/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% FFFFF X X %
% F X X %
% FFF X %
% F X X %
% F X X %
% %
% %
% MagickCore Image Special Effects Methods %
% %
% Software Design %
% Cristy %
% October 1996 %
% %
% %
% %
% Copyright 1999-2019 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% https://imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "MagickCore/studio.h"
#include "MagickCore/accelerate-private.h"
#include "MagickCore/annotate.h"
#include "MagickCore/artifact.h"
#include "MagickCore/attribute.h"
#include "MagickCore/cache.h"
#include "MagickCore/cache-view.h"
#include "MagickCore/channel.h"
#include "MagickCore/color.h"
#include "MagickCore/color-private.h"
#include "MagickCore/colorspace-private.h"
#include "MagickCore/composite.h"
#include "MagickCore/decorate.h"
#include "MagickCore/distort.h"
#include "MagickCore/draw.h"
#include "MagickCore/effect.h"
#include "MagickCore/enhance.h"
#include "MagickCore/exception.h"
#include "MagickCore/exception-private.h"
#include "MagickCore/fx.h"
#include "MagickCore/fx-private.h"
#include "MagickCore/gem.h"
#include "MagickCore/gem-private.h"
#include "MagickCore/geometry.h"
#include "MagickCore/layer.h"
#include "MagickCore/list.h"
#include "MagickCore/log.h"
#include "MagickCore/image.h"
#include "MagickCore/image-private.h"
#include "MagickCore/magick.h"
#include "MagickCore/memory_.h"
#include "MagickCore/memory-private.h"
#include "MagickCore/monitor.h"
#include "MagickCore/monitor-private.h"
#include "MagickCore/option.h"
#include "MagickCore/pixel.h"
#include "MagickCore/pixel-accessor.h"
#include "MagickCore/property.h"
#include "MagickCore/quantum.h"
#include "MagickCore/quantum-private.h"
#include "MagickCore/random_.h"
#include "MagickCore/random-private.h"
#include "MagickCore/resample.h"
#include "MagickCore/resample-private.h"
#include "MagickCore/resize.h"
#include "MagickCore/resource_.h"
#include "MagickCore/splay-tree.h"
#include "MagickCore/statistic.h"
#include "MagickCore/string_.h"
#include "MagickCore/string-private.h"
#include "MagickCore/thread-private.h"
#include "MagickCore/threshold.h"
#include "MagickCore/transform.h"
#include "MagickCore/transform-private.h"
#include "MagickCore/utility.h"
/*
Define declarations.
*/
#define LeftShiftOperator 0xf5U
#define RightShiftOperator 0xf6U
#define LessThanEqualOperator 0xf7U
#define GreaterThanEqualOperator 0xf8U
#define EqualOperator 0xf9U
#define NotEqualOperator 0xfaU
#define LogicalAndOperator 0xfbU
#define LogicalOrOperator 0xfcU
#define ExponentialNotation 0xfdU
struct _FxInfo
{
const Image
*images;
char
*expression;
FILE
*file;
SplayTreeInfo
*colors,
*symbols;
CacheView
**view;
RandomInfo
*random_info;
ExceptionInfo
*exception;
};
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ A c q u i r e F x I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AcquireFxInfo() allocates the FxInfo structure.
%
% The format of the AcquireFxInfo method is:
%
% FxInfo *AcquireFxInfo(Image *images,const char *expression,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o images: the image sequence.
%
% o expression: the expression.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickPrivate FxInfo *AcquireFxInfo(const Image *images,const char *expression,
ExceptionInfo *exception)
{
char
fx_op[2];
const Image
*next;
FxInfo
*fx_info;
register ssize_t
i;
fx_info=(FxInfo *) AcquireCriticalMemory(sizeof(*fx_info));
(void) memset(fx_info,0,sizeof(*fx_info));
fx_info->exception=AcquireExceptionInfo();
fx_info->images=images;
fx_info->colors=NewSplayTree(CompareSplayTreeString,RelinquishMagickMemory,
RelinquishMagickMemory);
fx_info->symbols=NewSplayTree(CompareSplayTreeString,RelinquishMagickMemory,
RelinquishMagickMemory);
fx_info->view=(CacheView **) AcquireQuantumMemory(GetImageListLength(
fx_info->images),sizeof(*fx_info->view));
if (fx_info->view == (CacheView **) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
i=0;
next=GetFirstImageInList(fx_info->images);
for ( ; next != (Image *) NULL; next=next->next)
{
fx_info->view[i]=AcquireVirtualCacheView(next,exception);
i++;
}
fx_info->random_info=AcquireRandomInfo();
fx_info->expression=ConstantString(expression);
fx_info->file=stderr;
(void) SubstituteString(&fx_info->expression," ",""); /* compact string */
/*
Force right-to-left associativity for unary negation.
*/
(void) SubstituteString(&fx_info->expression,"-","-1.0*");
(void) SubstituteString(&fx_info->expression,"^-1.0*","^-");
(void) SubstituteString(&fx_info->expression,"E-1.0*","E-");
(void) SubstituteString(&fx_info->expression,"e-1.0*","e-");
/*
Convert compound to simple operators.
*/
fx_op[1]='\0';
*fx_op=(char) LeftShiftOperator;
(void) SubstituteString(&fx_info->expression,"<<",fx_op);
*fx_op=(char) RightShiftOperator;
(void) SubstituteString(&fx_info->expression,">>",fx_op);
*fx_op=(char) LessThanEqualOperator;
(void) SubstituteString(&fx_info->expression,"<=",fx_op);
*fx_op=(char) GreaterThanEqualOperator;
(void) SubstituteString(&fx_info->expression,">=",fx_op);
*fx_op=(char) EqualOperator;
(void) SubstituteString(&fx_info->expression,"==",fx_op);
*fx_op=(char) NotEqualOperator;
(void) SubstituteString(&fx_info->expression,"!=",fx_op);
*fx_op=(char) LogicalAndOperator;
(void) SubstituteString(&fx_info->expression,"&&",fx_op);
*fx_op=(char) LogicalOrOperator;
(void) SubstituteString(&fx_info->expression,"||",fx_op);
*fx_op=(char) ExponentialNotation;
(void) SubstituteString(&fx_info->expression,"**",fx_op);
return(fx_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A d d N o i s e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% AddNoiseImage() adds random noise to the image.
%
% The format of the AddNoiseImage method is:
%
% Image *AddNoiseImage(const Image *image,const NoiseType noise_type,
% const double attenuate,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o channel: the channel type.
%
% o noise_type: The type of noise: Uniform, Gaussian, Multiplicative,
% Impulse, Laplacian, or Poisson.
%
% o attenuate: attenuate the random distribution.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *AddNoiseImage(const Image *image,const NoiseType noise_type,
const double attenuate,ExceptionInfo *exception)
{
#define AddNoiseImageTag "AddNoise/Image"
CacheView
*image_view,
*noise_view;
Image
*noise_image;
MagickBooleanType
status;
MagickOffsetType
progress;
RandomInfo
**magick_restrict random_info;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
/*
Initialize noise image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
noise_image=AccelerateAddNoiseImage(image,noise_type,attenuate,exception);
if (noise_image != (Image *) NULL)
return(noise_image);
#endif
noise_image=CloneImage(image,0,0,MagickTrue,exception);
if (noise_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(noise_image,DirectClass,exception) == MagickFalse)
{
noise_image=DestroyImage(noise_image);
return((Image *) NULL);
}
/*
Add noise in each row.
