/*
* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project.
*/
/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/span.h>
#include "../test/file_test.h"
#include "../test/test_util.h"
#include "../test/wycheproof_util.h"
static const EVP_CIPHER *GetCipher(const std::string &name) {
if (name == "DES-CBC") {
return EVP_des_cbc();
} else if (name == "DES-ECB") {
return EVP_des_ecb();
} else if (name == "DES-EDE") {
return EVP_des_ede();
} else if (name == "DES-EDE3") {
return EVP_des_ede3();
} else if (name == "DES-EDE-CBC") {
return EVP_des_ede_cbc();
} else if (name == "DES-EDE3-CBC") {
return EVP_des_ede3_cbc();
} else if (name == "RC4") {
return EVP_rc4();
} else if (name == "AES-128-ECB") {
return EVP_aes_128_ecb();
} else if (name == "AES-256-ECB") {
return EVP_aes_256_ecb();
} else if (name == "AES-128-CBC") {
return EVP_aes_128_cbc();
} else if (name == "AES-128-GCM") {
return EVP_aes_128_gcm();
} else if (name == "AES-128-OFB") {
return EVP_aes_128_ofb();
} else if (name == "AES-192-CBC") {
return EVP_aes_192_cbc();
} else if (name == "AES-192-CTR") {
return EVP_aes_192_ctr();
} else if (name == "AES-192-ECB") {
return EVP_aes_192_ecb();
} else if (name == "AES-192-OFB") {
return EVP_aes_192_ofb();
} else if (name == "AES-256-CBC") {
return EVP_aes_256_cbc();
} else if (name == "AES-128-CTR") {
return EVP_aes_128_ctr();
} else if (name == "AES-256-CTR") {
return EVP_aes_256_ctr();
} else if (name == "AES-256-GCM") {
return EVP_aes_256_gcm();
} else if (name == "AES-256-OFB") {
return EVP_aes_256_ofb();
}
return nullptr;
}
static bool DoCipher(EVP_CIPHER_CTX *ctx, std::vector<uint8_t> *out,
bssl::Span<const uint8_t> in, size_t chunk) {
size_t max_out = in.size();
if ((EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_NO_PADDING) == 0 &&
EVP_CIPHER_CTX_encrypting(ctx)) {
unsigned block_size = EVP_CIPHER_CTX_block_size(ctx);
max_out += block_size - (max_out % block_size);
}
out->resize(max_out);
size_t total = 0;
int len;
while (!in.empty()) {
size_t todo = chunk == 0 ? in.size() : std::min(in.size(), chunk);
EXPECT_LE(todo, static_cast<size_t>(INT_MAX));
if (!EVP_CipherUpdate(ctx, out->data() + total, &len, in.data(),
static_cast<int>(todo))) {
return false;
}
EXPECT_GE(len, 0);
total += static_cast<size_t>(len);
in = in.subspan(todo);
}
if (!EVP_CipherFinal_ex(ctx, out->data() + total, &len)) {
return false;
}
EXPECT_GE(len, 0);
total += static_cast<size_t>(len);
out->resize(total);
return true;
}
static void TestOperation(FileTest *t, const EVP_CIPHER *cipher, bool encrypt,
size_t chunk_size, const std::vector<uint8_t> &key,
const std::vector<uint8_t> &iv,
const std::vector<uint8_t> &plaintext,
const std::vector<uint8_t> &ciphertext,
const std::vector<uint8_t> &aad,
const std::vector<uint8_t> &tag) {
const std::vector<uint8_t> *in, *out;
if (encrypt) {
in = &plaintext;
out = &ciphertext;
} else {
in = &ciphertext;
out = &plaintext;
}
bool is_aead = EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE;
bssl::ScopedEVP_CIPHER_CTX ctx;
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), cipher, nullptr, nullptr, nullptr,
encrypt ? 1 : 0));
if (t->HasAttribute("IV")) {
if (is_aead) {
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_IVLEN,
iv.size(), 0));
} else {
ASSERT_EQ(iv.size(), EVP_CIPHER_CTX_iv_length(ctx.get()));
}
}
if (is_aead && !encrypt) {
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_SET_TAG,
tag.size(),
const_cast<uint8_t *>(tag.data())));
}
// The ciphers are run with no padding. For each of the ciphers we test, the
// output size matches the input size.
ASSERT_EQ(in->size(), out->size());
ASSERT_TRUE(EVP_CIPHER_CTX_set_key_length(ctx.get(), key.size()));
ASSERT_TRUE(EVP_CipherInit_ex(ctx.get(), nullptr, nullptr, key.data(),
iv.data(), -1));
// Note: the deprecated |EVP_CIPHER|-based AEAD API is sensitive to whether
// parameters are NULL, so it is important to skip the |in| and |aad|
// |EVP_CipherUpdate| calls when empty.
