# begin[licence]
#
# [The "BSD licence"]
# Copyright (c) 2005-2012 Terence Parr
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. The name of the author may not be used to endorse or promote products
# derived from this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# end[licence]
import socket
import sys
from .constants import INVALID_TOKEN_TYPE
from .exceptions import RecognitionException
from .recognizers import Parser
from .streams import TokenStream
from .tokens import Token
from .tree import CommonTreeAdaptor, TreeAdaptor, Tree
class DebugParser(Parser):
def __init__(self, stream, state=None, dbg=None, *args, **kwargs):
# wrap token stream in DebugTokenStream (unless user already did so).
if not isinstance(stream, DebugTokenStream):
stream = DebugTokenStream(stream, dbg)
super().__init__(stream, state, *args, **kwargs)
# Who to notify when events in the parser occur.
self._dbg = None
self.setDebugListener(dbg)
def setDebugListener(self, dbg):
"""Provide a new debug event listener for this parser. Notify the
input stream too that it should send events to this listener.
"""
if hasattr(self.input, 'dbg'):
self.input.dbg = dbg
self._dbg = dbg
def getDebugListener(self):
return self._dbg
dbg = property(getDebugListener, setDebugListener)
def beginResync(self):
self._dbg.beginResync()
def endResync(self):
self._dbg.endResync()
def beginBacktrack(self, level):
self._dbg.beginBacktrack(level)
def endBacktrack(self, level, successful):
self._dbg.endBacktrack(level, successful)
def reportError(self, exc):
Parser.reportError(self, exc)
if isinstance(exc, RecognitionException):
self._dbg.recognitionException(exc)
class DebugTokenStream(TokenStream):
def __init__(self, input, dbg=None):
super().__init__()
self.input = input
self.initialStreamState = True
# Track the last mark() call result value for use in rewind().
self.lastMarker = None
self._dbg = None
self.setDebugListener(dbg)
# force TokenStream to get at least first valid token
# so we know if there are any hidden tokens first in the stream
self.input.LT(1)
def getDebugListener(self):
return self._dbg
def setDebugListener(self, dbg):
self._dbg = dbg
dbg = property(getDebugListener, setDebugListener)
def consume(self):
if self.initialStreamState:
self.consumeInitialHiddenTokens()
a = self.input.index()
t = self.input.LT(1)
self.input.consume()
b = self.input.index()
self._dbg.consumeToken(t)
if b > a + 1:
# then we consumed more than one token; must be off channel tokens
for idx in range(a + 1, b):
self._dbg.consumeHiddenToken(self.input.get(idx))
def consumeInitialHiddenTokens(self):
"""consume all initial off-channel tokens"""
firstOnChannelTokenIndex = self.input.index()
for idx in range(firstOnChannelTokenIndex):
self._dbg.consumeHiddenToken(self.input.get(idx))
self.initialStreamState = False
def LT(self, i):
if self.initialStreamState:
self.consumeInitialHiddenTokens()
t = self.input.LT(i)
self._dbg.LT(i, t)
return t
def LA(self, i):
if self.initialStreamState:
self.consumeInitialHiddenTokens()
t = self.input.LT(i)
self._dbg.LT(i, t)
return t.type
def get(self, i):
return self.input.get(i)
def index(self):
return self.input.index()
def mark(self):
self.lastMarker = self.input.mark()
self._dbg.mark(self.lastMarker)
return self.lastMarker
def rewind(self, marker=None):
self._dbg.rewind(marker)
self.input.rewind(marker)
def release(self, marker):
pass
def seek(self, index):
# TODO: implement seek in dbg interface
# self._dbg.seek(index);
self.input.seek(index)
def size(self):
return self.input.size()
def getTokenSource(self):
return self.input.getTokenSource()
def getSourceName(self):
return self.getTokenSource().getSourceName()
def toString(self, start=None, stop=None):
return self.input.toString(start, stop)
class DebugTreeAdaptor(TreeAdaptor):
"""A TreeAdaptor proxy that fires debugging events to a DebugEventListener
delegate and uses the TreeAdaptor delegate to do the actual work. All
AST events are triggered by this adaptor; no code gen changes are needed
in generated rules. Debugging events are triggered *after* invoking
tree adaptor routines.
