro has been used.
markMacroAsUsed(MI);
// Remember where the token is expanded.
SourceLocation ExpandLoc = Identifier.getLocation();
SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
if (Callbacks) {
if (InMacroArgs) {
// We can have macro expansion inside a conditional directive while
// reading the function macro arguments. To ensure, in that case, that
// MacroExpands callbacks still happen in source order, queue this
// callback to have it happen after the function macro callback.
DelayedMacroExpandsCallbacks.push_back(
MacroExpandsInfo(Identifier, M, ExpansionRange));
} else {
Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
if (!DelayedMacroExpandsCallbacks.empty()) {
for (unsigned i=0, e = DelayedMacroExpandsCallbacks.size(); i!=e; ++i) {
MacroExpandsInfo &Info = DelayedMacroExpandsCallbacks[i];
// FIXME: We lose macro args info with delayed callback.
Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
/*Args=*/nullptr);
}
DelayedMacroExpandsCallbacks.clear();
}
}
}
// If the macro definition is ambiguous, complain.
if (M.isAmbiguous()) {
Diag(Identifier, diag::warn_pp_ambiguous_macro)
<< Identifier.getIdentifierInfo();
Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
<< Identifier.getIdentifierInfo();
M.forAllDefinitions([&](const MacroInfo *OtherMI) {
if (OtherMI != MI)
Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
<< Identifier.getIdentifierInfo();
});
}
// If we started lexing a macro, enter the macro expansion body.
// If this macro expands to no tokens, don't bother to push it onto the
// expansion stack, only to take it right back off.
if (MI->getNumTokens() == 0) {
// No need for arg info.
if (Args) Args->destroy(*this);
// Propagate whitespace info as if we had pushed, then popped,
// a macro context.
Identifier.setFlag(Token::LeadingEmptyMacro);
PropagateLineStartLeadingSpaceInfo(Identifier);
++NumFastMacroExpanded;
return false;
} else if (MI->getNumTokens() == 1 &&
isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
*this)) {
// Otherwise, if this macro expands into a single trivially-expanded
// token: expand it now. This handles common cases like
// "#define VAL 42".
// No need for arg info.
if (Args) Args->destroy(*this);
// Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
// identifier to the expanded token.
bool isAtStartOfLine = Identifier.isAtStartOfLine();
bool hasLeadingSpace = Identifier.hasLeadingSpace();
// Replace the result token.
Identifier = MI->getReplacementToken(0);
// Restore the StartOfLine/LeadingSpace markers.
Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
// Update the tokens location to include both its expansion and physical
// locations.
SourceLocation Loc =
SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
ExpansionEnd,Identifier.getLength());
Identifier.setLocation(Loc);
// If this is a disabled macro or #define X X, we must mark the result as
// unexpandable.
if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
if (MacroInfo *NewMI = getMacroInfo(NewII))
if (!NewMI->isEnabled() || NewMI == MI) {
Identifier.setFlag(Token::DisableExpand);
// Don't warn for "#define X X" like "#define bool bool" from
// stdbool.h.
if (NewMI != MI || MI->isFunctionLike())
Diag(Identifier, diag::pp_disabled_macro_expansion);
}
}
// Since this is not an identifier token, it can't be macro expanded, so
// we're done.
++NumFastMacroExpanded;
return true;
}
// Start expanding the macro.
EnterMacro(Identifier, ExpansionEnd, MI, Args);
return false;
}
enum Bracket {
Brace,
Paren
};
/// CheckMatchedBrackets - Returns true if the braces and parentheses in the
/// token vector are properly nested.
static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
SmallVector<Bracket, 8> Brackets;
for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
E = Tokens.end();
I != E; ++I) {
if (I->is(tok::l_paren)) {
Brackets.push_back(Paren);
} else if (I->is(tok::r_paren)) {
if (Brackets.empty() || Brackets.back() == Brace)
return false;
Brackets.pop_back();
} else if (I->is(tok::l_brace)) {
Brackets.push_back(Brace);
} else if (I->is(tok::r_brace)) {
if (Brackets.empty() || Brackets.back() == Paren)
return false;
Brackets.pop_back();
}
}
return Brackets.empty();
}
/// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
/// vector of tokens in NewTokens. The new number of arguments will be placed
/// in NumArgs and the ranges which need to surrounded in parentheses will be
/// in ParenHints.
/// Returns false if the token stream cannot be changed. If this is because
/// of an initializer list starting a macro argument, the range of those
/// initializer lists will be place in InitLists.
static bool GenerateNewArgTokens(Preprocessor &PP,
SmallVectorImpl<Token> &OldTokens,
SmallVectorImpl<Token> &NewTokens,
unsigned &NumArgs,
SmallVectorImpl<SourceRange> &ParenHints,
SmallVectorImpl<SourceRange> &InitLists) {
if (!CheckMatchedBrackets(OldTokens))
return false;
// Once it is known that the brackets are matched, only a simple count of the
// braces is needed.
unsigned Braces = 0;
// First token of a new macro argument.
SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
// First closing brace in a new macro argument. Used to generate
// SourceRanges for InitLists.
SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
NumArgs = 0;
Token TempToken;
// Set to true when a macro separator token is found inside a braced list.
// If true, the fixed argument spans multiple old arguments and ParenHints
// will be updated.
bool FoundSeparatorToken = false;
for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
E = OldTokens.end();
I != E; ++I) {
if (I->is(tok::l_brace)) {
++Braces;
} else if (I->is(tok::r_brace)) {
--Braces;
if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
ClosingBrace = I;
} else if (I->is(tok::eof)) {
// EOF token is used to separate macro arguments
if (Braces != 0) {
// Assume comma separator is actually braced list separator and change
// it back to a comma.
FoundSeparatorToken = true;
I->setKind(tok::comma);
I->setLength(1);
} else { // Braces == 0
// Separator token still separates arguments.