*/
status=MagickTrue;
progress=0;
random_info=AcquireRandomInfoThreadSet();
image_view=AcquireVirtualCacheView(image,exception);
noise_view=AcquireAuthenticCacheView(noise_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,noise_image,image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
MagickBooleanType
sync;
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
PixelTrait noise_traits=GetPixelChannelTraits(noise_image,channel);
if ((traits == UndefinedPixelTrait) ||
(noise_traits == UndefinedPixelTrait))
continue;
if ((noise_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(noise_image,channel,p[i],q);
continue;
}
SetPixelChannel(noise_image,channel,ClampToQuantum(
GenerateDifferentialNoise(random_info[id],p[i],noise_type,attenuate)),
q);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(noise_image);
}
sync=SyncCacheViewAuthenticPixels(noise_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,AddNoiseImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
noise_view=DestroyCacheView(noise_view);
image_view=DestroyCacheView(image_view);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
noise_image=DestroyImage(noise_image);
return(noise_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% B l u e S h i f t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BlueShiftImage() mutes the colors of the image to simulate a scene at
% nighttime in the moonlight.
%
% The format of the BlueShiftImage method is:
%
% Image *BlueShiftImage(const Image *image,const double factor,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o factor: the shift factor.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *BlueShiftImage(const Image *image,const double factor,
ExceptionInfo *exception)
{
#define BlueShiftImageTag "BlueShift/Image"
CacheView
*image_view,
*shift_view;
Image
*shift_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
/*
Allocate blue shift image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
shift_image=CloneImage(image,0,0,MagickTrue,exception);
if (shift_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(shift_image,DirectClass,exception) == MagickFalse)
{
shift_image=DestroyImage(shift_image);
return((Image *) NULL);
}
/*
Blue-shift DirectClass image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
shift_view=AcquireAuthenticCacheView(shift_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,shift_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
PixelInfo
pixel;
Quantum
quantum;
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(shift_view,0,y,shift_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
quantum=GetPixelRed(image,p);
if (GetPixelGreen(image,p) < quantum)
quantum=GetPixelGreen(image,p);
if (GetPixelBlue(image,p) < quantum)
quantum=GetPixelBlue(image,p);
pixel.red=0.5*(GetPixelRed(image,p)+factor*quantum);
pixel.green=0.5*(GetPixelGreen(image,p)+factor*quantum);
pixel.blue=0.5*(GetPixelBlue(image,p)+factor*quantum);
quantum=GetPixelRed(image,p);
if (GetPixelGreen(image,p) > quantum)
quantum=GetPixelGreen(image,p);
if (GetPixelBlue(image,p) > quantum)
quantum=GetPixelBlue(image,p);
pixel.red=0.5*(pixel.red+factor*quantum);
pixel.green=0.5*(pixel.green+factor*quantum);
pixel.blue=0.5*(pixel.blue+factor*quantum);
SetPixelRed(shift_image,ClampToQuantum(pixel.red),q);
SetPixelGreen(shift_image,ClampToQuantum(pixel.green),q);
SetPixelBlue(shift_image,ClampToQuantum(pixel.blue),q);
p+=GetPixelChannels(image);
q+=GetPixelChannels(shift_image);
}
sync=SyncCacheViewAuthenticPixels(shift_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,BlueShiftImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
shift_view=DestroyCacheView(shift_view);
if (status == MagickFalse)
shift_image=DestroyImage(shift_image);
return(shift_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C h a r c o a l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% CharcoalImage() creates a new image that is a copy of an existing one with
% the edge highlighted. It allocates the memory necessary for the new Image
% structure and returns a pointer to the new image.
%
% The format of the CharcoalImage method is:
%
% Image *CharcoalImage(const Image *image,const double radius,
% const double sigma,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *CharcoalImage(const Image *image,const double radius,
const double sigma,ExceptionInfo *exception)
{
Image
*charcoal_image,
*edge_image;
MagickBooleanType
status;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
edge_image=EdgeImage(image,radius,exception);
if (edge_image == (Image *) NULL)
return((Image *) NULL);
charcoal_image=(Image *) NULL;
status=ClampImage(edge_image,exception);
if (status != MagickFalse)
charcoal_image=BlurImage(edge_image,radius,sigma,exception);
edge_image=DestroyImage(edge_image);
if (charcoal_image == (Image *) NULL)
return((Image *) NULL);
status=NormalizeImage(charcoal_image,exception);
if (status != MagickFalse)
status=NegateImage(charcoal_image,MagickFalse,exception);
if (status != MagickFalse)
status=GrayscaleImage(charcoal_image,image->intensity,exception);
if (status == MagickFalse)
charcoal_image=DestroyImage(charcoal_image);
return(charcoal_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o l o r i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ColorizeImage() blends the fill color with each pixel in the image.
% A percentage blend is specified with opacity. Control the application
% of different color components by specifying a different percentage for
% each component (e.g. 90/100/10 is 90% red, 100% green, and 10% blue).
%
% The format of the ColorizeImage method is:
%
% Image *ColorizeImage(const Image *image,const char *blend,
% const PixelInfo *colorize,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o blend: A character string indicating the level of blending as a
% percentage.