Trees created with actions in rewrite actions like "-> ^(ADD {foo} {bar})"
cannot be tracked as they might not use the adaptor to create foo, bar.
The debug listener has to deal with tree node IDs for which it did
not see a createNode event. A single <unknown> node is sufficient even
if it represents a whole tree.
"""
def __init__(self, dbg, adaptor):
super().__init__()
self.dbg = dbg
self.adaptor = adaptor
def createWithPayload(self, payload):
if payload.index < 0:
# could be token conjured up during error recovery
return self.createFromType(payload.type, payload.text)
node = self.adaptor.createWithPayload(payload)
self.dbg.createNode(node, payload)
return node
def createFromToken(self, tokenType, fromToken, text=None):
node = self.adaptor.createFromToken(tokenType, fromToken, text)
self.dbg.createNode(node)
return node
def createFromType(self, tokenType, text):
node = self.adaptor.createFromType(tokenType, text)
self.dbg.createNode(node)
return node
def errorNode(self, input, start, stop, exc):
node = self.adaptor.errorNode(input, start, stop, exc)
if node is not None:
self.dbg.errorNode(node)
return node
def dupTree(self, tree):
t = self.adaptor.dupTree(tree)
# walk the tree and emit create and add child events
# to simulate what dupTree has done. dupTree does not call this debug
# adapter so I must simulate.
self.simulateTreeConstruction(t)
return t
def simulateTreeConstruction(self, t):
"""^(A B C): emit create A, create B, add child, ..."""
self.dbg.createNode(t)
for i in range(self.adaptor.getChildCount(t)):
child = self.adaptor.getChild(t, i)
self.simulateTreeConstruction(child)
self.dbg.addChild(t, child)
def dupNode(self, treeNode):
d = self.adaptor.dupNode(treeNode)
self.dbg.createNode(d)
return d
def nil(self):
node = self.adaptor.nil()
self.dbg.nilNode(node)
return node
def isNil(self, tree):
return self.adaptor.isNil(tree)
def addChild(self, t, child):
if isinstance(child, Token):
n = self.createWithPayload(child)
self.addChild(t, n)
else:
if t is None or child is None:
return
self.adaptor.addChild(t, child)
self.dbg.addChild(t, child)
def becomeRoot(self, newRoot, oldRoot):
if isinstance(newRoot, Token):
n = self.createWithPayload(newRoot)
self.adaptor.becomeRoot(n, oldRoot)
else:
n = self.adaptor.becomeRoot(newRoot, oldRoot)
self.dbg.becomeRoot(newRoot, oldRoot)
return n
def rulePostProcessing(self, root):
return self.adaptor.rulePostProcessing(root)
def getType(self, t):
return self.adaptor.getType(t)
def setType(self, t, type):
self.adaptor.setType(t, type)
def getText(self, t):
return self.adaptor.getText(t)
def setText(self, t, text):
self.adaptor.setText(t, text)
def getToken(self, t):
return self.adaptor.getToken(t)
def setTokenBoundaries(self, t, startToken, stopToken):
self.adaptor.setTokenBoundaries(t, startToken, stopToken)
if t and startToken and stopToken:
self.dbg.setTokenBoundaries(
t, startToken.index, stopToken.index)
def getTokenStartIndex(self, t):
return self.adaptor.getTokenStartIndex(t)
def getTokenStopIndex(self, t):
return self.adaptor.getTokenStopIndex(t)
def getChild(self, t, i):
return self.adaptor.getChild(t, i)
def setChild(self, t, i, child):
self.adaptor.setChild(t, i, child)
def deleteChild(self, t, i):
return self.adaptor.deleteChild(t, i)
def getChildCount(self, t):
return self.adaptor.getChildCount(t)
def getUniqueID(self, node):
return self.adaptor.getUniqueID(node)
def getParent(self, t):
return self.adaptor.getParent(t)
def getChildIndex(self, t):
return self.adaptor.getChildIndex(t)
def setParent(self, t, parent):
self.adaptor.setParent(t, parent)
def setChildIndex(self, t, index):
self.adaptor.setChildIndex(t, index)
def replaceChildren(self, parent, startChildIndex, stopChildIndex, t):
self.adaptor.replaceChildren(parent, startChildIndex, stopChildIndex, t)
## support
def getDebugListener(self):
return self.dbg
def setDebugListener(self, dbg):
self.dbg = dbg
def getTreeAdaptor(self):
return self.adaptor
class DebugEventListener(object):
"""All debugging events that a recognizer can trigger.