++NumArgs;
// If the argument starts with a brace, it can't be fixed with
// parentheses. A different diagnostic will be given.
if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
InitLists.push_back(
SourceRange(ArgStartIterator->getLocation(),
PP.getLocForEndOfToken(ClosingBrace->getLocation())));
ClosingBrace = E;
}
// Add left paren
if (FoundSeparatorToken) {
TempToken.startToken();
TempToken.setKind(tok::l_paren);
TempToken.setLocation(ArgStartIterator->getLocation());
TempToken.setLength(0);
NewTokens.push_back(TempToken);
}
// Copy over argument tokens
NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
// Add right paren and store the paren locations in ParenHints
if (FoundSeparatorToken) {
SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
TempToken.startToken();
TempToken.setKind(tok::r_paren);
TempToken.setLocation(Loc);
TempToken.setLength(0);
NewTokens.push_back(TempToken);
ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
Loc));
}
// Copy separator token
NewTokens.push_back(*I);
// Reset values
ArgStartIterator = I + 1;
FoundSeparatorToken = false;
}
}
}
return !ParenHints.empty() && InitLists.empty();
}
/// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
/// token is the '(' of the macro, this method is invoked to read all of the
/// actual arguments specified for the macro invocation. This returns null on
/// error.
MacroArgs *Preprocessor::ReadFunctionLikeMacroArgs(Token &MacroName,
MacroInfo *MI,
SourceLocation &MacroEnd) {
// The number of fixed arguments to parse.
unsigned NumFixedArgsLeft = MI->getNumArgs();
bool isVariadic = MI->isVariadic();
// Outer loop, while there are more arguments, keep reading them.
Token Tok;
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
// ArgTokens - Build up a list of tokens that make up each argument. Each
// argument is separated by an EOF token. Use a SmallVector so we can avoid
// heap allocations in the common case.
SmallVector<Token, 64> ArgTokens;
bool ContainsCodeCompletionTok = false;
bool FoundElidedComma = false;
SourceLocation TooManyArgsLoc;
unsigned NumActuals = 0;
while (Tok.isNot(tok::r_paren)) {
if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
break;
assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
"only expect argument separators here");
unsigned ArgTokenStart = ArgTokens.size();
SourceLocation ArgStartLoc = Tok.getLocation();
// C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
// that we already consumed the first one.
unsigned NumParens = 0;
while (1) {
// Read arguments as unexpanded tokens. This avoids issues, e.g., where
// an argument value in a macro could expand to ',' or '(' or ')'.
LexUnexpandedToken(Tok);
if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
if (!ContainsCodeCompletionTok) {
Diag(MacroName, diag::err_unterm_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
// Do not lose the EOF/EOD. Return it to the client.
MacroName = Tok;
return nullptr;
}
// Do not lose the EOF/EOD.
auto Toks = llvm::make_unique<Token[]>(1);
Toks[0] = Tok;
EnterTokenStream(std::move(Toks), 1, true);
break;
} else if (Tok.is(tok::r_paren)) {
// If we found the ) token, the macro arg list is done.
if (NumParens-- == 0) {
MacroEnd = Tok.getLocation();
if (!ArgTokens.empty() &&
ArgTokens.back().commaAfterElided()) {
FoundElidedComma = true;
}
break;
}
} else if (Tok.is(tok::l_paren)) {
++NumParens;
} else if (Tok.is(tok::comma) && NumParens == 0 &&
!(Tok.getFlags() & Token::IgnoredComma)) {
// In Microsoft-compatibility mode, single commas from nested macro
// expansions should not be considered as argument separators. We test
// for this with the IgnoredComma token flag above.
// Comma ends this argument if there are more fixed arguments expected.
// However, if this is a variadic macro, and this is part of the
// variadic part, then the comma is just an argument token.
if (!isVariadic) break;
if (NumFixedArgsLeft > 1)
break;
} else if (Tok.is(tok::comment) && !KeepMacroComments) {
// If this is a comment token in the argument list and we're just in
// -C mode (not -CC mode), discard the comment.
continue;
} else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
// Reading macro arguments can cause macros that we are currently
// expanding from to be popped off the expansion stack. Doing so causes
// them to be reenabled for expansion. Here we record whether any
// identifiers we lex as macro arguments correspond to disabled macros.
// If so, we mark the token as noexpand. This is a subtle aspect of
// C99 6.10.3.4p2.
if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
if (!MI->isEnabled())
Tok.setFlag(Token::DisableExpand);
} else if (Tok.is(tok::code_completion)) {
ContainsCodeCompletionTok = true;
if (CodeComplete)
CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
MI, NumActuals);
// Don't mark that we reached the code-completion point because the
// parser is going to handle the token and there will be another
// code-completion callback.
}
ArgTokens.push_back(Tok);
}
// If this was an empty argument list foo(), don't add this as an empty
// argument.
if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
break;
// If this is not a variadic macro, and too many args were specified, emit
// an error.
if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
if (ArgTokens.size() != ArgTokenStart)
TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
else
TooManyArgsLoc = ArgStartLoc;
}
// Empty arguments are standard in C99 and C++0x, and are supported as an
// extension in other modes.
if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
Diag(Tok, LangOpts.CPlusPlus11 ?
diag::warn_cxx98_compat_empty_fnmacro_arg :
diag::ext_empty_fnmacro_arg);
// Add a marker EOF token to the end of the token list for this argument.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
ArgTokens.push_back(EOFTok);
++NumActuals;
if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
--NumFixedArgsLeft;
}
// Okay, we either found the r_paren. Check to see if we parsed too few
// arguments.
unsigned MinArgsExpected = MI->getNumArgs();
// If this is not a variadic macro, and too many args were specified, emit
// an error.
if (!isVariadic && NumActuals > MinArgsExpected &&
!ContainsCodeCompletionTok) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
// Commas from braced initializer lists will be treated as argument
// separators inside macros. Attempt to correct for this with parentheses.
