#!/usr/bin/python
#
# tcpv4tracer Trace TCP connections.
# For Linux, uses BCC, eBPF. Embedded C.
#
# USAGE: tcpv4tracer [-h] [-v] [-p PID] [-N NETNS]
#
# You should generally try to avoid writing long scripts that measure multiple
# functions and walk multiple kernel structures, as they will be a burden to
# maintain as the kernel changes.
# The following code should be replaced, and simplified, when static TCP probes
# exist.
#
# Copyright 2017 Kinvolk GmbH
#
# Licensed under the Apache License, Version 2.0 (the "License")
from __future__ import print_function
from bcc import BPF
import argparse as ap
import ctypes
from socket import inet_ntop, AF_INET, AF_INET6
from struct import pack
parser = ap.ArgumentParser(description="Trace TCP connections",
formatter_class=ap.RawDescriptionHelpFormatter)
parser.add_argument("-t", "--timestamp", action="store_true",
help="include timestamp on output")
parser.add_argument("-p", "--pid", default=0, type=int,
help="trace this PID only")
parser.add_argument("-N", "--netns", default=0, type=int,
help="trace this Network Namespace only")
parser.add_argument("-v", "--verbose", action="store_true",
help="include Network Namespace in the output")
parser.add_argument("--ebpf", action="store_true",
help=ap.SUPPRESS)
args = parser.parse_args()
bpf_text = """
#include <uapi/linux/ptrace.h>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wtautological-compare"
#include <net/sock.h>
#pragma clang diagnostic pop
#include <net/inet_sock.h>
#include <net/net_namespace.h>
#include <bcc/proto.h>
#define TCP_EVENT_TYPE_CONNECT 1
#define TCP_EVENT_TYPE_ACCEPT 2
#define TCP_EVENT_TYPE_CLOSE 3
struct tcp_ipv4_event_t {
u64 ts_ns;
u32 type;
u32 pid;
char comm[TASK_COMM_LEN];
u8 ip;
u32 saddr;
u32 daddr;
u16 sport;
u16 dport;
u32 netns;
};
BPF_PERF_OUTPUT(tcp_ipv4_event);
struct tcp_ipv6_event_t {
u64 ts_ns;
u32 type;
u32 pid;
char comm[TASK_COMM_LEN];
u8 ip;
unsigned __int128 saddr;
unsigned __int128 daddr;
u16 sport;
u16 dport;
u32 netns;
};
BPF_PERF_OUTPUT(tcp_ipv6_event);
// tcp_set_state doesn't run in the context of the process that initiated the
// connection so we need to store a map TUPLE -> PID to send the right PID on
// the event
struct ipv4_tuple_t {
u32 saddr;
u32 daddr;
u16 sport;
u16 dport;
u32 netns;
};
struct ipv6_tuple_t {
unsigned __int128 saddr;
unsigned __int128 daddr;
u16 sport;
u16 dport;
u32 netns;
};
struct pid_comm_t {
u64 pid;
char comm[TASK_COMM_LEN];
};
BPF_HASH(tuplepid_ipv4, struct ipv4_tuple_t, struct pid_comm_t);
BPF_HASH(tuplepid_ipv6, struct ipv6_tuple_t, struct pid_comm_t);
BPF_HASH(connectsock, u64, struct sock *);
static int read_ipv4_tuple(struct ipv4_tuple_t *tuple, struct sock *skp)
{
u32 net_ns_inum = 0;
u32 saddr = skp->__sk_common.skc_rcv_saddr;
u32 daddr = skp->__sk_common.skc_daddr;
struct inet_sock *sockp = (struct inet_sock *)skp;
u16 sport = sockp->inet_sport;
u16 dport = skp->__sk_common.skc_dport;
#ifdef CONFIG_NET_NS
net_ns_inum = skp->__sk_common.skc_net.net->ns.inum;
#endif
##FILTER_NETNS##
tuple->saddr = saddr;
tuple->daddr = daddr;
tuple->sport = sport;
tuple->dport = dport;
tuple->netns = net_ns_inum;
// if addresses or ports are 0, ignore
if (saddr == 0 || daddr == 0 || sport == 0 || dport == 0) {
return 0;
}
return 1;
}
static int read_ipv6_tuple(struct ipv6_tuple_t *tuple, struct sock *skp)
{
u32 net_ns_inum = 0;
unsigned __int128 saddr = 0, daddr = 0;
struct inet_sock *sockp = (struct inet_sock *)skp;
u16 sport = sockp->inet_sport;
u16 dport = skp->__sk_common.skc_dport;
#ifdef CONFIG_NET_NS
net_ns_inum = skp->__sk_common.skc_net.net->ns.inum;
#endif
bpf_probe_read(&saddr, sizeof(saddr),
skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
bpf_probe_read(&daddr, sizeof(daddr),
skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32);