I did not create a separate AST debugging interface as it would create
lots of extra classes and DebugParser has a dbg var defined, which makes
it hard to change to ASTDebugEventListener. I looked hard at this issue
and it is easier to understand as one monolithic event interface for all
possible events. Hopefully, adding ST debugging stuff won't be bad. Leave
for future. 4/26/2006.
"""
# Moved to version 2 for v3.1: added grammar name to enter/exit Rule
PROTOCOL_VERSION = "2"
def enterRule(self, grammarFileName, ruleName):
"""The parser has just entered a rule. No decision has been made about
which alt is predicted. This is fired AFTER init actions have been
executed. Attributes are defined and available etc...
The grammarFileName allows composite grammars to jump around among
multiple grammar files.
"""
pass
def enterAlt(self, alt):
"""Because rules can have lots of alternatives, it is very useful to
know which alt you are entering. This is 1..n for n alts.
"""
pass
def exitRule(self, grammarFileName, ruleName):
"""This is the last thing executed before leaving a rule. It is
executed even if an exception is thrown. This is triggered after
error reporting and recovery have occurred (unless the exception is
not caught in this rule). This implies an "exitAlt" event.
The grammarFileName allows composite grammars to jump around among
multiple grammar files.
"""
pass
def enterSubRule(self, decisionNumber):
"""Track entry into any (...) subrule other EBNF construct"""
pass
def exitSubRule(self, decisionNumber):
pass
def enterDecision(self, decisionNumber, couldBacktrack):
"""Every decision, fixed k or arbitrary, has an enter/exit event
so that a GUI can easily track what LT/consume events are
associated with prediction. You will see a single enter/exit
subrule but multiple enter/exit decision events, one for each
loop iteration.
"""
pass
def exitDecision(self, decisionNumber):
pass
def consumeToken(self, t):
"""An input token was consumed; matched by any kind of element.
Trigger after the token was matched by things like match(), matchAny().
"""
pass
def consumeHiddenToken(self, t):
"""An off-channel input token was consumed.
Trigger after the token was matched by things like match(), matchAny().
(unless of course the hidden token is first stuff in the input stream).
"""
pass
def LT(self, i, t):
"""Somebody (anybody) looked ahead. Note that this actually gets
triggered by both LA and LT calls. The debugger will want to know
which Token object was examined. Like consumeToken, this indicates
what token was seen at that depth. A remote debugger cannot look
ahead into a file it doesn't have so LT events must pass the token
even if the info is redundant.
For tree parsers, if the type is UP or DOWN,
then the ID is not really meaningful as it's fixed--there is
just one UP node and one DOWN navigation node.
"""
pass
def mark(self, marker):
"""The parser is going to look arbitrarily ahead; mark this location,
the token stream's marker is sent in case you need it.
"""
pass
def rewind(self, marker=None):
"""After an arbitrairly long lookahead as with a cyclic DFA (or with
any backtrack), this informs the debugger that stream should be
rewound to the position associated with marker.
"""
pass
def beginBacktrack(self, level):
pass
def endBacktrack(self, level, successful):
pass
def location(self, line, pos):
"""To watch a parser move through the grammar, the parser needs to
inform the debugger what line/charPos it is passing in the grammar.