// TODO: See if this can be generalized to angle brackets for templates
// inside macro arguments.
SmallVector<Token, 4> FixedArgTokens;
unsigned FixedNumArgs = 0;
SmallVector<SourceRange, 4> ParenHints, InitLists;
if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
ParenHints, InitLists)) {
if (!InitLists.empty()) {
DiagnosticBuilder DB =
Diag(MacroName,
diag::note_init_list_at_beginning_of_macro_argument);
for (SourceRange Range : InitLists)
DB << Range;
}
return nullptr;
}
if (FixedNumArgs != MinArgsExpected)
return nullptr;
DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
for (SourceRange ParenLocation : ParenHints) {
DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
}
ArgTokens.swap(FixedArgTokens);
NumActuals = FixedNumArgs;
}
// See MacroArgs instance var for description of this.
bool isVarargsElided = false;
if (ContainsCodeCompletionTok) {
// Recover from not-fully-formed macro invocation during code-completion.
Token EOFTok;
EOFTok.startToken();
EOFTok.setKind(tok::eof);
EOFTok.setLocation(Tok.getLocation());
EOFTok.setLength(0);
for (; NumActuals < MinArgsExpected; ++NumActuals)
ArgTokens.push_back(EOFTok);
}
if (NumActuals < MinArgsExpected) {
// There are several cases where too few arguments is ok, handle them now.
if (NumActuals == 0 && MinArgsExpected == 1) {
// #define A(X) or #define A(...) ---> A()
// If there is exactly one argument, and that argument is missing,
// then we have an empty "()" argument empty list. This is fine, even if
// the macro expects one argument (the argument is just empty).
isVarargsElided = MI->isVariadic();
} else if ((FoundElidedComma || MI->isVariadic()) &&
(NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
(NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
// Varargs where the named vararg parameter is missing: OK as extension.
// #define A(x, ...)
// A("blah")
//
// If the macro contains the comma pasting extension, the diagnostic
// is suppressed; we know we'll get another diagnostic later.
if (!MI->hasCommaPasting()) {
Diag(Tok, diag::ext_missing_varargs_arg);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
}
// Remember this occurred, allowing us to elide the comma when used for
// cases like:
// #define A(x, foo...) blah(a, ## foo)
// #define B(x, ...) blah(a, ## __VA_ARGS__)
// #define C(...) blah(a, ## __VA_ARGS__)
// A(x) B(x) C()
isVarargsElided = true;
} else if (!ContainsCodeCompletionTok) {
// Otherwise, emit the error.
Diag(Tok, diag::err_too_few_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
return nullptr;
}
// Add a marker EOF token to the end of the token list for this argument.
SourceLocation EndLoc = Tok.getLocation();
Tok.startToken();
Tok.setKind(tok::eof);
Tok.setLocation(EndLoc);
Tok.setLength(0);
ArgTokens.push_back(Tok);
// If we expect two arguments, add both as empty.
if (NumActuals == 0 && MinArgsExpected == 2)
ArgTokens.push_back(Tok);
} else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
!ContainsCodeCompletionTok) {
// Emit the diagnostic at the macro name in case there is a missing ).
// Emitting it at the , could be far away from the macro name.
Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
Diag(MI->getDefinitionLoc(), diag::note_macro_here)
<< MacroName.getIdentifierInfo();
return nullptr;
}
return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
}
/// \brief Keeps macro expanded tokens for TokenLexers.
//
/// Works like a stack; a TokenLexer adds the macro expanded tokens that is
/// going to lex in the cache and when it finishes the tokens are removed
/// from the end of the cache.
Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
ArrayRef<Token> tokens) {
assert(tokLexer);
if (tokens.empty())
return nullptr;
size_t newIndex = MacroExpandedTokens.size();
bool cacheNeedsToGrow = tokens.size() >
MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
MacroExpandedTokens.append(tokens.begin(), tokens.end());
if (cacheNeedsToGrow) {
// Go through all the TokenLexers whose 'Tokens' pointer points in the
// buffer and update the pointers to the (potential) new buffer array.
for (unsigned i = 0, e = MacroExpandingLexersStack.size(); i != e; ++i) {
TokenLexer *prevLexer;
size_t tokIndex;
std::tie(prevLexer, tokIndex) = MacroExpandingLexersStack[i];
prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
}
}
MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
return MacroExpandedTokens.data() + newIndex;
}
void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
assert(!MacroExpandingLexersStack.empty());
size_t tokIndex = MacroExpandingLexersStack.back().second;
assert(tokIndex < MacroExpandedTokens.size());
// Pop the cached macro expanded tokens from the end.
MacroExpandedTokens.resize(tokIndex);
MacroExpandingLexersStack.pop_back();
}
/// ComputeDATE_TIME - Compute the current time, enter it into the specified
/// scratch buffer, then return DATELoc/TIMELoc locations with the position of
/// the identifier tokens inserted.
static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
Preprocessor &PP) {
time_t TT = time(nullptr);
struct tm *TM = localtime(&TT);
static const char * const Months[] = {
"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
};
{
SmallString<32> TmpBuffer;
llvm::raw_svector_ostream TmpStream(TmpBuffer);
TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
TM->tm_mday, TM->tm_year + 1900);
Token TmpTok;
TmpTok.startToken();
PP.CreateString(TmpStream.str(), TmpTok);
DATELoc = TmpTok.getLocation();
}
{
SmallString<32> TmpBuffer;
llvm::raw_svector_ostream TmpStream(TmpBuffer);
TmpStream << llvm::format("\"%02d:%02d:%02d\"",
TM->tm_hour, TM->tm_min, TM->tm_sec);
Token TmpTok;
TmpTok.startToken();
PP.CreateString(TmpStream.str(), TmpTok);
TIMELoc = TmpTok.getLocation();
}
}
/// HasFeature - Return true if we recognize and implement the feature
/// specified by the identifier as a standard language feature.