##FILTER_NETNS##
tuple->saddr = saddr;
tuple->daddr = daddr;
tuple->sport = sport;
tuple->dport = dport;
tuple->netns = net_ns_inum;
// if addresses or ports are 0, ignore
if (saddr == 0 || daddr == 0 || sport == 0 || dport == 0) {
return 0;
}
return 1;
}
static bool check_family(struct sock *sk, u16 expected_family) {
u64 zero = 0;
u16 family = sk->__sk_common.skc_family;
return family == expected_family;
}
int trace_connect_v4_entry(struct pt_regs *ctx, struct sock *sk)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
// stash the sock ptr for lookup on return
connectsock.update(&pid, &sk);
return 0;
}
int trace_connect_v4_return(struct pt_regs *ctx)
{
int ret = PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
struct sock **skpp;
skpp = connectsock.lookup(&pid);
if (skpp == 0) {
return 0; // missed entry
}
connectsock.delete(&pid);
if (ret != 0) {
// failed to send SYNC packet, may not have populated
// socket __sk_common.{skc_rcv_saddr, ...}
return 0;
}
// pull in details
struct sock *skp = *skpp;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
struct pid_comm_t p = { };
p.pid = pid;
bpf_get_current_comm(&p.comm, sizeof(p.comm));
tuplepid_ipv4.update(&t, &p);
return 0;
}
int trace_connect_v6_entry(struct pt_regs *ctx, struct sock *sk)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
// stash the sock ptr for lookup on return
connectsock.update(&pid, &sk);
return 0;
}
int trace_connect_v6_return(struct pt_regs *ctx)
{
int ret = PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
struct sock **skpp;
skpp = connectsock.lookup(&pid);
if (skpp == 0) {
return 0; // missed entry
}
connectsock.delete(&pid);
if (ret != 0) {
// failed to send SYNC packet, may not have populated
// socket __sk_common.{skc_rcv_saddr, ...}
return 0;
}
// pull in details
struct sock *skp = *skpp;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
struct pid_comm_t p = { };
p.pid = pid;
bpf_get_current_comm(&p.comm, sizeof(p.comm));
tuplepid_ipv6.update(&t, &p);
return 0;
}
int trace_tcp_set_state_entry(struct pt_regs *ctx, struct sock *skp, int state)
{
if (state != TCP_ESTABLISHED && state != TCP_CLOSE) {
return 0;
}
u8 ipver = 0;
if (check_family(skp, AF_INET)) {
ipver = 4;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
if (state == TCP_CLOSE) {
tuplepid_ipv4.delete(&t);
return 0;
}
struct pid_comm_t *p;
p = tuplepid_ipv4.lookup(&t);
if (p == 0) {
return 0; // missed entry
}
struct tcp_ipv4_event_t evt4 = { };
evt4.ts_ns = bpf_ktime_get_ns();
evt4.type = TCP_EVENT_TYPE_CONNECT;
evt4.pid = p->pid >> 32;
evt4.ip = ipver;
evt4.saddr = t.saddr;
evt4.daddr = t.daddr;
evt4.sport = ntohs(t.sport);
evt4.dport = ntohs(t.dport);
evt4.netns = t.netns;
int i;
for (i = 0; i < TASK_COMM_LEN; i++) {
evt4.comm[i] = p->comm[i];
}
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
tuplepid_ipv4.delete(&t);
} else if (check_family(skp, AF_INET6)) {
ipver = 6;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
if (state == TCP_CLOSE) {
tuplepid_ipv6.delete(&t);
return 0;
}
struct pid_comm_t *p;
p = tuplepid_ipv6.lookup(&t);
if (p == 0) {
return 0; // missed entry
}
struct tcp_ipv6_event_t evt6 = { };
evt6.ts_ns = bpf_ktime_get_ns();
evt6.type = TCP_EVENT_TYPE_CONNECT;
evt6.pid = p->pid >> 32;
evt6.ip = ipver;
evt6.saddr = t.saddr;
evt6.daddr = t.daddr;
evt6.sport = ntohs(t.sport);
evt6.dport = ntohs(t.dport);
evt6.netns = t.netns;
int i;
for (i = 0; i < TASK_COMM_LEN; i++) {
evt6.comm[i] = p->comm[i];
}
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
tuplepid_ipv6.delete(&t);
}
// else drop
return 0;
}
int trace_close_entry(struct pt_regs *ctx, struct sock *skp)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
u8 oldstate = skp->sk_state;
// Don't generate close events for connections that were never
// established in the first place.