For now, this does not know how to switch from one grammar to the
other and back for island grammars etc...
This should also allow breakpoints because the debugger can stop
the parser whenever it hits this line/pos.
"""
pass
def recognitionException(self, e):
"""A recognition exception occurred such as NoViableAltException. I made
this a generic event so that I can alter the exception hierachy later
without having to alter all the debug objects.
Upon error, the stack of enter rule/subrule must be properly unwound.
If no viable alt occurs it is within an enter/exit decision, which
also must be rewound. Even the rewind for each mark must be unwount.
In the Java target this is pretty easy using try/finally, if a bit
ugly in the generated code. The rewind is generated in DFA.predict()
actually so no code needs to be generated for that. For languages
w/o this "finally" feature (C++?), the target implementor will have
to build an event stack or something.
Across a socket for remote debugging, only the RecognitionException
data fields are transmitted. The token object or whatever that
caused the problem was the last object referenced by LT. The
immediately preceding LT event should hold the unexpected Token or
char.
Here is a sample event trace for grammar:
b : C ({;}A|B) // {;} is there to prevent A|B becoming a set
| D
;
The sequence for this rule (with no viable alt in the subrule) for
input 'c c' (there are 3 tokens) is:
commence
LT(1)
enterRule b
location 7 1
enter decision 3
LT(1)
exit decision 3
enterAlt1
location 7 5
LT(1)
consumeToken [c/<4>,1:0]
location 7 7
enterSubRule 2
enter decision 2
LT(1)
LT(1)
recognitionException NoViableAltException 2 1 2
exit decision 2
exitSubRule 2
beginResync
LT(1)
consumeToken [c/<4>,1:1]
LT(1)
endResync
LT(-1)
exitRule b
terminate
"""
pass
def beginResync(self):
"""Indicates the recognizer is about to consume tokens to resynchronize
the parser. Any consume events from here until the recovered event
are not part of the parse--they are dead tokens.
"""
pass
def endResync(self):
"""Indicates that the recognizer has finished consuming tokens in order
to resychronize. There may be multiple beginResync/endResync pairs
before the recognizer comes out of errorRecovery mode (in which
multiple errors are suppressed). This will be useful
in a gui where you want to probably grey out tokens that are consumed
but not matched to anything in grammar. Anything between
a beginResync/endResync pair was tossed out by the parser.
"""
pass
def semanticPredicate(self, result, predicate):
"""A semantic predicate was evaluate with this result and action text"""
pass
def commence(self):
"""Announce that parsing has begun. Not technically useful except for
sending events over a socket. A GUI for example will launch a thread
to connect and communicate with a remote parser. The thread will want
to notify the GUI when a connection is made. ANTLR parsers
trigger this upon entry to the first rule (the ruleLevel is used to
figure this out).
"""
pass
def terminate(self):
"""Parsing is over; successfully or not. Mostly useful for telling
remote debugging listeners that it's time to quit. When the rule
invocation level goes to zero at the end of a rule, we are done
parsing.
"""
pass
## T r e e P a r s i n g
def consumeNode(self, t):
"""Input for a tree parser is an AST, but we know nothing for sure
about a node except its type and text (obtained from the adaptor).
This is the analog of the consumeToken method. Again, the ID is
the hashCode usually of the node so it only works if hashCode is
not implemented. If the type is UP or DOWN, then
the ID is not really meaningful as it's fixed--there is
just one UP node and one DOWN navigation node.
"""
pass
## A S T E v e n t s
def nilNode(self, t):
"""A nil was created (even nil nodes have a unique ID...
they are not "null" per se). As of 4/28/2006, this
seems to be uniquely triggered when starting a new subtree
such as when entering a subrule in automatic mode and when
building a tree in rewrite mode.
If you are receiving this event over a socket via
RemoteDebugEventSocketListener then only t.ID is set.
"""
pass
def errorNode(self, t):
"""Upon syntax error, recognizers bracket the error with an error node
if they are building ASTs.
"""
pass
def createNode(self, node, token=None):
"""Announce a new node built from token elements such as type etc...