static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
const LangOptions &LangOpts = PP.getLangOpts();
// Normalize the feature name, __foo__ becomes foo.
if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
Feature = Feature.substr(2, Feature.size() - 4);
return llvm::StringSwitch<bool>(Feature)
.Case("address_sanitizer",
LangOpts.Sanitize.hasOneOf(SanitizerKind::Address |
SanitizerKind::KernelAddress))
.Case("assume_nonnull", true)
.Case("attribute_analyzer_noreturn", true)
.Case("attribute_availability", true)
.Case("attribute_availability_with_message", true)
.Case("attribute_availability_app_extension", true)
.Case("attribute_availability_with_version_underscores", true)
.Case("attribute_availability_tvos", true)
.Case("attribute_availability_watchos", true)
.Case("attribute_availability_with_strict", true)
.Case("attribute_availability_with_replacement", true)
.Case("attribute_availability_in_templates", true)
.Case("attribute_cf_returns_not_retained", true)
.Case("attribute_cf_returns_retained", true)
.Case("attribute_cf_returns_on_parameters", true)
.Case("attribute_deprecated_with_message", true)
.Case("attribute_deprecated_with_replacement", true)
.Case("attribute_ext_vector_type", true)
.Case("attribute_ns_returns_not_retained", true)
.Case("attribute_ns_returns_retained", true)
.Case("attribute_ns_consumes_self", true)
.Case("attribute_ns_consumed", true)
.Case("attribute_cf_consumed", true)
.Case("attribute_objc_ivar_unused", true)
.Case("attribute_objc_method_family", true)
.Case("attribute_overloadable", true)
.Case("attribute_unavailable_with_message", true)
.Case("attribute_unused_on_fields", true)
.Case("blocks", LangOpts.Blocks)
.Case("c_thread_safety_attributes", true)
.Case("cxx_exceptions", LangOpts.CXXExceptions)
.Case("cxx_rtti", LangOpts.RTTI && LangOpts.RTTIData)
.Case("enumerator_attributes", true)
.Case("nullability", true)
.Case("memory_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Memory))
.Case("thread_sanitizer", LangOpts.Sanitize.has(SanitizerKind::Thread))
.Case("dataflow_sanitizer", LangOpts.Sanitize.has(SanitizerKind::DataFlow))
.Case("efficiency_sanitizer",
LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency))
// Objective-C features
.Case("objc_arr", LangOpts.ObjCAutoRefCount) // FIXME: REMOVE?
.Case("objc_arc", LangOpts.ObjCAutoRefCount)
.Case("objc_arc_weak", LangOpts.ObjCWeak)
.Case("objc_default_synthesize_properties", LangOpts.ObjC2)
.Case("objc_fixed_enum", LangOpts.ObjC2)
.Case("objc_instancetype", LangOpts.ObjC2)
.Case("objc_kindof", LangOpts.ObjC2)
.Case("objc_modules", LangOpts.ObjC2 && LangOpts.Modules)
.Case("objc_nonfragile_abi", LangOpts.ObjCRuntime.isNonFragile())
.Case("objc_property_explicit_atomic",
true) // Does clang support explicit "atomic" keyword?
.Case("objc_protocol_qualifier_mangling", true)
.Case("objc_weak_class", LangOpts.ObjCRuntime.hasWeakClassImport())
.Case("ownership_holds", true)
.Case("ownership_returns", true)
.Case("ownership_takes", true)
.Case("objc_bool", true)
.Case("objc_subscripting", LangOpts.ObjCRuntime.isNonFragile())
.Case("objc_array_literals", LangOpts.ObjC2)
.Case("objc_dictionary_literals", LangOpts.ObjC2)
.Case("objc_boxed_expressions", LangOpts.ObjC2)
.Case("objc_boxed_nsvalue_expressions", LangOpts.ObjC2)
.Case("arc_cf_code_audited", true)
.Case("objc_bridge_id", true)
.Case("objc_bridge_id_on_typedefs", true)
.Case("objc_generics", LangOpts.ObjC2)
.Case("objc_generics_variance", LangOpts.ObjC2)
.Case("objc_class_property", LangOpts.ObjC2)
// C11 features
.Case("c_alignas", LangOpts.C11)
.Case("c_alignof", LangOpts.C11)
.Case("c_atomic", LangOpts.C11)
.Case("c_generic_selections", LangOpts.C11)
.Case("c_static_assert", LangOpts.C11)
.Case("c_thread_local",
LangOpts.C11 && PP.getTargetInfo().isTLSSupported())
// C++11 features
.Case("cxx_access_control_sfinae", LangOpts.CPlusPlus11)
.Case("cxx_alias_templates", LangOpts.CPlusPlus11)
.Case("cxx_alignas", LangOpts.CPlusPlus11)
.Case("cxx_alignof", LangOpts.CPlusPlus11)
.Case("cxx_atomic", LangOpts.CPlusPlus11)
.Case("cxx_attributes", LangOpts.CPlusPlus11)
.Case("cxx_auto_type", LangOpts.CPlusPlus11)
.Case("cxx_constexpr", LangOpts.CPlusPlus11)
.Case("cxx_decltype", LangOpts.CPlusPlus11)
.Case("cxx_decltype_incomplete_return_types", LangOpts.CPlusPlus11)
.Case("cxx_default_function_template_args", LangOpts.CPlusPlus11)
.Case("cxx_defaulted_functions", LangOpts.CPlusPlus11)
.Case("cxx_delegating_constructors", LangOpts.CPlusPlus11)
.Case("cxx_deleted_functions", LangOpts.CPlusPlus11)
