// std
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <mutex>
#include <queue>
#include <random>
#include <sstream>
#include <string>
#include <thread>
// gnu-c
#include <sys/types.h>
#include <unistd.h>
// usdt_sample_lib1
#include "usdt_sample_lib1/lib1.h"
void print_usage(int argc, char** argv)
{
std::cout << "Usage:" << std::endl;
std::cout << argv[0]
<< " <InputPrefix> <InputMinimum (1-50)> <InputMaximum (1-50)> <CallsPerSec (1-50)> <MinimumLatencyMs (1-50)> <MaximumLatencyMs (1-50)>"
<< std::endl;
std::cout << "InputPrefix: Prefix of the input string to the operation. Default: dummy" << std::endl;
std::cout << "InputMinimum: Minimum number to make the input string to the operation somewhat unique. Default: 1" << std::endl;
std::cout << "InputMaximum: Maximum number to make the input string to the operation somewhat unique. Default: 50" << std::endl;
std::cout << "CallsPerSec: Rate of calls to the operation. Default: 10" << std::endl;
std::cout << "MinimumLatencyMs: Minimum latency to apply to the operation. Default: 20" << std::endl;
std::cout << "MaximumLatencyMs: Maximum latency to apply to the operation. Default: 40" << std::endl;
}
int main(int argc, char** argv)
{
std::string inputPrefix("dummy");
std::uint32_t inputMinimum = 1;
std::uint32_t inputMaximum = 50;
std::uint32_t callsPerSec = 10;
std::uint32_t minLatMs = 20;
std::uint32_t maxLatMs = 40;
try {
if (argc > 1) {
inputPrefix = argv[1];
}
if (argc > 2) {
inputMinimum = static_cast<std::uint32_t>(std::max(1, std::min(50, std::atoi(argv[2]))));
}
if (argc > 3) {
inputMaximum = static_cast<std::uint32_t>(std::max(1, std::min(50, std::atoi(argv[3]))));
}
if (argc > 4) {
callsPerSec = static_cast<std::uint32_t>(std::max(1, std::min(50, std::atoi(argv[4]))));
}
if (argc > 5) {
minLatMs = static_cast<std::uint32_t>(std::max(1, std::min(50, std::atoi(argv[5]))));
}
if (argc > 6) {
maxLatMs = static_cast<std::uint32_t>(std::max(1, std::min(50, std::atoi(argv[6]))));
}
}
catch (const std::exception& exc) {
std::cout << "Exception while reading arguments: " << exc.what() << std::endl;
print_usage(argc, argv);
return -1;
}
catch (...) {
std::cout << "Unknown exception while reading arguments." << std::endl;
print_usage(argc, argv);
return -1;
}
if (inputMinimum > inputMaximum) {
std::cout << "InputMinimum must be smaller than InputMaximum." << std::endl;
print_usage(argc, argv);
return -1;
}
if (minLatMs > maxLatMs) {
std::cout << "MinimumLatencyMs must be smaller than MaximumLatencyMs." << std::endl;
print_usage(argc, argv);
return -1;
}
std::cout << "Applying the following parameters:" << std::endl
<< "Input prefix: " << inputPrefix << "." << std::endl
<< "Input range: [" << inputMinimum << ", " << inputMaximum << "]." << std::endl
<< "Calls Per Second: " << callsPerSec << "." << std::endl
<< "Latency range: [" << minLatMs << ", " << maxLatMs << "] ms." << std::endl;
const int sleepTimeMs = 1000 / callsPerSec;
OperationProvider op(minLatMs, maxLatMs);
std::mutex queueMutex;
std::queue<std::shared_future<OperationResponse>> responseQueue;
auto dequeueFuture = std::async(std::launch::async, [&]() {
while (true) {
bool empty = false;
{
std::lock_guard<std::mutex> lg(queueMutex);
empty = responseQueue.empty();
}
if (empty) {
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTimeMs));
continue;
}
responseQueue.front().get();
// std::cout << "Removing item from queue." << std::endl;
std::lock_guard<std::mutex> lg(queueMutex);
responseQueue.pop();
}
});
std::random_device rd;
std::uniform_int_distribution<> dis(inputMinimum, inputMaximum);
std::cout << "You can now run the bcc scripts, see usdt_sample.md for examples." << std::endl;
std::cout << "pid: " << ::getpid() << std::endl;
std::cout << "Press ctrl-c to exit." << std::endl;
while (true) {
std::ostringstream inputOss;
inputOss << inputPrefix << "_" << dis(rd);
auto responseFuture = op.executeAsync(OperationRequest(inputOss.str()));
{
std::lock_guard<std::mutex> lg(queueMutex);
responseQueue.push(responseFuture);
}
// For a sample application, this is good enough to simulate callsPerSec.
std::this_thread::sleep_for(std::chrono::milliseconds(sleepTimeMs));
}
dequeueFuture.get();
return 0;
}