%
% o colorize: A color value.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ColorizeImage(const Image *image,const char *blend,
const PixelInfo *colorize,ExceptionInfo *exception)
{
#define ColorizeImageTag "Colorize/Image"
#define Colorize(pixel,blend_percentage,colorize) \
(((pixel)*(100.0-(blend_percentage))+(colorize)*(blend_percentage))/100.0)
CacheView
*image_view;
GeometryInfo
geometry_info;
Image
*colorize_image;
MagickBooleanType
status;
MagickOffsetType
progress;
MagickStatusType
flags;
PixelInfo
blend_percentage;
ssize_t
y;
/*
Allocate colorized image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
colorize_image=CloneImage(image,0,0,MagickTrue,exception);
if (colorize_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(colorize_image,DirectClass,exception) == MagickFalse)
{
colorize_image=DestroyImage(colorize_image);
return((Image *) NULL);
}
if ((IsGrayColorspace(colorize_image->colorspace) != MagickFalse) ||
(IsPixelInfoGray(colorize) != MagickFalse))
(void) SetImageColorspace(colorize_image,sRGBColorspace,exception);
if ((colorize_image->alpha_trait == UndefinedPixelTrait) &&
(colorize->alpha_trait != UndefinedPixelTrait))
(void) SetImageAlpha(colorize_image,OpaqueAlpha,exception);
if (blend == (const char *) NULL)
return(colorize_image);
GetPixelInfo(colorize_image,&blend_percentage);
flags=ParseGeometry(blend,&geometry_info);
blend_percentage.red=geometry_info.rho;
blend_percentage.green=geometry_info.rho;
blend_percentage.blue=geometry_info.rho;
blend_percentage.black=geometry_info.rho;
blend_percentage.alpha=(MagickRealType) TransparentAlpha;
if ((flags & SigmaValue) != 0)
blend_percentage.green=geometry_info.sigma;
if ((flags & XiValue) != 0)
blend_percentage.blue=geometry_info.xi;
if ((flags & PsiValue) != 0)
blend_percentage.alpha=geometry_info.psi;
if (blend_percentage.colorspace == CMYKColorspace)
{
if ((flags & PsiValue) != 0)
blend_percentage.black=geometry_info.psi;
if ((flags & ChiValue) != 0)
blend_percentage.alpha=geometry_info.chi;
}
/*
Colorize DirectClass image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(colorize_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(colorize_image,colorize_image,colorize_image->rows,1)
#endif
for (y=0; y < (ssize_t) colorize_image->rows; y++)
{
MagickBooleanType
sync;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,colorize_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) colorize_image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(colorize_image); i++)
{
PixelTrait traits = GetPixelChannelTraits(colorize_image,
(PixelChannel) i);
if (traits == UndefinedPixelTrait)
continue;
if ((traits & CopyPixelTrait) != 0)
continue;
SetPixelChannel(colorize_image,(PixelChannel) i,ClampToQuantum(
Colorize(q[i],GetPixelInfoChannel(&blend_percentage,(PixelChannel) i),
GetPixelInfoChannel(colorize,(PixelChannel) i))),q);
}
q+=GetPixelChannels(colorize_image);
}
sync=SyncCacheViewAuthenticPixels(image_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ColorizeImageTag,progress,
colorize_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
colorize_image=DestroyImage(colorize_image);
return(colorize_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% C o l o r M a t r i x I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ColorMatrixImage() applies color transformation to an image. This method
% permits saturation changes, hue rotation, luminance to alpha, and various
% other effects. Although variable-sized transformation matrices can be used,
% typically one uses a 5x5 matrix for an RGBA image and a 6x6 for CMYKA
% (or RGBA with offsets). The matrix is similar to those used by Adobe Flash
% except offsets are in column 6 rather than 5 (in support of CMYKA images)
% and offsets are normalized (divide Flash offset by 255).
%
% The format of the ColorMatrixImage method is:
%
% Image *ColorMatrixImage(const Image *image,
% const KernelInfo *color_matrix,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o color_matrix: the color matrix.
%
% o exception: return any errors or warnings in this structure.
%
*/
/* FUTURE: modify to make use of a MagickMatrix Mutliply function
That should be provided in "matrix.c"
(ASIDE: actually distorts should do this too but currently doesn't)
*/
MagickExport Image *ColorMatrixImage(const Image *image,
const KernelInfo *color_matrix,ExceptionInfo *exception)
{
#define ColorMatrixImageTag "ColorMatrix/Image"
CacheView
*color_view,
*image_view;
double
ColorMatrix[6][6] =
{
{ 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 },
{ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 }
};
Image
*color_image;
MagickBooleanType
status;
MagickOffsetType
progress;
register ssize_t
i;
ssize_t
u,
v,
y;
/*
Map given color_matrix, into a 6x6 matrix RGBKA and a constant
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
i=0;
for (v=0; v < (ssize_t) color_matrix->height; v++)
for (u=0; u < (ssize_t) color_matrix->width; u++)
{
if ((v < 6) && (u < 6))
ColorMatrix[v][u]=color_matrix->values[i];
i++;
}
/*
Initialize color image.
*/
color_image=CloneImage(image,0,0,MagickTrue,exception);
if (color_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(color_image,DirectClass,exception) == MagickFalse)
{
color_image=DestroyImage(color_image);
return((Image *) NULL);
}
if (image->debug != MagickFalse)
{
char
format[MagickPathExtent],
*message;
(void) LogMagickEvent(TransformEvent,GetMagickModule(),
" ColorMatrix image with color matrix:");
message=AcquireString("");
for (v=0; v < 6; v++)
{
*message='\0';
(void) FormatLocaleString(format,MagickPathExtent,"%.20g: ",(double) v);
(void) ConcatenateString(&message,format);
for (u=0; u < 6; u++)
{
(void) FormatLocaleString(format,MagickPathExtent,"%+f ",
ColorMatrix[v][u]);
(void) ConcatenateString(&message,format);
}
(void) LogMagickEvent(TransformEvent,GetMagickModule(),"%s",message);
}
message=DestroyString(message);
}
/*
Apply the ColorMatrix to image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
color_view=AcquireAuthenticCacheView(color_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,color_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
PixelInfo
pixel;
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(color_view,0,y,color_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
GetPixelInfo(image,&pixel);
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
v;
size_t
height;
GetPixelInfoPixel(image,p,&pixel);
height=color_matrix->height > 6 ? 6UL : color_matrix->height;
for (v=0; v < (ssize_t) height; v++)
{
double
sum;
sum=ColorMatrix[v][0]*GetPixelRed(image,p)+ColorMatrix[v][1]*
GetPixelGreen(image,p)+ColorMatrix[v][2]*GetPixelBlue(image,p);
if (image->colorspace == CMYKColorspace)
sum+=ColorMatrix[v][3]*GetPixelBlack(image,p);
if (image->alpha_trait != UndefinedPixelTrait)
sum+=ColorMatrix[v][4]*GetPixelAlpha(image,p);
sum+=QuantumRange*ColorMatrix[v][5];
switch (v)
{
case 0: pixel.red=sum; break;
case 1: pixel.green=sum; break;
case 2: pixel.blue=sum; break;
case 3: pixel.black=sum; break;
case 4: pixel.alpha=sum; break;
default: break;
}
}
SetPixelViaPixelInfo(color_image,&pixel,q);
p+=GetPixelChannels(image);
q+=GetPixelChannels(color_image);
}
if (SyncCacheViewAuthenticPixels(color_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,ColorMatrixImageTag,progress,
image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
color_view=DestroyCacheView(color_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
color_image=DestroyImage(color_image);
return(color_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ D e s t r o y F x I n f o %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DestroyFxInfo() deallocates memory associated with an FxInfo structure.
%
% The format of the DestroyFxInfo method is:
%
% ImageInfo *DestroyFxInfo(ImageInfo *fx_info)
%
% A description of each parameter follows:
%
% o fx_info: the fx info.
%
*/
MagickPrivate FxInfo *DestroyFxInfo(FxInfo *fx_info)
{
register ssize_t
i;
fx_info->exception=DestroyExceptionInfo(fx_info->exception);
fx_info->expression=DestroyString(fx_info->expression);
fx_info->symbols=DestroySplayTree(fx_info->symbols);
fx_info->colors=DestroySplayTree(fx_info->colors);
for (i=(ssize_t) GetImageListLength(fx_info->images)-1; i >= 0; i--)
fx_info->view[i]=DestroyCacheView(fx_info->view[i]);
fx_info->view=(CacheView **) RelinquishMagickMemory(fx_info->view);
fx_info->random_info=DestroyRandomInfo(fx_info->random_info);
fx_info=(FxInfo *) RelinquishMagickMemory(fx_info);
return(fx_info);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
+ F x E v a l u a t e C h a n n e l E x p r e s s i o n %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% FxEvaluateChannelExpression() evaluates an expression and returns the
% results.