If you are receiving this event over a socket via
RemoteDebugEventSocketListener then only t.ID, type, text are
set.
"""
pass
def becomeRoot(self, newRoot, oldRoot):
"""Make a node the new root of an existing root.
Note: the newRootID parameter is possibly different
than the TreeAdaptor.becomeRoot() newRoot parameter.
In our case, it will always be the result of calling
TreeAdaptor.becomeRoot() and not root_n or whatever.
The listener should assume that this event occurs
only when the current subrule (or rule) subtree is
being reset to newRootID.
If you are receiving this event over a socket via
RemoteDebugEventSocketListener then only IDs are set.
@see antlr3.tree.TreeAdaptor.becomeRoot()
"""
pass
def addChild(self, root, child):
"""Make childID a child of rootID.
If you are receiving this event over a socket via
RemoteDebugEventSocketListener then only IDs are set.
@see antlr3.tree.TreeAdaptor.addChild()
"""
pass
def setTokenBoundaries(self, t, tokenStartIndex, tokenStopIndex):
"""Set the token start/stop token index for a subtree root or node.
If you are receiving this event over a socket via
RemoteDebugEventSocketListener then only t.ID is set.
"""
pass
class BlankDebugEventListener(DebugEventListener):
"""A blank listener that does nothing; useful for real classes so
they don't have to have lots of blank methods and are less
sensitive to updates to debug interface.
Note: this class is identical to DebugEventListener and exists purely
for compatibility with Java.
"""
pass
class TraceDebugEventListener(DebugEventListener):
"""A listener that simply records text representations of the events.
Useful for debugging the debugging facility ;)
Subclasses can override the record() method (which defaults to printing to
stdout) to record the events in a different way.
"""
def __init__(self, adaptor=None):
super().__init__()
if adaptor is None:
adaptor = CommonTreeAdaptor()
self.adaptor = adaptor
def record(self, event):
sys.stdout.write(event + '\n')
def enterRule(self, grammarFileName, ruleName):
self.record("enterRule " + ruleName)
def exitRule(self, grammarFileName, ruleName):
self.record("exitRule " + ruleName)
def enterSubRule(self, decisionNumber):
self.record("enterSubRule")
def exitSubRule(self, decisionNumber):
self.record("exitSubRule")
def location(self, line, pos):
self.record("location {}:{}".format(line, pos))
## Tree parsing stuff
def consumeNode(self, t):
self.record("consumeNode {} {} {}".format(
self.adaptor.getUniqueID(t),
self.adaptor.getText(t),
self.adaptor.getType(t)))
def LT(self, i, t):
self.record("LT {} {} {} {}".format(
i,
self.adaptor.getUniqueID(t),
self.adaptor.getText(t),
self.adaptor.getType(t)))
## AST stuff
def nilNode(self, t):
self.record("nilNode {}".format(self.adaptor.getUniqueID(t)))
def createNode(self, t, token=None):
if token is None:
self.record("create {}: {}, {}".format(
self.adaptor.getUniqueID(t),
self.adaptor.getText(t),
self.adaptor.getType(t)))
else:
self.record("create {}: {}".format(
self.adaptor.getUniqueID(t),
token.index))
def becomeRoot(self, newRoot, oldRoot):
self.record("becomeRoot {}, {}".format(
self.adaptor.getUniqueID(newRoot),
self.adaptor.getUniqueID(oldRoot)))
def addChild(self, root, child):
self.record("addChild {}, {}".format(
self.adaptor.getUniqueID(root),
self.adaptor.getUniqueID(child)))
def setTokenBoundaries(self, t, tokenStartIndex, tokenStopIndex):
self.record("setTokenBoundaries {}, {}, {}".format(
self.adaptor.getUniqueID(t),
tokenStartIndex, tokenStopIndex))
class RecordDebugEventListener(TraceDebugEventListener):
"""A listener that records events as strings in an array."""
def __init__(self, adaptor=None):
super().__init__(adaptor)
self.events = []
def record(self, event):
self.events.append(event)
class DebugEventSocketProxy(DebugEventListener):
"""A proxy debug event listener that forwards events over a socket to
a debugger (or any other listener) using a simple text-based protocol;
one event per line. ANTLRWorks listens on server socket with a
RemoteDebugEventSocketListener instance. These two objects must therefore
be kept in sync. New events must be handled on both sides of socket.
