C++程序  |  451行  |  15.26 KB

/* -----------------------------------------------------------------------------
Software License for The Fraunhofer FDK AAC Codec Library for Android

© Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
Forschung e.V. All rights reserved.

 1.    INTRODUCTION
The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
scheme for digital audio. This FDK AAC Codec software is intended to be used on
a wide variety of Android devices.

AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
general perceptual audio codecs. AAC-ELD is considered the best-performing
full-bandwidth communications codec by independent studies and is widely
deployed. AAC has been standardized by ISO and IEC as part of the MPEG
specifications.

Patent licenses for necessary patent claims for the FDK AAC Codec (including
those of Fraunhofer) may be obtained through Via Licensing
(www.vialicensing.com) or through the respective patent owners individually for
the purpose of encoding or decoding bit streams in products that are compliant
with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
Android devices already license these patent claims through Via Licensing or
directly from the patent owners, and therefore FDK AAC Codec software may
already be covered under those patent licenses when it is used for those
licensed purposes only.

Commercially-licensed AAC software libraries, including floating-point versions
with enhanced sound quality, are also available from Fraunhofer. Users are
encouraged to check the Fraunhofer website for additional applications
information and documentation.

2.    COPYRIGHT LICENSE

Redistribution and use in source and binary forms, with or without modification,
are permitted without payment of copyright license fees provided that you
satisfy the following conditions:

You must retain the complete text of this software license in redistributions of
the FDK AAC Codec or your modifications thereto in source code form.

You must retain the complete text of this software license in the documentation
and/or other materials provided with redistributions of the FDK AAC Codec or
your modifications thereto in binary form. You must make available free of
charge copies of the complete source code of the FDK AAC Codec and your
modifications thereto to recipients of copies in binary form.

The name of Fraunhofer may not be used to endorse or promote products derived
from this library without prior written permission.

You may not charge copyright license fees for anyone to use, copy or distribute
the FDK AAC Codec software or your modifications thereto.

Your modified versions of the FDK AAC Codec must carry prominent notices stating
that you changed the software and the date of any change. For modified versions
of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
AAC Codec Library for Android."

3.    NO PATENT LICENSE

NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
Fraunhofer provides no warranty of patent non-infringement with respect to this
software.

You may use this FDK AAC Codec software or modifications thereto only for
purposes that are authorized by appropriate patent licenses.

4.    DISCLAIMER

This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
or consequential damages, including but not limited to procurement of substitute
goods or services; loss of use, data, or profits, or business interruption,
however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence), arising in any way out of the use of
this software, even if advised of the possibility of such damage.

5.    CONTACT INFORMATION

Fraunhofer Institute for Integrated Circuits IIS
Attention: Audio and Multimedia Departments - FDK AAC LL
Am Wolfsmantel 33
91058 Erlangen, Germany

www.iis.fraunhofer.de/amm
amm-info@iis.fraunhofer.de
----------------------------------------------------------------------------- */

/*********************** MPEG surround encoder library *************************

   Author(s):   Josef Hoepfl

   Description: Encoder Library Interface
                vector functions

*******************************************************************************/

/*****************************************************************************
\file
This file contains vector functions
******************************************************************************/

/* Includes ******************************************************************/
#include "sacenc_vectorfunctions.h"

/* Defines *******************************************************************/

/* Data Types ****************************************************************/

/* Constants *****************************************************************/

/* Function / Class Declarations *********************************************/

/* Function / Class Definition ***********************************************/

FIXP_DBL sumUpCplxPow2(const FIXP_DPK *const x, const INT scaleMode,
                       const INT inScaleFactor, INT *const outScaleFactor,
                       const INT n) {
  int i, cs;

  if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
    /* calculate headroom */
    FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
    for (i = 0; i < n; i++) {
      maxVal |= fAbs(x[i].v.re);
      maxVal |= fAbs(x[i].v.im);
    }
    cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
  } else {
    cs = inScaleFactor;
  }

  /* consider scaling of energy and scaling in fPow2Div2 and addition */
  *outScaleFactor = 2 * cs + 2;

  /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
   * (DFRACT_BITS-1) */
  cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));

  /* sum up complex energy samples */
  FIXP_DBL re, im, sum;

  re = im = sum = FL2FXCONST_DBL(0.0);
  if (cs < 0) {
    cs = -cs;
    for (i = 0; i < n; i++) {
      re += fPow2Div2(x[i].v.re << cs);
      im += fPow2Div2(x[i].v.im << cs);
    }
  } else {
    cs = 2 * cs;
    for (i = 0; i < n; i++) {
      re += fPow2Div2(x[i].v.re) >> cs;
      im += fPow2Div2(x[i].v.im) >> cs;
    }
  }

  sum = (re >> 1) + (im >> 1);

  return (sum);
}

FIXP_DBL sumUpCplxPow2Dim2(const FIXP_DPK *const *const x, const INT scaleMode,
                           const INT inScaleFactor, INT *const outScaleFactor,
                           const INT sDim1, const INT nDim1, const INT sDim2,
                           const INT nDim2) {
  int i, j, cs;

  if (scaleMode == SUM_UP_DYNAMIC_SCALE) {
    /* calculate headroom */
    FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        maxVal |= fAbs(x[i][j].v.re);
        maxVal |= fAbs(x[i][j].v.im);
      }
    }
    cs = inScaleFactor - fixMax(0, CntLeadingZeros(maxVal) - 1);
  } else {
    cs = inScaleFactor;
  }