%
% The format of the FxEvaluateExpression method is:
%
% double FxEvaluateChannelExpression(FxInfo *fx_info,
% const PixelChannel channel,const ssize_t x,const ssize_t y,
% double *alpha,Exceptioninfo *exception)
% double FxEvaluateExpression(FxInfo *fx_info,
% double *alpha,Exceptioninfo *exception)
%
% A description of each parameter follows:
%
% o fx_info: the fx info.
%
% o channel: the channel.
%
% o x,y: the pixel position.
%
% o alpha: the result.
%
% o exception: return any errors or warnings in this structure.
%
*/
static double FxChannelStatistics(FxInfo *fx_info,Image *image,
PixelChannel channel,const char *symbol,ExceptionInfo *exception)
{
ChannelType
channel_mask;
char
key[MagickPathExtent],
statistic[MagickPathExtent];
const char
*value;
register const char
*p;
channel_mask=UndefinedChannel;
for (p=symbol; (*p != '.') && (*p != '\0'); p++) ;
if (*p == '.')
{
ssize_t
option;
option=ParseCommandOption(MagickPixelChannelOptions,MagickTrue,p+1);
if (option >= 0)
{
channel=(PixelChannel) option;
channel_mask=SetPixelChannelMask(image,(ChannelType)
(1UL << channel));
}
}
(void) FormatLocaleString(key,MagickPathExtent,"%p.%.20g.%s",(void *) image,
(double) channel,symbol);
value=(const char *) GetValueFromSplayTree(fx_info->symbols,key);
if (value != (const char *) NULL)
{
if (channel_mask != UndefinedChannel)
(void) SetPixelChannelMask(image,channel_mask);
return(QuantumScale*StringToDouble(value,(char **) NULL));
}
(void) DeleteNodeFromSplayTree(fx_info->symbols,key);
if (LocaleNCompare(symbol,"depth",5) == 0)
{
size_t
depth;
depth=GetImageDepth(image,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",(double)
depth);
}
if (LocaleNCompare(symbol,"kurtosis",8) == 0)
{
double
kurtosis,
skewness;
(void) GetImageKurtosis(image,&kurtosis,&skewness,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",kurtosis);
}
if (LocaleNCompare(symbol,"maxima",6) == 0)
{
double
maxima,
minima;
(void) GetImageRange(image,&minima,&maxima,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",maxima);
}
if (LocaleNCompare(symbol,"mean",4) == 0)
{
double
mean,
standard_deviation;
(void) GetImageMean(image,&mean,&standard_deviation,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",mean);
}
if (LocaleNCompare(symbol,"minima",6) == 0)
{
double
maxima,
minima;
(void) GetImageRange(image,&minima,&maxima,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",minima);
}
if (LocaleNCompare(symbol,"skewness",8) == 0)
{
double
kurtosis,
skewness;
(void) GetImageKurtosis(image,&kurtosis,&skewness,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",skewness);
}
if (LocaleNCompare(symbol,"standard_deviation",18) == 0)
{
double
mean,
standard_deviation;
(void) GetImageMean(image,&mean,&standard_deviation,exception);
(void) FormatLocaleString(statistic,MagickPathExtent,"%.20g",
standard_deviation);
}
if (channel_mask != UndefinedChannel)
(void) SetPixelChannelMask(image,channel_mask);
(void) AddValueToSplayTree(fx_info->symbols,ConstantString(key),
ConstantString(statistic));
return(QuantumScale*StringToDouble(statistic,(char **) NULL));
}
static double
FxEvaluateSubexpression(FxInfo *,const PixelChannel,const ssize_t,
const ssize_t,const char *,const size_t,double *,ExceptionInfo *);
static MagickOffsetType FxGCD(MagickOffsetType alpha,MagickOffsetType beta)
{
if (beta != 0)
return(FxGCD(beta,alpha % beta));
return(alpha);
}
static inline const char *FxSubexpression(const char *expression,
ExceptionInfo *exception)
{
const char
*subexpression;
register ssize_t
level;
level=0;
subexpression=expression;
while ((*subexpression != '\0') &&
((level != 1) || (strchr(")",(int) *subexpression) == (char *) NULL)))
{
if (strchr("(",(int) *subexpression) != (char *) NULL)
level++;
else
if (strchr(")",(int) *subexpression) != (char *) NULL)
level--;
subexpression++;
}
if (*subexpression == '\0')
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnbalancedParenthesis","`%s'",expression);
return(subexpression);
}
static double FxGetSymbol(FxInfo *fx_info,const PixelChannel channel,
const ssize_t x,const ssize_t y,const char *expression,const size_t depth,
ExceptionInfo *exception)
{
char
*q,
symbol[MagickPathExtent];
const char
*p,
*value;
Image
*image;
MagickBooleanType
status;
PixelInfo
pixel;
double
alpha,
beta;
PointInfo
point;
register ssize_t
i;
size_t
level;
p=expression;
i=GetImageIndexInList(fx_info->images);
level=0;
point.x=(double) x;
point.y=(double) y;
if (isalpha((int) ((unsigned char) *(p+1))) == 0)
{
char
*subexpression;
subexpression=AcquireString(expression);
if (strchr("suv",(int) *p) != (char *) NULL)
{
switch (*p)
{
case 's':
default:
{
i=GetImageIndexInList(fx_info->images);
break;
}
case 'u': i=0; break;
case 'v': i=1; break;
}
p++;
if (*p == '[')
{
level++;
q=subexpression;
for (p++; *p != '\0'; )
{
if (*p == '[')
level++;
else
if (*p == ']')
{
level--;
if (level == 0)
break;
}
*q++=(*p++);
}
*q='\0';
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,
depth,&beta,exception);
i=(ssize_t) alpha;
if (*p != '\0')
p++;
}
if (*p == '.')
p++;
}
if ((*p == 'p') && (isalpha((int) ((unsigned char) *(p+1))) == 0))
{
p++;
if (*p == '{')
{
level++;
q=subexpression;
for (p++; *p != '\0'; )
{
if (*p == '{')
level++;
else
if (*p == '}')
{
level--;
if (level == 0)
break;
}
*q++=(*p++);
}
*q='\0';
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,
depth,&beta,exception);
point.x=alpha;
point.y=beta;
if (*p != '\0')
p++;
}
else
if (*p == '[')
{
level++;
q=subexpression;
for (p++; *p != '\0'; )
{
if (*p == '[')
level++;
else
if (*p == ']')
{
level--;
if (level == 0)
break;
}
*q++=(*p++);
}
*q='\0';
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,
depth,&beta,exception);
point.x+=alpha;
point.y+=beta;
if (*p != '\0')
p++;
}
if (*p == '.')
p++;
}
subexpression=DestroyString(subexpression);
}
image=GetImageFromList(fx_info->images,i);
if (image == (Image *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"NoSuchImage","`%s'",expression);
return(0.0);
}
i=GetImageIndexInList(image);
GetPixelInfo(image,&pixel);
status=InterpolatePixelInfo(image,fx_info->view[i],image->interpolate,
point.x,point.y,&pixel,exception);
(void) status;
if ((strlen(p) > 2) && (LocaleCompare(p,"intensity") != 0) &&
(LocaleCompare(p,"luma") != 0) && (LocaleCompare(p,"luminance") != 0) &&
(LocaleCompare(p,"hue") != 0) && (LocaleCompare(p,"saturation") != 0) &&
(LocaleCompare(p,"lightness") != 0))
{
char
name[MagickPathExtent];
(void) CopyMagickString(name,p,MagickPathExtent);
for (q=name+(strlen(name)-1); q > name; q--)
{
if (*q == ')')
break;
if (*q == '.')