if (oldstate == TCP_SYN_SENT ||
oldstate == TCP_SYN_RECV ||
oldstate == TCP_NEW_SYN_RECV)
return 0;
u8 ipver = 0;
if (check_family(skp, AF_INET)) {
ipver = 4;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
struct tcp_ipv4_event_t evt4 = { };
evt4.ts_ns = bpf_ktime_get_ns();
evt4.type = TCP_EVENT_TYPE_CLOSE;
evt4.pid = pid >> 32;
evt4.ip = ipver;
evt4.saddr = t.saddr;
evt4.daddr = t.daddr;
evt4.sport = ntohs(t.sport);
evt4.dport = ntohs(t.dport);
evt4.netns = t.netns;
bpf_get_current_comm(&evt4.comm, sizeof(evt4.comm));
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
} else if (check_family(skp, AF_INET6)) {
ipver = 6;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
struct tcp_ipv6_event_t evt6 = { };
evt6.ts_ns = bpf_ktime_get_ns();
evt6.type = TCP_EVENT_TYPE_CLOSE;
evt6.pid = pid >> 32;
evt6.ip = ipver;
evt6.saddr = t.saddr;
evt6.daddr = t.daddr;
evt6.sport = ntohs(t.sport);
evt6.dport = ntohs(t.dport);
evt6.netns = t.netns;
bpf_get_current_comm(&evt6.comm, sizeof(evt6.comm));
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
}
// else drop
return 0;
};
int trace_accept_return(struct pt_regs *ctx)
{
struct sock *newsk = (struct sock *)PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
if (newsk == NULL) {
return 0;
}
// pull in details
u16 lport = 0, dport = 0;
u32 net_ns_inum = 0;
u8 ipver = 0;
dport = newsk->__sk_common.skc_dport;
lport = newsk->__sk_common.skc_num;
// Get network namespace id, if kernel supports it
#ifdef CONFIG_NET_NS
net_ns_inum = newsk->__sk_common.skc_net.net->ns.inum;
#endif
##FILTER_NETNS##
if (check_family(newsk, AF_INET)) {
ipver = 4;
struct tcp_ipv4_event_t evt4 = { 0 };
evt4.ts_ns = bpf_ktime_get_ns();
evt4.type = TCP_EVENT_TYPE_ACCEPT;
evt4.netns = net_ns_inum;
evt4.pid = pid >> 32;
evt4.ip = ipver;
evt4.saddr = newsk->__sk_common.skc_rcv_saddr;
evt4.daddr = newsk->__sk_common.skc_daddr;
evt4.sport = lport;
evt4.dport = ntohs(dport);
bpf_get_current_comm(&evt4.comm, sizeof(evt4.comm));
// do not send event if IP address is 0.0.0.0 or port is 0
if (evt4.saddr != 0 && evt4.daddr != 0 &&
evt4.sport != 0 && evt4.dport != 0) {
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
}
} else if (check_family(newsk, AF_INET6)) {
ipver = 6;
struct tcp_ipv6_event_t evt6 = { 0 };
evt6.ts_ns = bpf_ktime_get_ns();
evt6.type = TCP_EVENT_TYPE_ACCEPT;
evt6.netns = net_ns_inum;
evt6.pid = pid >> 32;
evt6.ip = ipver;
bpf_probe_read(&evt6.saddr, sizeof(evt6.saddr),
newsk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
bpf_probe_read(&evt6.daddr, sizeof(evt6.daddr),
newsk->__sk_common.skc_v6_daddr.in6_u.u6_addr32);
evt6.sport = lport;
evt6.dport = ntohs(dport);
bpf_get_current_comm(&evt6.comm, sizeof(evt6.comm));
// do not send event if IP address is 0.0.0.0 or port is 0
if (evt6.saddr != 0 && evt6.daddr != 0 &&
evt6.sport != 0 && evt6.dport != 0) {
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
}
}
// else drop
return 0;
}
"""
TASK_COMM_LEN = 16 # linux/sched.h
class TCPIPV4Evt(ctypes.Structure):
_fields_ = [
("ts_ns", ctypes.c_ulonglong),
("type", ctypes.c_uint),
("pid", ctypes.c_uint),
("comm", ctypes.c_char * TASK_COMM_LEN),
("ip", ctypes.c_ubyte),
("saddr", ctypes.c_uint),
("daddr", ctypes.c_uint),
("sport", ctypes.c_ushort),
("dport", ctypes.c_ushort),
("netns", ctypes.c_uint)
]
class TCPIPV6Evt(ctypes.Structure):
_fields_ = [
("ts_ns", ctypes.c_ulonglong),
("type", ctypes.c_uint),
("pid", ctypes.c_uint),
("comm", ctypes.c_char * TASK_COMM_LEN),
("ip", ctypes.c_ubyte),
("saddr", (ctypes.c_ulong * 2)),
("daddr", (ctypes.c_ulong * 2)),
("sport", ctypes.c_ushort),