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus11)
.Case("cxx_generalized_initializers", LangOpts.CPlusPlus11)
.Case("cxx_implicit_moves", LangOpts.CPlusPlus11)
.Case("cxx_inheriting_constructors", LangOpts.CPlusPlus11)
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus11)
.Case("cxx_lambdas", LangOpts.CPlusPlus11)
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus11)
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus11)
.Case("cxx_noexcept", LangOpts.CPlusPlus11)
.Case("cxx_nullptr", LangOpts.CPlusPlus11)
.Case("cxx_override_control", LangOpts.CPlusPlus11)
.Case("cxx_range_for", LangOpts.CPlusPlus11)
.Case("cxx_raw_string_literals", LangOpts.CPlusPlus11)
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus11)
.Case("cxx_rvalue_references", LangOpts.CPlusPlus11)
.Case("cxx_strong_enums", LangOpts.CPlusPlus11)
.Case("cxx_static_assert", LangOpts.CPlusPlus11)
.Case("cxx_thread_local",
LangOpts.CPlusPlus11 && PP.getTargetInfo().isTLSSupported())
.Case("cxx_trailing_return", LangOpts.CPlusPlus11)
.Case("cxx_unicode_literals", LangOpts.CPlusPlus11)
.Case("cxx_unrestricted_unions", LangOpts.CPlusPlus11)
.Case("cxx_user_literals", LangOpts.CPlusPlus11)
.Case("cxx_variadic_templates", LangOpts.CPlusPlus11)
// C++1y features
.Case("cxx_aggregate_nsdmi", LangOpts.CPlusPlus14)
.Case("cxx_binary_literals", LangOpts.CPlusPlus14)
.Case("cxx_contextual_conversions", LangOpts.CPlusPlus14)
.Case("cxx_decltype_auto", LangOpts.CPlusPlus14)
.Case("cxx_generic_lambdas", LangOpts.CPlusPlus14)
.Case("cxx_init_captures", LangOpts.CPlusPlus14)
.Case("cxx_relaxed_constexpr", LangOpts.CPlusPlus14)
.Case("cxx_return_type_deduction", LangOpts.CPlusPlus14)
.Case("cxx_variable_templates", LangOpts.CPlusPlus14)
// C++ TSes
//.Case("cxx_runtime_arrays", LangOpts.CPlusPlusTSArrays)
//.Case("cxx_concepts", LangOpts.CPlusPlusTSConcepts)
// FIXME: Should this be __has_feature or __has_extension?
//.Case("raw_invocation_type", LangOpts.CPlusPlus)
// Type traits
// N.B. Additional type traits should not be added to the following list.
// Instead, they should be detected by has_extension.
.Case("has_nothrow_assign", LangOpts.CPlusPlus)
.Case("has_nothrow_copy", LangOpts.CPlusPlus)
.Case("has_nothrow_constructor", LangOpts.CPlusPlus)
.Case("has_trivial_assign", LangOpts.CPlusPlus)
.Case("has_trivial_copy", LangOpts.CPlusPlus)
.Case("has_trivial_constructor", LangOpts.CPlusPlus)
.Case("has_trivial_destructor", LangOpts.CPlusPlus)
.Case("has_virtual_destructor", LangOpts.CPlusPlus)
.Case("is_abstract", LangOpts.CPlusPlus)
.Case("is_base_of", LangOpts.CPlusPlus)
.Case("is_class", LangOpts.CPlusPlus)
.Case("is_constructible", LangOpts.CPlusPlus)
.Case("is_convertible_to", LangOpts.CPlusPlus)
.Case("is_empty", LangOpts.CPlusPlus)
.Case("is_enum", LangOpts.CPlusPlus)
.Case("is_final", LangOpts.CPlusPlus)
.Case("is_literal", LangOpts.CPlusPlus)
.Case("is_standard_layout", LangOpts.CPlusPlus)
.Case("is_pod", LangOpts.CPlusPlus)
.Case("is_polymorphic", LangOpts.CPlusPlus)
.Case("is_sealed", LangOpts.CPlusPlus && LangOpts.MicrosoftExt)
.Case("is_trivial", LangOpts.CPlusPlus)
.Case("is_trivially_assignable", LangOpts.CPlusPlus)
.Case("is_trivially_constructible", LangOpts.CPlusPlus)
.Case("is_trivially_copyable", LangOpts.CPlusPlus)
.Case("is_union", LangOpts.CPlusPlus)
.Case("modules", LangOpts.Modules)
.Case("safe_stack", LangOpts.Sanitize.has(SanitizerKind::SafeStack))
.Case("tls", PP.getTargetInfo().isTLSSupported())
.Case("underlying_type", LangOpts.CPlusPlus)
.Default(false);
}
/// HasExtension - Return true if we recognize and implement the feature
/// specified by the identifier, either as an extension or a standard language
/// feature.
static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
if (HasFeature(PP, Extension))
return true;
// If the use of an extension results in an error diagnostic, extensions are
// effectively unavailable, so just return false here.
if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
diag::Severity::Error)
return false;
const LangOptions &LangOpts = PP.getLangOpts();
// Normalize the extension name, __foo__ becomes foo.
if (Extension.startswith("__") && Extension.endswith("__") &&
Extension.size() >= 4)
Extension = Extension.substr(2, Extension.size() - 4);
// Because we inherit the feature list from HasFeature, this string switch
// must be less restrictive than HasFeature's.
return llvm::StringSwitch<bool>(Extension)
// C11 features supported by other languages as extensions.