{
*q='\0';
break;
}
}
if ((strlen(name) > 2) &&
(GetValueFromSplayTree(fx_info->symbols,name) == (const char *) NULL))
{
PixelInfo
*color;
color=(PixelInfo *) GetValueFromSplayTree(fx_info->colors,name);
if (color != (PixelInfo *) NULL)
{
pixel=(*color);
p+=strlen(name);
}
else
{
MagickBooleanType
status;
status=QueryColorCompliance(name,AllCompliance,&pixel,
fx_info->exception);
if (status != MagickFalse)
{
(void) AddValueToSplayTree(fx_info->colors,ConstantString(
name),ClonePixelInfo(&pixel));
p+=strlen(name);
}
}
}
}
(void) CopyMagickString(symbol,p,MagickPathExtent);
StripString(symbol);
if (*symbol == '\0')
{
switch (channel)
{
case RedPixelChannel: return(QuantumScale*pixel.red);
case GreenPixelChannel: return(QuantumScale*pixel.green);
case BluePixelChannel: return(QuantumScale*pixel.blue);
case BlackPixelChannel:
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ImageError,"ColorSeparatedImageRequired","`%s'",
image->filename);
return(0.0);
}
return(QuantumScale*pixel.black);
}
case AlphaPixelChannel:
{
if (pixel.alpha_trait == UndefinedPixelTrait)
return(1.0);
alpha=(double) (QuantumScale*pixel.alpha);
return(alpha);
}
case CompositePixelChannel:
{
Quantum
quantum_pixel[MaxPixelChannels];
SetPixelViaPixelInfo(image,&pixel,quantum_pixel);
return(QuantumScale*GetPixelIntensity(image,quantum_pixel));
}
case IndexPixelChannel:
return(0.0);
default:
break;
}
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnableToParseExpression","`%s'",p);
return(0.0);
}
switch (*symbol)
{
case 'A':
case 'a':
{
if (LocaleCompare(symbol,"a") == 0)
return((QuantumScale*pixel.alpha));
break;
}
case 'B':
case 'b':
{
if (LocaleCompare(symbol,"b") == 0)
return(QuantumScale*pixel.blue);
break;
}
case 'C':
case 'c':
{
if (LocaleNCompare(symbol,"channel",7) == 0)
{
GeometryInfo
channel_info;
MagickStatusType
flags;
flags=ParseGeometry(symbol+7,&channel_info);
if (image->colorspace == CMYKColorspace)
switch (channel)
{
case CyanPixelChannel:
{
if ((flags & RhoValue) == 0)
return(0.0);
return(channel_info.rho);
}
case MagentaPixelChannel:
{
if ((flags & SigmaValue) == 0)
return(0.0);
return(channel_info.sigma);
}
case YellowPixelChannel:
{
if ((flags & XiValue) == 0)
return(0.0);
return(channel_info.xi);
}
case BlackPixelChannel:
{
if ((flags & PsiValue) == 0)
return(0.0);
return(channel_info.psi);
}
case AlphaPixelChannel:
{
if ((flags & ChiValue) == 0)
return(0.0);
return(channel_info.chi);
}
default:
return(0.0);
}
switch (channel)
{
case RedPixelChannel:
{
if ((flags & RhoValue) == 0)
return(0.0);
return(channel_info.rho);
}
case GreenPixelChannel:
{
if ((flags & SigmaValue) == 0)
return(0.0);
return(channel_info.sigma);
}
case BluePixelChannel:
{
if ((flags & XiValue) == 0)
return(0.0);
return(channel_info.xi);
}
case BlackPixelChannel:
{
if ((flags & ChiValue) == 0)
return(0.0);
return(channel_info.chi);
}
case AlphaPixelChannel:
{
if ((flags & PsiValue) == 0)
return(0.0);
return(channel_info.psi);
}
default:
return(0.0);
}
}
if (LocaleCompare(symbol,"c") == 0)
return(QuantumScale*pixel.red);
break;
}
case 'D':
case 'd':
{
if (LocaleNCompare(symbol,"depth",5) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
break;
}
case 'E':
case 'e':
{
if (LocaleCompare(symbol,"extent") == 0)
{
if (image->extent != 0)
return((double) image->extent);
return((double) GetBlobSize(image));
}
break;
}
case 'G':
case 'g':
{
if (LocaleCompare(symbol,"g") == 0)
return(QuantumScale*pixel.green);
break;
}
case 'K':
case 'k':
{
if (LocaleNCompare(symbol,"kurtosis",8) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
if (LocaleCompare(symbol,"k") == 0)
{
if (image->colorspace != CMYKColorspace)
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"ColorSeparatedImageRequired","`%s'",
image->filename);
return(0.0);
}
return(QuantumScale*pixel.black);
}
break;
}
case 'H':
case 'h':
{
if (LocaleCompare(symbol,"h") == 0)
return((double) image->rows);
if (LocaleCompare(symbol,"hue") == 0)
{
double
hue,
lightness,
saturation;
ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation,
&lightness);
return(hue);
}
break;
}
case 'I':
case 'i':
{
if ((LocaleCompare(symbol,"image.depth") == 0) ||
(LocaleCompare(symbol,"image.minima") == 0) ||
(LocaleCompare(symbol,"image.maxima") == 0) ||
(LocaleCompare(symbol,"image.mean") == 0) ||
(LocaleCompare(symbol,"image.kurtosis") == 0) ||
(LocaleCompare(symbol,"image.skewness") == 0) ||
(LocaleCompare(symbol,"image.standard_deviation") == 0))
return(FxChannelStatistics(fx_info,image,channel,symbol+6,exception));
if (LocaleCompare(symbol,"image.resolution.x") == 0)
return(image->resolution.x);
if (LocaleCompare(symbol,"image.resolution.y") == 0)
return(image->resolution.y);
if (LocaleCompare(symbol,"intensity") == 0)
{
Quantum
quantum_pixel[MaxPixelChannels];
SetPixelViaPixelInfo(image,&pixel,quantum_pixel);
return(QuantumScale*GetPixelIntensity(image,quantum_pixel));
}
if (LocaleCompare(symbol,"i") == 0)
return((double) x);
break;
}
case 'J':
case 'j':
{
if (LocaleCompare(symbol,"j") == 0)
return((double) y);
break;
}
case 'L':
case 'l':
{
if (LocaleCompare(symbol,"lightness") == 0)
{
double
hue,
lightness,
saturation;
ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation,
&lightness);
return(lightness);
}
if (LocaleCompare(symbol,"luma") == 0)
{
double
luma;
luma=0.212656*pixel.red+0.715158*pixel.green+0.072186*pixel.blue;
return(QuantumScale*luma);
}
if (LocaleCompare(symbol,"luminance") == 0)
{
double
luminence;
luminence=0.212656*pixel.red+0.715158*pixel.green+0.072186*pixel.blue;
return(QuantumScale*luminence);
}
break;
}
case 'M':
case 'm':
{
if (LocaleNCompare(symbol,"maxima",6) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
if (LocaleNCompare(symbol,"mean",4) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
if (LocaleNCompare(symbol,"minima",6) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
if (LocaleCompare(symbol,"m") == 0)
return(QuantumScale*pixel.green);
break;
}
case 'N':
case 'n':
{
if (LocaleCompare(symbol,"n") == 0)