  /* consider scaling of energy and scaling in fPow2Div2 and addition */
  *outScaleFactor = 2 * cs + 2;

  /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
   * (DFRACT_BITS-1) */
  cs = fixMax(fixMin(cs, DFRACT_BITS - 1), -(DFRACT_BITS - 1));

  /* sum up complex energy samples */
  FIXP_DBL re, im, sum;

  re = im = sum = FL2FXCONST_DBL(0.0);
  if (cs < 0) {
    cs = -cs;
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        re += fPow2Div2(x[i][j].v.re << cs);
        im += fPow2Div2(x[i][j].v.im << cs);
      }
    }
  } else {
    cs = 2 * cs;
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        re += fPow2Div2(x[i][j].v.re) >> cs;
        im += fPow2Div2(x[i][j].v.im) >> cs;
      }
    }
  }

  sum = (re >> 1) + (im >> 1);

  return (sum);
}

void copyCplxVec(FIXP_DPK *const Z, const FIXP_DPK *const X, const INT n) {
  FDKmemmove(Z, X, sizeof(FIXP_DPK) * n);
}

void setCplxVec(FIXP_DPK *const Z, const FIXP_DBL a, const INT n) {
  int i;

  for (i = 0; i < n; i++) {
    Z[i].v.re = a;
    Z[i].v.im = a;
  }
}

void cplx_cplxScalarProduct(FIXP_DPK *const Z, const FIXP_DPK *const *const X,
                            const FIXP_DPK *const *const Y, const INT scaleX,
                            const INT scaleY, INT *const scaleZ,
                            const INT sDim1, const INT nDim1, const INT sDim2,
                            const INT nDim2) {
  int i, j, sx, sy;
  FIXP_DBL xre, yre, xim, yim, re, im;

  /* make sure that the scalefactor is in the range of -(DFRACT_BITS-1), ... ,
   * (DFRACT_BITS-1) */
  sx = fixMax(fixMin(scaleX, DFRACT_BITS - 1), -(DFRACT_BITS - 1));
  sy = fixMax(fixMin(scaleY, DFRACT_BITS - 1), -(DFRACT_BITS - 1));

  /* consider scaling of energy and scaling in fMultDiv2 and shift of result
   * values */
  *scaleZ = sx + sy + 2;

  re = (FIXP_DBL)0;
  im = (FIXP_DBL)0;
  if ((sx < 0) && (sy < 0)) {
    sx = -sx;
    sy = -sy;
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        xre = X[i][j].v.re << sx;
        xim = X[i][j].v.im << sx;
        yre = Y[i][j].v.re << sy;
        yim = Y[i][j].v.im << sy;
        re += fMultDiv2(xre, yre) + fMultDiv2(xim, yim);
        im += fMultDiv2(xim, yre) - fMultDiv2(xre, yim);
      }
    }
  } else if ((sx >= 0) && (sy >= 0)) {
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        xre = X[i][j].v.re;
        xim = X[i][j].v.im;
        yre = Y[i][j].v.re;
        yim = Y[i][j].v.im;
        re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> (sx + sy);
        im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> (sx + sy);
      }
    }
  } else if ((sx < 0) && (sy >= 0)) {
    sx = -sx;
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        xre = X[i][j].v.re << sx;
        xim = X[i][j].v.im << sx;
        yre = Y[i][j].v.re;
        yim = Y[i][j].v.im;
        re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sy;
        im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sy;
      }
    }
  } else {
    sy = -sy;
    for (i = sDim1; i < nDim1; i++) {
      for (j = sDim2; j < nDim2; j++) {
        xre = X[i][j].v.re;
        xim = X[i][j].v.im;
        yre = Y[i][j].v.re << sy;
        yim = Y[i][j].v.im << sy;
        re += (fMultDiv2(xre, yre) + fMultDiv2(xim, yim)) >> sx;
        im += (fMultDiv2(xim, yre) - fMultDiv2(xre, yim)) >> sx;
      }
    }
  }

  Z->v.re = re >> 1;
  Z->v.im = im >> 1;
}

void FDKcalcCorrelationVec(FIXP_DBL *const z, const FIXP_DBL *const pr12,
                           const FIXP_DBL *const p1, const FIXP_DBL *const p2,
                           const INT n) {
  int i, s;
  FIXP_DBL p12, cor;