"""
DEFAULT_DEBUGGER_PORT = 49100
def __init__(self, recognizer, adaptor=None, port=None, debug=None):
super().__init__()
self.grammarFileName = recognizer.getGrammarFileName()
# Almost certainly the recognizer will have adaptor set, but
# we don't know how to cast it (Parser or TreeParser) to get
# the adaptor field. Must be set with a constructor. :(
self.adaptor = adaptor
self.port = port or self.DEFAULT_DEBUGGER_PORT
self.debug = debug
self.socket = None
self.connection = None
self.input = None
self.output = None
def log(self, msg):
if self.debug:
self.debug.write(msg + '\n')
def handshake(self):
if self.socket is None:
# create listening socket
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(('', self.port))
self.socket.listen(1)
self.log("Waiting for incoming connection on port {}".format(self.port))
# wait for an incoming connection
self.connection, addr = self.socket.accept()
self.log("Accepted connection from {}:{}".format(addr[0], addr[1]))
self.connection.setblocking(1)
self.connection.setsockopt(socket.SOL_TCP, socket.TCP_NODELAY, 1)
self.output = self.connection.makefile('w', 1)
self.input = self.connection.makefile('r', 1)
self.write("ANTLR {}".format(self.PROTOCOL_VERSION))
self.write('grammar "{}"'.format(self.grammarFileName))
self.ack()
def write(self, msg):
self.log("> {}".format(msg))
self.output.write("{}\n".format(msg))
self.output.flush()
def ack(self):
t = self.input.readline()
self.log("< {}".format(t.rstrip()))
def transmit(self, event):
self.write(event)
self.ack()
def commence(self):
# don't bother sending event; listener will trigger upon connection
pass
def terminate(self):
self.transmit("terminate")
self.output.close()
self.input.close()
self.connection.close()
self.socket.close()
def enterRule(self, grammarFileName, ruleName):
self.transmit("enterRule\t{}\t{}".format(grammarFileName, ruleName))
def enterAlt(self, alt):
self.transmit("enterAlt\t{}".format(alt))
def exitRule(self, grammarFileName, ruleName):
self.transmit("exitRule\t{}\t{}".format(grammarFileName, ruleName))
def enterSubRule(self, decisionNumber):
self.transmit("enterSubRule\t{}".format(decisionNumber))
def exitSubRule(self, decisionNumber):
self.transmit("exitSubRule\t{}".format(decisionNumber))
def enterDecision(self, decisionNumber, couldBacktrack):
self.transmit(
"enterDecision\t{}\t{:d}".format(decisionNumber, couldBacktrack))
def exitDecision(self, decisionNumber):
self.transmit("exitDecision\t{}".format(decisionNumber))
def consumeToken(self, t):
self.transmit("consumeToken\t{}".format(self.serializeToken(t)))
def consumeHiddenToken(self, t):
self.transmit("consumeHiddenToken\t{}".format(self.serializeToken(t)))
def LT(self, i, o):
if isinstance(o, Tree):
return self.LT_tree(i, o)
return self.LT_token(i, o)
def LT_token(self, i, t):
if t is not None:
self.transmit("LT\t{}\t{}".format(i, self.serializeToken(t)))
def mark(self, i):
self.transmit("mark\t{}".format(i))
def rewind(self, i=None):
if i is not None:
self.transmit("rewind\t{}".format(i))
else:
self.transmit("rewind")
def beginBacktrack(self, level):
self.transmit("beginBacktrack\t{}".format(level))
def endBacktrack(self, level, successful):
self.transmit("endBacktrack\t{}\t{}".format(