return((double) GetImageListLength(fx_info->images));
break;
}
case 'O':
case 'o':
{
if (LocaleCompare(symbol,"o") == 0)
return(QuantumScale*pixel.alpha);
break;
}
case 'P':
case 'p':
{
if (LocaleCompare(symbol,"page.height") == 0)
return((double) image->page.height);
if (LocaleCompare(symbol,"page.width") == 0)
return((double) image->page.width);
if (LocaleCompare(symbol,"page.x") == 0)
return((double) image->page.x);
if (LocaleCompare(symbol,"page.y") == 0)
return((double) image->page.y);
if (LocaleCompare(symbol,"printsize.x") == 0)
return(PerceptibleReciprocal(image->resolution.x)*image->columns);
if (LocaleCompare(symbol,"printsize.y") == 0)
return(PerceptibleReciprocal(image->resolution.y)*image->rows);
break;
}
case 'Q':
case 'q':
{
if (LocaleCompare(symbol,"quality") == 0)
return((double) image->quality);
break;
}
case 'R':
case 'r':
{
if (LocaleCompare(symbol,"resolution.x") == 0)
return(image->resolution.x);
if (LocaleCompare(symbol,"resolution.y") == 0)
return(image->resolution.y);
if (LocaleCompare(symbol,"r") == 0)
return(QuantumScale*pixel.red);
break;
}
case 'S':
case 's':
{
if (LocaleCompare(symbol,"saturation") == 0)
{
double
hue,
lightness,
saturation;
ConvertRGBToHSL(pixel.red,pixel.green,pixel.blue,&hue,&saturation,
&lightness);
return(saturation);
}
if (LocaleNCompare(symbol,"skewness",8) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
if (LocaleNCompare(symbol,"standard_deviation",18) == 0)
return(FxChannelStatistics(fx_info,image,channel,symbol,exception));
break;
}
case 'T':
case 't':
{
if (LocaleCompare(symbol,"t") == 0)
return((double) GetImageIndexInList(fx_info->images));
break;
}
case 'W':
case 'w':
{
if (LocaleCompare(symbol,"w") == 0)
return((double) image->columns);
break;
}
case 'Y':
case 'y':
{
if (LocaleCompare(symbol,"y") == 0)
return(QuantumScale*pixel.blue);
break;
}
case 'Z':
case 'z':
{
if (LocaleCompare(symbol,"z") == 0)
return((double) GetImageDepth(image,fx_info->exception));
break;
}
default:
break;
}
value=(const char *) GetValueFromSplayTree(fx_info->symbols,symbol);
if (value != (const char *) NULL)
return(StringToDouble(value,(char **) NULL));
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnableToParseExpression","`%s'",symbol);
return(0.0);
}
static const char *FxOperatorPrecedence(const char *expression,
ExceptionInfo *exception)
{
typedef enum
{
UndefinedPrecedence,
NullPrecedence,
BitwiseComplementPrecedence,
ExponentPrecedence,
ExponentialNotationPrecedence,
MultiplyPrecedence,
AdditionPrecedence,
ShiftPrecedence,
RelationalPrecedence,
EquivalencyPrecedence,
BitwiseAndPrecedence,
BitwiseOrPrecedence,
LogicalAndPrecedence,
LogicalOrPrecedence,
TernaryPrecedence,
AssignmentPrecedence,
CommaPrecedence,
SeparatorPrecedence
} FxPrecedence;
FxPrecedence
precedence,
target;
register const char
*subexpression;
register int
c;
size_t
level;
c=(-1);
level=0;
subexpression=(const char *) NULL;
target=NullPrecedence;
while ((c != '\0') && (*expression != '\0'))
{
precedence=UndefinedPrecedence;
if ((isspace((int) ((unsigned char) *expression)) != 0) || (c == (int) '@'))
{
expression++;
continue;
}
switch (*expression)
{
case 'A':
case 'a':
{
#if defined(MAGICKCORE_HAVE_ACOSH)
if (LocaleNCompare(expression,"acosh",5) == 0)
{
expression+=5;
break;
}
#endif
#if defined(MAGICKCORE_HAVE_ASINH)
if (LocaleNCompare(expression,"asinh",5) == 0)
{
expression+=5;
break;
}
#endif
#if defined(MAGICKCORE_HAVE_ATANH)
if (LocaleNCompare(expression,"atanh",5) == 0)
{
expression+=5;
break;
}
#endif
if (LocaleNCompare(expression,"atan2",5) == 0)
{
expression+=5;
break;
}
break;
}
case 'E':
case 'e':
{
if ((isdigit(c) != 0) &&
((LocaleNCompare(expression,"E+",2) == 0) ||
(LocaleNCompare(expression,"E-",2) == 0)))
{
expression+=2; /* scientific notation */
break;
}
}
case 'J':
case 'j':
{
if ((LocaleNCompare(expression,"j0",2) == 0) ||
(LocaleNCompare(expression,"j1",2) == 0))
{
expression+=2;
break;
}
break;
}
case '#':
{
while (isxdigit((int) ((unsigned char) *(expression+1))) != 0)
expression++;
break;
}
default:
break;
}
if ((c == (int) '{') || (c == (int) '['))
level++;
else
if ((c == (int) '}') || (c == (int) ']'))
level--;
if (level == 0)
switch ((unsigned char) *expression)
{
case '~':
case '!':
{
precedence=BitwiseComplementPrecedence;
break;
}
case '^':
case '@':
{
precedence=ExponentPrecedence;
break;
}
default:
{
if (((c != 0) && ((isdigit(c) != 0) ||
(strchr(")",c) != (char *) NULL))) &&
(((islower((int) ((unsigned char) *expression)) != 0) ||
(strchr("(",(int) ((unsigned char) *expression)) != (char *) NULL)) ||
((isdigit(c) == 0) &&
(isdigit((int) ((unsigned char) *expression)) != 0))) &&
(strchr("xy",(int) ((unsigned char) *expression)) == (char *) NULL))
precedence=MultiplyPrecedence;
break;
}
case '*':
case '/':
case '%':
{
precedence=MultiplyPrecedence;
break;
}
case '+':
case '-':
{
if ((strchr("(+-/*%:&^|<>~,",c) == (char *) NULL) ||
(isalpha(c) != 0))
precedence=AdditionPrecedence;
break;
}
case LeftShiftOperator:
case RightShiftOperator:
{
precedence=ShiftPrecedence;
break;
}
case '<':
case LessThanEqualOperator:
case GreaterThanEqualOperator:
case '>':
{
precedence=RelationalPrecedence;
break;
}
case EqualOperator:
case NotEqualOperator:
{
precedence=EquivalencyPrecedence;
break;
}
case '&':
{
precedence=BitwiseAndPrecedence;
break;
}
case '|':
{
precedence=BitwiseOrPrecedence;
break;
}
case LogicalAndOperator:
{
precedence=LogicalAndPrecedence;
break;
}
case LogicalOrOperator:
{
precedence=LogicalOrPrecedence;
break;
}
case ExponentialNotation:
{
precedence=ExponentialNotationPrecedence;
break;
}
case ':':
case '?':
{
precedence=TernaryPrecedence;
break;
}
case '=':
{
precedence=AssignmentPrecedence;
break;
}
case ',':
{
precedence=CommaPrecedence;
break;
}
case ';':
{
precedence=SeparatorPrecedence;
break;
}
}
if ((precedence == BitwiseComplementPrecedence) ||
(precedence == TernaryPrecedence) ||
(precedence == AssignmentPrecedence))
{
if (precedence > target)
{
/*
Right-to-left associativity.