("dport", ctypes.c_ushort),
("netns", ctypes.c_uint)
]
verbose_types = {"C": "connect", "A": "accept",
"X": "close", "U": "unknown"}
def print_ipv4_event(cpu, data, size):
event = ctypes.cast(data, ctypes.POINTER(TCPIPV4Evt)).contents
global start_ts
if args.timestamp:
if start_ts == 0:
start_ts = event.ts_ns
if args.verbose:
print("%-14d" % (event.ts_ns - start_ts), end="")
else:
print("%-9.3f" % ((event.ts_ns - start_ts) / 1000000000.0), end="")
if event.type == 1:
type_str = "C"
elif event.type == 2:
type_str = "A"
elif event.type == 3:
type_str = "X"
else:
type_str = "U"
if args.verbose:
print("%-12s " % (verbose_types[type_str]), end="")
else:
print("%-2s " % (type_str), end="")
print("%-6d %-16s %-2d %-16s %-16s %-6d %-6d" %
(event.pid, event.comm.decode('utf-8', 'replace'),
event.ip,
inet_ntop(AF_INET, pack("I", event.saddr)),
inet_ntop(AF_INET, pack("I", event.daddr)),
event.sport,
event.dport), end="")
if args.verbose and not args.netns:
print(" %-8d" % event.netns)
else:
print()
def print_ipv6_event(cpu, data, size):
event = ctypes.cast(data, ctypes.POINTER(TCPIPV6Evt)).contents
global start_ts
if args.timestamp:
if start_ts == 0:
start_ts = event.ts_ns
if args.verbose:
print("%-14d" % (event.ts_ns - start_ts), end="")
else:
print("%-9.3f" % ((event.ts_ns - start_ts) / 1000000000.0), end="")
if event.type == 1:
type_str = "C"
elif event.type == 2:
type_str = "A"
elif event.type == 3:
type_str = "X"
else:
type_str = "U"
if args.verbose:
print("%-12s " % (verbose_types[type_str]), end="")
else:
print("%-2s " % (type_str), end="")
print("%-6d %-16s %-2d %-16s %-16s %-6d %-6d" %
(event.pid, event.comm.decode('utf-8', 'replace'),
event.ip,
"[" + inet_ntop(AF_INET6, event.saddr) + "]",
"[" + inet_ntop(AF_INET6, event.daddr) + "]",
event.sport,
event.dport), end="")
if args.verbose and not args.netns:
print(" %-8d" % event.netns)
else:
print()
pid_filter = ""
netns_filter = ""
if args.pid:
pid_filter = 'if (pid >> 32 != %d) { return 0; }' % args.pid
if args.netns:
netns_filter = 'if (net_ns_inum != %d) { return 0; }' % args.netns
bpf_text = bpf_text.replace('##FILTER_PID##', pid_filter)
bpf_text = bpf_text.replace('##FILTER_NETNS##', netns_filter)
if args.ebpf:
print(bpf_text)
exit()
# initialize BPF
b = BPF(text=bpf_text)
b.attach_kprobe(event="tcp_v4_connect", fn_name="trace_connect_v4_entry")
b.attach_kretprobe(event="tcp_v4_connect", fn_name="trace_connect_v4_return")
b.attach_kprobe(event="tcp_v6_connect", fn_name="trace_connect_v6_entry")
b.attach_kretprobe(event="tcp_v6_connect", fn_name="trace_connect_v6_return")
b.attach_kprobe(event="tcp_set_state", fn_name="trace_tcp_set_state_entry")
b.attach_kprobe(event="tcp_close", fn_name="trace_close_entry")
b.attach_kretprobe(event="inet_csk_accept", fn_name="trace_accept_return")
print("Tracing TCP established connections. Ctrl-C to end.")
# header
if args.verbose:
if args.timestamp:
print("%-14s" % ("TIME(ns)"), end="")
print("%-12s %-6s %-16s %-2s %-16s %-16s %-6s %-7s" % ("TYPE",
"PID", "COMM", "IP", "SADDR", "DADDR", "SPORT", "DPORT"), end="")
if not args.netns:
print("%-8s" % "NETNS", end="")
print()
else:
if args.timestamp:
print("%-9s" % ("TIME(s)"), end="")
print("%-2s %-6s %-16s %-2s %-16s %-16s %-6s %-6s" %
("T", "PID", "COMM", "IP", "SADDR", "DADDR", "SPORT", "DPORT"))
start_ts = 0
def inet_ntoa(addr):
dq = ''
for i in range(0, 4):
dq = dq + str(addr & 0xff)
if (i != 3):
dq = dq + '.'
addr = addr >> 8
return dq
b["tcp_ipv4_event"].open_perf_buffer(print_ipv4_event)
b["tcp_ipv6_event"].open_perf_buffer(print_ipv6_event)
while True:
b.perf_buffer_poll()