.Case("c_alignas", true)
.Case("c_alignof", true)
.Case("c_atomic", true)
.Case("c_generic_selections", true)
.Case("c_static_assert", true)
.Case("c_thread_local", PP.getTargetInfo().isTLSSupported())
// C++11 features supported by other languages as extensions.
.Case("cxx_atomic", LangOpts.CPlusPlus)
.Case("cxx_deleted_functions", LangOpts.CPlusPlus)
.Case("cxx_explicit_conversions", LangOpts.CPlusPlus)
.Case("cxx_inline_namespaces", LangOpts.CPlusPlus)
.Case("cxx_local_type_template_args", LangOpts.CPlusPlus)
.Case("cxx_nonstatic_member_init", LangOpts.CPlusPlus)
.Case("cxx_override_control", LangOpts.CPlusPlus)
.Case("cxx_range_for", LangOpts.CPlusPlus)
.Case("cxx_reference_qualified_functions", LangOpts.CPlusPlus)
.Case("cxx_rvalue_references", LangOpts.CPlusPlus)
.Case("cxx_variadic_templates", LangOpts.CPlusPlus)
// C++1y features supported by other languages as extensions.
.Case("cxx_binary_literals", true)
.Case("cxx_init_captures", LangOpts.CPlusPlus11)
.Case("cxx_variable_templates", LangOpts.CPlusPlus)
.Default(false);
}
/// EvaluateHasIncludeCommon - Process a '__has_include("path")'
/// or '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeCommon(Token &Tok,
IdentifierInfo *II, Preprocessor &PP,
const DirectoryLookup *LookupFrom,
const FileEntry *LookupFromFile) {
// Save the location of the current token. If a '(' is later found, use
// that location. If not, use the end of this location instead.
SourceLocation LParenLoc = Tok.getLocation();
// These expressions are only allowed within a preprocessor directive.
if (!PP.isParsingIfOrElifDirective()) {
PP.Diag(LParenLoc, diag::err_pp_directive_required) << II->getName();
// Return a valid identifier token.
assert(Tok.is(tok::identifier));
Tok.setIdentifierInfo(II);
return false;
}
// Get '('.
PP.LexNonComment(Tok);
// Ensure we have a '('.
if (Tok.isNot(tok::l_paren)) {
// No '(', use end of last token.
LParenLoc = PP.getLocForEndOfToken(LParenLoc);
PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
// If the next token looks like a filename or the start of one,
// assume it is and process it as such.
if (!Tok.is(tok::angle_string_literal) && !Tok.is(tok::string_literal) &&
!Tok.is(tok::less))
return false;
} else {
// Save '(' location for possible missing ')' message.
LParenLoc = Tok.getLocation();
if (PP.getCurrentLexer()) {
// Get the file name.
PP.getCurrentLexer()->LexIncludeFilename(Tok);
} else {
// We're in a macro, so we can't use LexIncludeFilename; just
// grab the next token.
PP.Lex(Tok);
}
}
// Reserve a buffer to get the spelling.
SmallString<128> FilenameBuffer;
StringRef Filename;
SourceLocation EndLoc;
switch (Tok.getKind()) {
case tok::eod:
// If the token kind is EOD, the error has already been diagnosed.
return false;
case tok::angle_string_literal:
case tok::string_literal: {
bool Invalid = false;
Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
if (Invalid)
return false;
break;
}
case tok::less:
// This could be a <foo/bar.h> file coming from a macro expansion. In this
// case, glue the tokens together into FilenameBuffer and interpret those.
FilenameBuffer.push_back('<');
if (PP.ConcatenateIncludeName(FilenameBuffer, EndLoc)) {
// Let the caller know a <eod> was found by changing the Token kind.
Tok.setKind(tok::eod);
return false; // Found <eod> but no ">"? Diagnostic already emitted.
}
Filename = FilenameBuffer;
break;
default:
PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
return false;
}
SourceLocation FilenameLoc = Tok.getLocation();
// Get ')'.
PP.LexNonComment(Tok);
// Ensure we have a trailing ).
if (Tok.isNot(tok::r_paren)) {
PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
<< II << tok::r_paren;
PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
return false;
}
bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
// If GetIncludeFilenameSpelling set the start ptr to null, there was an
// error.
if (Filename.empty())
return false;
// Search include directories.
const DirectoryLookup *CurDir;
const FileEntry *File =
PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
CurDir, nullptr, nullptr, nullptr);
// Get the result value. A result of true means the file exists.
return File != nullptr;
}
/// EvaluateHasInclude - Process a '__has_include("path")' expression.
/// Returns true if successful.
static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
Preprocessor &PP) {
return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
}
/// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
/// Returns true if successful.
static bool EvaluateHasIncludeNext(Token &Tok,
IdentifierInfo *II, Preprocessor &PP) {
// __has_include_next is like __has_include, except that we start
// searching after the current found directory. If we can't do this,
// issue a diagnostic.
// FIXME: Factor out duplication with
// Preprocessor::HandleIncludeNextDirective.
const DirectoryLookup *Lookup = PP.GetCurDirLookup();
const FileEntry *LookupFromFile = nullptr;
if (PP.isInPrimaryFile()) {
Lookup = nullptr;
PP.Diag(Tok, diag::pp_include_next_in_primary);
} else if (PP.getCurrentSubmodule()) {
// Start looking up in the directory *after* the one in which the current
// file would be found, if any.
assert(PP.getCurrentLexer() && "#include_next directive in macro?");
LookupFromFile = PP.getCurrentLexer()->getFileEntry();
Lookup = nullptr;
} else if (!Lookup) {
PP.Diag(Tok, diag::pp_include_next_absolute_path);
} else {
// Start looking up in the next directory.
++Lookup;
}
return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
}
/// \brief Process single-argument builtin feature-like macros that return
/// integer values.
static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
Token &Tok, IdentifierInfo *II,
Preprocessor &PP,
llvm::function_ref<
int(Token &Tok,
bool &HasLexedNextTok)> Op) {
// Parse the initial '('.