if (!aad.empty()) {
int unused;
ASSERT_TRUE(
EVP_CipherUpdate(ctx.get(), nullptr, &unused, aad.data(), aad.size()));
}
ASSERT_TRUE(EVP_CIPHER_CTX_set_padding(ctx.get(), 0));
std::vector<uint8_t> result;
ASSERT_TRUE(DoCipher(ctx.get(), &result, *in, chunk_size));
EXPECT_EQ(Bytes(*out), Bytes(result));
if (encrypt && is_aead) {
uint8_t rtag[16];
ASSERT_LE(tag.size(), sizeof(rtag));
ASSERT_TRUE(EVP_CIPHER_CTX_ctrl(ctx.get(), EVP_CTRL_AEAD_GET_TAG,
tag.size(), rtag));
EXPECT_EQ(Bytes(tag), Bytes(rtag, tag.size()));
}
}
static void TestCipher(FileTest *t) {
std::string cipher_str;
ASSERT_TRUE(t->GetAttribute(&cipher_str, "Cipher"));
const EVP_CIPHER *cipher = GetCipher(cipher_str);
ASSERT_TRUE(cipher);
std::vector<uint8_t> key, iv, plaintext, ciphertext, aad, tag;
ASSERT_TRUE(t->GetBytes(&key, "Key"));
ASSERT_TRUE(t->GetBytes(&plaintext, "Plaintext"));
ASSERT_TRUE(t->GetBytes(&ciphertext, "Ciphertext"));
if (EVP_CIPHER_iv_length(cipher) > 0) {
ASSERT_TRUE(t->GetBytes(&iv, "IV"));
}
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE) {
ASSERT_TRUE(t->GetBytes(&aad, "AAD"));
ASSERT_TRUE(t->GetBytes(&tag, "Tag"));
}
enum {
kEncrypt,
kDecrypt,
kBoth,
} operation = kBoth;
if (t->HasAttribute("Operation")) {
const std::string &str = t->GetAttributeOrDie("Operation");
if (str == "ENCRYPT") {
operation = kEncrypt;
} else if (str == "DECRYPT") {
operation = kDecrypt;
} else {
FAIL() << "Unknown operation: " << str;
}
}
const std::vector<size_t> chunk_sizes = {0, 1, 2, 5, 7, 8, 9, 15, 16,
17, 31, 32, 33, 63, 64, 65, 512};
for (size_t chunk_size : chunk_sizes) {
SCOPED_TRACE(chunk_size);
// By default, both directions are run, unless overridden by the operation.
if (operation != kDecrypt) {
SCOPED_TRACE("encrypt");
TestOperation(t, cipher, true /* encrypt */, chunk_size, key, iv,
plaintext, ciphertext, aad, tag);
}
if (operation != kEncrypt) {
SCOPED_TRACE("decrypt");
TestOperation(t, cipher, false /* decrypt */, chunk_size, key, iv,
plaintext, ciphertext, aad, tag);
}
}
}
TEST(CipherTest, TestVectors) {
FileTestGTest("crypto/cipher_extra/test/cipher_tests.txt", TestCipher);
}
TEST(CipherTest, CAVP_AES_128_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_cbc.txt",
TestCipher);
}
TEST(CipherTest, CAVP_AES_128_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_128_ctr.txt",
TestCipher);
}
TEST(CipherTest, CAVP_AES_192_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_cbc.txt",
TestCipher);
}
TEST(CipherTest, CAVP_AES_192_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_192_ctr.txt",
TestCipher);
}
TEST(CipherTest, CAVP_AES_256_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_cbc.txt",
TestCipher);
}
TEST(CipherTest, CAVP_AES_256_CTR) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/aes_256_ctr.txt",
TestCipher);
}
TEST(CipherTest, CAVP_TDES_CBC) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_cbc.txt", TestCipher);
}
TEST(CipherTest, CAVP_TDES_ECB) {
FileTestGTest("crypto/cipher_extra/test/nist_cavp/tdes_ecb.txt", TestCipher);
}
TEST(CipherTest, WycheproofAESCBC) {
FileTestGTest("third_party/wycheproof_testvectors/aes_cbc_pkcs5_test.txt",
[](FileTest *t) {
t->IgnoreInstruction("type");
t->IgnoreInstruction("ivSize");
std::string key_size;
ASSERT_TRUE(t->GetInstruction(&key_size, "keySize"));
const EVP_CIPHER *cipher;
switch (atoi(key_size.c_str())) {
case 128:
cipher = EVP_aes_128_cbc();
break;
case 192:
cipher = EVP_aes_192_cbc();
break;
case 256:
cipher = EVP_aes_256_cbc();
break;
default:
FAIL() << "Unsupported key size: " << key_size;
}
std::vector<uint8_t> key, iv, msg, ct;
ASSERT_TRUE(t->GetBytes(&key, "key"));
ASSERT_TRUE(t->GetBytes(&iv, "iv"));
ASSERT_TRUE(t->GetBytes(&msg, "msg"));
ASSERT_TRUE(t->GetBytes(&ct, "ct"));
ASSERT_EQ(EVP_CIPHER_key_length(cipher), key.size());
ASSERT_EQ(EVP_CIPHER_iv_length(cipher), iv.size());
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
bssl::ScopedEVP_CIPHER_CTX ctx;
std::vector<uint8_t> out;
const std::vector<size_t> chunk_sizes = {0, 1, 2, 5, 7, 8, 9, 15, 16,
17, 31, 32, 33, 63, 64, 65, 512};
for (size_t chunk : chunk_sizes) {
SCOPED_TRACE(chunk);
if (result == WycheproofResult::kValid) {
ASSERT_TRUE(EVP_DecryptInit_ex(ctx.get(), cipher, nullptr, key.data(),
iv.data()));
ASSERT_TRUE(DoCipher(ctx.get(), &out, ct, chunk));
EXPECT_EQ(Bytes(msg), Bytes(out));
ASSERT_TRUE(EVP_EncryptInit_ex(ctx.get(), cipher, nullptr, key.data(),
iv.data()));
ASSERT_TRUE(DoCipher(ctx.get(), &out, msg, chunk));
EXPECT_EQ(Bytes(ct), Bytes(out));
} else {
ASSERT_TRUE(EVP_DecryptInit_ex(ctx.get(), cipher, nullptr, key.data(),
iv.data()));
EXPECT_FALSE(DoCipher(ctx.get(), &out, ct, chunk));
}
}
});
}