level, '1' if successful else '0'))
def location(self, line, pos):
self.transmit("location\t{}\t{}".format(line, pos))
def recognitionException(self, exc):
self.transmit('\t'.join([
"exception",
exc.__class__.__name__,
str(int(exc.index)),
str(int(exc.line)),
str(int(exc.charPositionInLine))]))
def beginResync(self):
self.transmit("beginResync")
def endResync(self):
self.transmit("endResync")
def semanticPredicate(self, result, predicate):
self.transmit('\t'.join([
"semanticPredicate",
str(int(result)),
self.escapeNewlines(predicate)]))
## A S T P a r s i n g E v e n t s
def consumeNode(self, t):
FIXME(31)
# StringBuffer buf = new StringBuffer(50);
# buf.append("consumeNode");
# serializeNode(buf, t);
# transmit(buf.toString());
def LT_tree(self, i, t):
FIXME(34)
# int ID = adaptor.getUniqueID(t);
# String text = adaptor.getText(t);
# int type = adaptor.getType(t);
# StringBuffer buf = new StringBuffer(50);
# buf.append("LN\t"); // lookahead node; distinguish from LT in protocol
# buf.append(i);
# serializeNode(buf, t);
# transmit(buf.toString());
def serializeNode(self, buf, t):
FIXME(33)
# int ID = adaptor.getUniqueID(t);
# String text = adaptor.getText(t);
# int type = adaptor.getType(t);
# buf.append("\t");
# buf.append(ID);
# buf.append("\t");
# buf.append(type);
# Token token = adaptor.getToken(t);
# int line = -1;
# int pos = -1;
# if ( token!=null ) {
# line = token.getLine();
# pos = token.getCharPositionInLine();
# }
# buf.append("\t");
# buf.append(line);
# buf.append("\t");
# buf.append(pos);
# int tokenIndex = adaptor.getTokenStartIndex(t);
# buf.append("\t");
# buf.append(tokenIndex);
# serializeText(buf, text);
## A S T E v e n t s
def nilNode(self, t):
self.transmit("nilNode\t{}".format(self.adaptor.getUniqueID(t)))
def errorNode(self, t):
self.transmit('errorNode\t{}\t{}\t"{}'.format(
self.adaptor.getUniqueID(t),
INVALID_TOKEN_TYPE,
self.escapeNewlines(t.toString())))
def createNode(self, node, token=None):
if token is not None:
self.transmit("createNode\t{}\t{}".format(
self.adaptor.getUniqueID(node),
token.index))
else:
self.transmit('createNodeFromTokenElements\t{}\t{}\t"{}'.format(
self.adaptor.getUniqueID(node),
self.adaptor.getType(node),
self.adaptor.getText(node)))
def becomeRoot(self, newRoot, oldRoot):
self.transmit("becomeRoot\t{}\t{}".format(
self.adaptor.getUniqueID(newRoot),
self.adaptor.getUniqueID(oldRoot)))
def addChild(self, root, child):
self.transmit("addChild\t{}\t{}".format(
self.adaptor.getUniqueID(root),
self.adaptor.getUniqueID(child)))
def setTokenBoundaries(self, t, tokenStartIndex, tokenStopIndex):
self.transmit("setTokenBoundaries\t{}\t{}\t{}".format(
self.adaptor.getUniqueID(t),
tokenStartIndex, tokenStopIndex))
## support
def setTreeAdaptor(self, adaptor):
self.adaptor = adaptor
def getTreeAdaptor(self):
return self.adaptor
def serializeToken(self, t):
buf = [str(int(t.index)),
str(int(t.type)),
str(int(t.channel)),
str(int(t.line or 0)),
str(int(t.charPositionInLine or 0)),
'"' + self.escapeNewlines(t.text)]
return '\t'.join(buf)
def escapeNewlines(self, txt):
if txt is None:
return ''
txt = txt.replace("%","%25") # escape all escape char ;)
txt = txt.replace("\n","%0A") # escape \n
txt = txt.replace("\r","%0D") # escape \r
return txt