PP.LexUnexpandedToken(Tok);
if (Tok.isNot(tok::l_paren)) {
PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
<< tok::l_paren;
// Provide a dummy '0' value on output stream to elide further errors.
if (!Tok.isOneOf(tok::eof, tok::eod)) {
OS << 0;
Tok.setKind(tok::numeric_constant);
}
return;
}
unsigned ParenDepth = 1;
SourceLocation LParenLoc = Tok.getLocation();
llvm::Optional<int> Result;
Token ResultTok;
bool SuppressDiagnostic = false;
while (true) {
// Parse next token.
PP.LexUnexpandedToken(Tok);
already_lexed:
switch (Tok.getKind()) {
case tok::eof:
case tok::eod:
// Don't provide even a dummy value if the eod or eof marker is
// reached. Simply provide a diagnostic.
PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
return;
case tok::comma:
if (!SuppressDiagnostic) {
PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
SuppressDiagnostic = true;
}
continue;
case tok::l_paren:
++ParenDepth;
if (Result.hasValue())
break;
if (!SuppressDiagnostic) {
PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
SuppressDiagnostic = true;
}
continue;
case tok::r_paren:
if (--ParenDepth > 0)
continue;
// The last ')' has been reached; return the value if one found or
// a diagnostic and a dummy value.
if (Result.hasValue())
OS << Result.getValue();
else {
OS << 0;
if (!SuppressDiagnostic)
PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
}
Tok.setKind(tok::numeric_constant);
return;
default: {
// Parse the macro argument, if one not found so far.
if (Result.hasValue())
break;
bool HasLexedNextToken = false;
Result = Op(Tok, HasLexedNextToken);
ResultTok = Tok;
if (HasLexedNextToken)
goto already_lexed;
continue;
}
}
// Diagnose missing ')'.
if (!SuppressDiagnostic) {
if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
Diag << LastII;
else
Diag << ResultTok.getKind();
Diag << tok::r_paren << ResultTok.getLocation();
}
PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
SuppressDiagnostic = true;
}
}
}
/// \brief Helper function to return the IdentifierInfo structure of a Token
/// or generate a diagnostic if none available.
static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
Preprocessor &PP,
signed DiagID) {
IdentifierInfo *II;
if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
return II;
PP.Diag(Tok.getLocation(), DiagID);
return nullptr;
}
/// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
/// as a builtin macro, handle it and return the next token as 'Tok'.
void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
// Figure out which token this is.
IdentifierInfo *II = Tok.getIdentifierInfo();
assert(II && "Can't be a macro without id info!");
// If this is an _Pragma or Microsoft __pragma directive, expand it,
// invoke the pragma handler, then lex the token after it.
if (II == Ident_Pragma)
return Handle_Pragma(Tok);
else if (II == Ident__pragma) // in non-MS mode this is null
return HandleMicrosoft__pragma(Tok);
++NumBuiltinMacroExpanded;
SmallString<128> TmpBuffer;
llvm::raw_svector_ostream OS(TmpBuffer);
// Set up the return result.
Tok.setIdentifierInfo(nullptr);
Tok.clearFlag(Token::NeedsCleaning);
if (II == Ident__LINE__) {
// C99 6.10.8: "__LINE__: The presumed line number (within the current
// source file) of the current source line (an integer constant)". This can
// be affected by #line.
SourceLocation Loc = Tok.getLocation();
// Advance to the location of the first _, this might not be the first byte
// of the token if it starts with an escaped newline.
Loc = AdvanceToTokenCharacter(Loc, 0);
// One wrinkle here is that GCC expands __LINE__ to location of the *end* of
// a macro expansion. This doesn't matter for object-like macros, but
// can matter for a function-like macro that expands to contain __LINE__.
// Skip down through expansion points until we find a file loc for the
// end of the expansion history.
Loc = SourceMgr.getExpansionRange(Loc).second;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
// __LINE__ expands to a simple numeric value.
OS << (PLoc.isValid()? PLoc.getLine() : 1);
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__FILE__ || II == Ident__BASE_FILE__) {
// C99 6.10.8: "__FILE__: The presumed name of the current source file (a
// character string literal)". This can be affected by #line.
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
// __BASE_FILE__ is a GNU extension that returns the top of the presumed
// #include stack instead of the current file.
if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
SourceLocation NextLoc = PLoc.getIncludeLoc();
while (NextLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(NextLoc);
if (PLoc.isInvalid())
break;
NextLoc = PLoc.getIncludeLoc();
}
}
// Escape this filename. Turn '\' -> '\\' '"' -> '\"'
SmallString<128> FN;
if (PLoc.isValid()) {
FN += PLoc.getFilename();
Lexer::Stringify(FN);
OS << '"' << FN << '"';
}
Tok.setKind(tok::string_literal);
} else if (II == Ident__DATE__) {
Diag(Tok.getLocation(), diag::warn_pp_date_time);
if (!DATELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"Mmm dd yyyy\""));
Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__TIME__) {
Diag(Tok.getLocation(), diag::warn_pp_date_time);
if (!TIMELoc.isValid())
ComputeDATE_TIME(DATELoc, TIMELoc, *this);
Tok.setKind(tok::string_literal);
Tok.setLength(strlen("\"hh:mm:ss\""));
Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
Tok.getLocation(),
Tok.getLength()));
return;
} else if (II == Ident__INCLUDE_LEVEL__) {
// Compute the presumed include depth of this token. This can be affected
// by GNU line markers.
unsigned Depth = 0;
PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
if (PLoc.isValid()) {
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
for (; PLoc.isValid(); ++Depth)
PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
}
// __INCLUDE_LEVEL__ expands to a simple numeric value.