  /* correlation */
  for (i = 0; i < n; i++) {
    p12 = fMult(p1[i], p2[i]);
    if (p12 > FL2FXCONST_DBL(0.0f)) {
      p12 = invSqrtNorm2(p12, &s);
      cor = fMult(pr12[i], p12);
      z[i] = SATURATE_LEFT_SHIFT(cor, s, DFRACT_BITS);
    } else {
      z[i] = (FIXP_DBL)MAXVAL_DBL;
    }
  }
}

void calcCoherenceVec(FIXP_DBL *const z, const FIXP_DBL *const p12r,
                      const FIXP_DBL *const p12i, const FIXP_DBL *const p1,
                      const FIXP_DBL *const p2, const INT scaleP12,
                      const INT scaleP, const INT n) {
  int i, s, s1, s2;
  FIXP_DBL coh, p12, p12ri;

  for (i = 0; i < n; i++) {
    s2 = fixMin(fixMax(0, CountLeadingBits(p12r[i]) - 1),
                fixMax(0, CountLeadingBits(p12i[i]) - 1));
    p12ri = sqrtFixp(fPow2Div2(p12r[i] << s2) + fPow2Div2(p12i[i] << s2));
    s1 = fixMin(fixMax(0, CountLeadingBits(p1[i]) - 1),
                fixMax(0, CountLeadingBits(p2[i]) - 1));
    p12 = fMultDiv2(p1[i] << s1, p2[i] << s1);

    if (p12 > FL2FXCONST_DBL(0.0f)) {
      p12 = invSqrtNorm2(p12, &s);
      coh = fMult(p12ri, p12);
      s = fixMax(fixMin((scaleP12 - scaleP + s + s1 - s2), DFRACT_BITS - 1),
                 -(DFRACT_BITS - 1));
      if (s < 0) {
        z[i] = coh >> (-s);
      } else {
        z[i] = SATURATE_LEFT_SHIFT(coh, s, DFRACT_BITS);
      }
    } else {
      z[i] = (FIXP_DBL)MAXVAL_DBL;
    }
  }
}

void addWeightedCplxVec(FIXP_DPK *const *const Z, const FIXP_DBL *const a,
                        const FIXP_DPK *const *const X, const FIXP_DBL *const b,
                        const FIXP_DPK *const *const Y, const INT scale,
                        INT *const scaleCh1, const INT scaleCh2,
                        const UCHAR *const pParameterBand2HybridBandOffset,
                        const INT nParameterBands, const INT nTimeSlots,
                        const INT startTimeSlot) {
  int pb, j, i;
  int cs, s1, s2;

  /* determine maximum scale of both channels */
  cs = fixMax(*scaleCh1, scaleCh2);
  s1 = cs - (*scaleCh1);
  s2 = cs - scaleCh2;

  /* scalefactor 1 is updated with common scale of channel 1 and channel2 */
  *scaleCh1 = cs;

  /* scale of a and b; additional scale for fMultDiv2() */
  for (j = 0, pb = 0; pb < nParameterBands; pb++) {
    FIXP_DBL aPb, bPb;
    aPb = a[pb], bPb = b[pb];
    for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
      for (i = startTimeSlot; i < nTimeSlots; i++) {
        Z[j][i].v.re = ((fMultDiv2(aPb, X[j][i].v.re) >> s1) +
                        (fMultDiv2(bPb, Y[j][i].v.re) >> s2))
                       << (scale + 1);
        Z[j][i].v.im = ((fMultDiv2(aPb, X[j][i].v.im) >> s1) +
                        (fMultDiv2(bPb, Y[j][i].v.im) >> s2))
                       << (scale + 1);
      }
    }
  }
}

void FDKcalcPbScaleFactor(const FIXP_DPK *const *const x,
                          const UCHAR *const pParameterBand2HybridBandOffset,
                          INT *const outScaleFactor, const INT startTimeSlot,
                          const INT nTimeSlots, const INT nParamBands) {
  int i, j, pb;

  /* calculate headroom */
  for (j = 0, pb = 0; pb < nParamBands; pb++) {
    FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
    for (; j < pParameterBand2HybridBandOffset[pb]; j++) {
      for (i = startTimeSlot; i < nTimeSlots; i++) {
        maxVal |= fAbs(x[i][j].v.re);
        maxVal |= fAbs(x[i][j].v.im);
      }
    }
    outScaleFactor[pb] = -fixMax(0, CntLeadingZeros(maxVal) - 1);
  }
}

INT FDKcalcScaleFactor(const FIXP_DBL *const x, const FIXP_DBL *const y,
                       const INT n) {
  int i;

  /* calculate headroom */
  FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);
  if (x != NULL) {
    for (i = 0; i < n; i++) {
      maxVal |= fAbs(x[i]);
    }
  }

  if (y != NULL) {
    for (i = 0; i < n; i++) {
      maxVal |= fAbs(y[i]);
    }
  }

  if (maxVal == (FIXP_DBL)0)
    return (-(DFRACT_BITS - 1));
  else
    return (-CountLeadingBits(maxVal));
}

INT FDKcalcScaleFactorDPK(const FIXP_DPK *RESTRICT x, const INT startBand,
                          const INT bands) {
  INT qs, clz;
  FIXP_DBL maxVal = FL2FXCONST_DBL(0.0f);

  for (qs = startBand; qs < bands; qs++) {
    maxVal |= fAbs(x[qs].v.re);
    maxVal |= fAbs(x[qs].v.im);
  }

  clz = -fixMax(0, CntLeadingZeros(maxVal) - 1);

  return (clz);
}