*/
target=precedence;
subexpression=expression;
}
}
else
if (precedence >= target)
{
/*
Left-to-right associativity.
*/
target=precedence;
subexpression=expression;
}
if (strchr("(",(int) *expression) != (char *) NULL)
expression=FxSubexpression(expression,exception);
c=(int) (*expression++);
}
return(subexpression);
}
static double FxEvaluateSubexpression(FxInfo *fx_info,
const PixelChannel channel,const ssize_t x,const ssize_t y,
const char *expression,const size_t depth,double *beta,
ExceptionInfo *exception)
{
#define FxMaxParenthesisDepth 58
#define FxMaxSubexpressionDepth 200
#define FxReturn(value) \
{ \
subexpression=DestroyString(subexpression); \
return(value); \
}
char
*q,
*subexpression;
double
alpha,
gamma;
register const char
*p;
*beta=0.0;
subexpression=AcquireString(expression);
*subexpression='\0';
if (depth > FxMaxSubexpressionDepth)
{
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"UnableToParseExpression","`%s'",expression);
FxReturn(0.0);
}
if (exception->severity >= ErrorException)
FxReturn(0.0);
while (isspace((int) ((unsigned char) *expression)) != 0)
expression++;
if (*expression == '\0')
FxReturn(0.0);
p=FxOperatorPrecedence(expression,exception);
if (p != (const char *) NULL)
{
(void) CopyMagickString(subexpression,expression,(size_t)
(p-expression+1));
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,depth+1,
beta,exception);
switch ((unsigned char) *p)
{
case '~':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
*beta=(double) (~(size_t) *beta);
FxReturn(*beta);
}
case '!':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(*beta == 0.0 ? 1.0 : 0.0);
}
case '^':
{
*beta=pow(alpha,FxEvaluateSubexpression(fx_info,channel,x,y,++p,
depth+1,beta,exception));
FxReturn(*beta);
}
case '*':
case ExponentialNotation:
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha*(*beta));
}
case '/':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
if (*beta == 0.0)
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"DivideByZero","`%s'",expression);
FxReturn(0.0);
}
FxReturn(alpha/(*beta));
}
case '%':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
*beta=fabs(floor((*beta)+0.5));
if (*beta == 0.0)
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"DivideByZero","`%s'",expression);
FxReturn(0.0);
}
FxReturn(fmod(alpha,*beta));
}
case '+':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha+(*beta));
}
case '-':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha-(*beta));
}
case LeftShiftOperator:
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
if ((size_t) (gamma+0.5) >= (8*sizeof(size_t)))
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"ShiftCountOverflow","`%s'",subexpression);
FxReturn(0.0);
}
*beta=(double) ((size_t) (alpha+0.5) << (size_t) (gamma+0.5));
FxReturn(*beta);
}
case RightShiftOperator:
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
if ((size_t) (gamma+0.5) >= (8*sizeof(size_t)))
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"ShiftCountOverflow","`%s'",subexpression);
FxReturn(0.0);
}
*beta=(double) ((size_t) (alpha+0.5) >> (size_t) (gamma+0.5));
FxReturn(*beta);
}
case '<':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha < *beta ? 1.0 : 0.0);
}
case LessThanEqualOperator:
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha <= *beta ? 1.0 : 0.0);
}
case '>':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha > *beta ? 1.0 : 0.0);
}
case GreaterThanEqualOperator:
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha >= *beta ? 1.0 : 0.0);
}
case EqualOperator:
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(fabs(alpha-(*beta)) < MagickEpsilon ? 1.0 : 0.0);
}
case NotEqualOperator:
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(fabs(alpha-(*beta)) >= MagickEpsilon ? 1.0 : 0.0);
}
case '&':
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
*beta=(double) ((size_t) (alpha+0.5) & (size_t) (gamma+0.5));
FxReturn(*beta);
}
case '|':
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
*beta=(double) ((size_t) (alpha+0.5) | (size_t) (gamma+0.5));
FxReturn(*beta);
}
case LogicalAndOperator:
{
p++;
if (alpha <= 0.0)
{
*beta=0.0;
FxReturn(*beta);
}
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth+1,beta,
exception);
*beta=(gamma > 0.0) ? 1.0 : 0.0;
FxReturn(*beta);
}
case LogicalOrOperator:
{
p++;
if (alpha > 0.0)
{
*beta=1.0;
FxReturn(*beta);
}
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth+1,beta,
exception);
*beta=(gamma > 0.0) ? 1.0 : 0.0;
FxReturn(*beta);
}
case '?':
{
(void) CopyMagickString(subexpression,++p,MagickPathExtent);
q=subexpression;
p=StringToken(":",&q);
if (q == (char *) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"UnableToParseExpression","`%s'",subexpression);
FxReturn(0.0);
}
if (fabs(alpha) >= MagickEpsilon)
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,p,depth+1,beta,
exception);
else
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,q,depth+1,beta,
exception);
FxReturn(gamma);
}
case '=':
{
char
numeric[MagickPathExtent];
q=subexpression;
while (isalpha((int) ((unsigned char) *q)) != 0)
q++;
if (*q != '\0')
{
(void) ThrowMagickException(exception,GetMagickModule(),
OptionError,"UnableToParseExpression","`%s'",subexpression);
FxReturn(0.0);
}
ClearMagickException(exception);
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
(void) FormatLocaleString(numeric,MagickPathExtent,"%.20g",*beta);
(void) DeleteNodeFromSplayTree(fx_info->symbols,subexpression);
(void) AddValueToSplayTree(fx_info->symbols,ConstantString(
subexpression),ConstantString(numeric));
FxReturn(*beta);
}
case ',':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(alpha);
}
case ';':
{
*beta=FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,beta,
exception);
FxReturn(*beta);
}
default:
{
gamma=alpha*FxEvaluateSubexpression(fx_info,channel,x,y,++p,depth+1,
beta,exception);
FxReturn(gamma);
}
}
}
if (strchr("(",(int) *expression) != (char *) NULL)
{
if (depth >= FxMaxParenthesisDepth)
(void) ThrowMagickException(exception,GetMagickModule(),OptionError,
"ParenthesisNestedTooDeeply","`%s'",expression);
(void) CopyMagickString(subexpression,expression+1,MagickPathExtent);
if (strlen(subexpression) != 0)
subexpression[strlen(subexpression)-1]='\0';
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,subexpression,depth+1,
beta,exception);
FxReturn(gamma);
}
switch (*expression)
{
case '+':
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth+1,
beta,exception);
FxReturn(1.0*gamma);
}
case '-':
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth+1,
beta,exception);
FxReturn(-1.0*gamma);
}
case '~':
{
gamma=FxEvaluateSubexpression(fx_info,channel,x,y,expression+1,depth+1,
beta,exception);
FxReturn((double) (~(size_t) (gamma+0.5)));
}
case 'A':
case 'a':
{
if (LocaleNCompare(expression,"abs",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(fabs(alpha));
}