OS << Depth;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__TIMESTAMP__) {
Diag(Tok.getLocation(), diag::warn_pp_date_time);
// MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
// of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
// Get the file that we are lexing out of. If we're currently lexing from
// a macro, dig into the include stack.
const FileEntry *CurFile = nullptr;
PreprocessorLexer *TheLexer = getCurrentFileLexer();
if (TheLexer)
CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
const char *Result;
if (CurFile) {
time_t TT = CurFile->getModificationTime();
struct tm *TM = localtime(&TT);
Result = asctime(TM);
} else {
Result = "??? ??? ?? ??:??:?? ????\n";
}
// Surround the string with " and strip the trailing newline.
OS << '"' << StringRef(Result).drop_back() << '"';
Tok.setKind(tok::string_literal);
} else if (II == Ident__COUNTER__) {
// __COUNTER__ expands to a simple numeric value.
OS << CounterValue++;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_feature) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
return II && HasFeature(*this, II->getName());
});
} else if (II == Ident__has_extension) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
return II && HasExtension(*this, II->getName());
});
} else if (II == Ident__has_builtin) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
if (!II)
return false;
else if (II->getBuiltinID() != 0)
return true;
else {
const LangOptions &LangOpts = getLangOpts();
return llvm::StringSwitch<bool>(II->getName())
.Case("__make_integer_seq", LangOpts.CPlusPlus)
.Case("__type_pack_element", LangOpts.CPlusPlus)
.Default(false);
}
});
} else if (II == Ident__is_identifier) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[](Token &Tok, bool &HasLexedNextToken) -> int {
return Tok.is(tok::identifier);
});
} else if (II == Ident__has_attribute) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
getTargetInfo(), getLangOpts()) : 0;
});
} else if (II == Ident__has_declspec) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
getTargetInfo(), getLangOpts()) : 0;
});
} else if (II == Ident__has_cpp_attribute) {
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *ScopeII = nullptr;
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
if (!II)
return false;
// It is possible to receive a scope token. Read the "::", if it is
// available, and the subsequent identifier.
LexUnexpandedToken(Tok);
if (Tok.isNot(tok::coloncolon))
HasLexedNextToken = true;
else {
ScopeII = II;
LexUnexpandedToken(Tok);
II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_feature_check_malformed);
}
return II ? hasAttribute(AttrSyntax::CXX, ScopeII, II,
getTargetInfo(), getLangOpts()) : 0;
});
} else if (II == Ident__has_include ||
II == Ident__has_include_next) {
// The argument to these two builtins should be a parenthesized
// file name string literal using angle brackets (<>) or
// double-quotes ("").
bool Value;
if (II == Ident__has_include)
Value = EvaluateHasInclude(Tok, II, *this);
else
Value = EvaluateHasIncludeNext(Tok, II, *this);
if (Tok.isNot(tok::r_paren))
return;
OS << (int)Value;
Tok.setKind(tok::numeric_constant);
} else if (II == Ident__has_warning) {
// The argument should be a parenthesized string literal.
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
std::string WarningName;
SourceLocation StrStartLoc = Tok.getLocation();
HasLexedNextToken = Tok.is(tok::string_literal);
if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
/*MacroExpansion=*/false))
return false;
// FIXME: Should we accept "-R..." flags here, or should that be
// handled by a separate __has_remark?
if (WarningName.size() < 3 || WarningName[0] != '-' ||
WarningName[1] != 'W') {
Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
return false;
}
// Finally, check if the warning flags maps to a diagnostic group.
// We construct a SmallVector here to talk to getDiagnosticIDs().
// Although we don't use the result, this isn't a hot path, and not
// worth special casing.
SmallVector<diag::kind, 10> Diags;
return !getDiagnostics().getDiagnosticIDs()->
getDiagnosticsInGroup(diag::Flavor::WarningOrError,
WarningName.substr(2), Diags);
});
} else if (II == Ident__building_module) {
// The argument to this builtin should be an identifier. The
// builtin evaluates to 1 when that identifier names the module we are
// currently building.
EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
[this](Token &Tok, bool &HasLexedNextToken) -> int {
IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
diag::err_expected_id_building_module);
return getLangOpts().CompilingModule && II &&
(II->getName() == getLangOpts().CurrentModule);
});
} else if (II == Ident__MODULE__) {
// The current module as an identifier.
OS << getLangOpts().CurrentModule;
IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
Tok.setIdentifierInfo(ModuleII);
Tok.setKind(ModuleII->getTokenID());
} else if (II == Ident__identifier) {
SourceLocation Loc = Tok.getLocation();
// We're expecting '__identifier' '(' identifier ')'. Try to recover
// if the parens are missing.
LexNonComment(Tok);
if (Tok.isNot(tok::l_paren)) {
// No '(', use end of last token.
Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
<< II << tok::l_paren;
// If the next token isn't valid as our argument, we can't recover.
if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
Tok.setKind(tok::identifier);
return;
}
SourceLocation LParenLoc = Tok.getLocation();
LexNonComment(Tok);
if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
Tok.setKind(tok::identifier);
else {
Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
<< Tok.getKind();
// Don't walk past anything that's not a real token.
if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
return;
}
// Discard the ')', preserving 'Tok' as our result.
Token RParen;
LexNonComment(RParen);
if (RParen.isNot(tok::r_paren)) {
Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
<< Tok.getKind() << tok::r_paren;
Diag(LParenLoc, diag::note_matching) << tok::l_paren;
}
return;
} else {
llvm_unreachable("Unknown identifier!");
}
CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
}
void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
// If the 'used' status changed, and the macro requires 'unused' warning,
// remove its SourceLocation from the warn-for-unused-macro locations.
if (MI->isWarnIfUnused() && !MI->isUsed())
WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
MI->setIsUsed(true);
}