#if defined(MAGICKCORE_HAVE_ACOSH)
if (LocaleNCompare(expression,"acosh",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(acosh(alpha));
}
#endif
if (LocaleNCompare(expression,"acos",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(acos(alpha));
}
#if defined(MAGICKCORE_HAVE_J1)
if (LocaleNCompare(expression,"airy",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
if (alpha == 0.0)
FxReturn(1.0);
gamma=2.0*j1((MagickPI*alpha))/(MagickPI*alpha);
FxReturn(gamma*gamma);
}
#endif
#if defined(MAGICKCORE_HAVE_ASINH)
if (LocaleNCompare(expression,"asinh",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(asinh(alpha));
}
#endif
if (LocaleNCompare(expression,"asin",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(asin(alpha));
}
if (LocaleNCompare(expression,"alt",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(((ssize_t) alpha) & 0x01 ? -1.0 : 1.0);
}
if (LocaleNCompare(expression,"atan2",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(atan2(alpha,*beta));
}
#if defined(MAGICKCORE_HAVE_ATANH)
if (LocaleNCompare(expression,"atanh",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(atanh(alpha));
}
#endif
if (LocaleNCompare(expression,"atan",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(atan(alpha));
}
if (LocaleCompare(expression,"a") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'B':
case 'b':
{
if (LocaleCompare(expression,"b") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'C':
case 'c':
{
if (LocaleNCompare(expression,"ceil",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(ceil(alpha));
}
if (LocaleNCompare(expression,"clamp",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
if (alpha < 0.0)
FxReturn(0.0);
if (alpha > 1.0)
FxReturn(1.0);
FxReturn(alpha);
}
if (LocaleNCompare(expression,"cosh",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(cosh(alpha));
}
if (LocaleNCompare(expression,"cos",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(cos(alpha));
}
if (LocaleCompare(expression,"c") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'D':
case 'd':
{
if (LocaleNCompare(expression,"debug",5) == 0)
{
const char
*type;
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
if (fx_info->images->colorspace == CMYKColorspace)
switch (channel)
{
case CyanPixelChannel: type="cyan"; break;
case MagentaPixelChannel: type="magenta"; break;
case YellowPixelChannel: type="yellow"; break;
case AlphaPixelChannel: type="opacity"; break;
case BlackPixelChannel: type="black"; break;
default: type="unknown"; break;
}
else
switch (channel)
{
case RedPixelChannel: type="red"; break;
case GreenPixelChannel: type="green"; break;
case BluePixelChannel: type="blue"; break;
case AlphaPixelChannel: type="opacity"; break;
default: type="unknown"; break;
}
*subexpression='\0';
if (strlen(expression) > 6)
(void) CopyMagickString(subexpression,expression+6,
MagickPathExtent);
if (strlen(subexpression) > 1)
subexpression[strlen(subexpression)-1]='\0';
if (fx_info->file != (FILE *) NULL)
(void) FormatLocaleFile(fx_info->file,"%s[%.20g,%.20g].%s: "
"%s=%.*g\n",fx_info->images->filename,(double) x,(double) y,type,
subexpression,GetMagickPrecision(),alpha);
FxReturn(0.0);
}
if (LocaleNCompare(expression,"drc",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn((alpha/(*beta*(alpha-1.0)+1.0)));
}
break;
}
case 'E':
case 'e':
{
if (LocaleCompare(expression,"epsilon") == 0)
FxReturn(MagickEpsilon);
#if defined(MAGICKCORE_HAVE_ERF)
if (LocaleNCompare(expression,"erf",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(erf(alpha));
}
#endif
if (LocaleNCompare(expression,"exp",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(exp(alpha));
}
if (LocaleCompare(expression,"e") == 0)
FxReturn(2.7182818284590452354);
break;
}
case 'F':
case 'f':
{
if (LocaleNCompare(expression,"floor",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(floor(alpha));
}
break;
}
case 'G':
case 'g':
{
if (LocaleNCompare(expression,"gauss",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
gamma=exp((-alpha*alpha/2.0))/sqrt(2.0*MagickPI);
FxReturn(gamma);
}
if (LocaleNCompare(expression,"gcd",3) == 0)
{
MagickOffsetType
gcd;
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
gcd=FxGCD((MagickOffsetType) (alpha+0.5),(MagickOffsetType) (*beta+
0.5));
FxReturn((double) gcd);
}
if (LocaleCompare(expression,"g") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'H':
case 'h':
{
if (LocaleCompare(expression,"h") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
if (LocaleCompare(expression,"hue") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
if (LocaleNCompare(expression,"hypot",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(hypot(alpha,*beta));
}
break;
}
case 'K':
case 'k':
{
if (LocaleCompare(expression,"k") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'I':
case 'i':
{
if (LocaleCompare(expression,"intensity") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
if (LocaleNCompare(expression,"int",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(floor(alpha));
}
if (LocaleNCompare(expression,"isnan",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn((double) !!IsNaN(alpha));
}
if (LocaleCompare(expression,"i") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'J':
case 'j':
{
if (LocaleCompare(expression,"j") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
#if defined(MAGICKCORE_HAVE_J0)
if (LocaleNCompare(expression,"j0",2) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,
depth+1,beta,exception);
FxReturn(j0(alpha));
}
#endif
#if defined(MAGICKCORE_HAVE_J1)
if (LocaleNCompare(expression,"j1",2) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,
depth+1,beta,exception);
FxReturn(j1(alpha));
}
#endif
#if defined(MAGICKCORE_HAVE_J1)
if (LocaleNCompare(expression,"jinc",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
if (alpha == 0.0)
FxReturn(1.0);
gamma=(2.0*j1((MagickPI*alpha))/(MagickPI*alpha));
FxReturn(gamma);
}
#endif
break;
}
case 'L':
case 'l':
{
if (LocaleNCompare(expression,"ln",2) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+2,
depth+1,beta,exception);
FxReturn(log(alpha));
}
if (LocaleNCompare(expression,"logtwo",6) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+6,
depth+1,beta,exception);
FxReturn(log10(alpha)/log10(2.0));
}
if (LocaleNCompare(expression,"log",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(log10(alpha));
}
if (LocaleCompare(expression,"lightness") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'M':
case 'm':
{
if (LocaleCompare(expression,"MaxRGB") == 0)
FxReturn(QuantumRange);
if (LocaleNCompare(expression,"maxima",6) == 0)
break;
if (LocaleNCompare(expression,"max",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(alpha > *beta ? alpha : *beta);
}
if (LocaleNCompare(expression,"minima",6) == 0)
break;
if (LocaleNCompare(expression,"min",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(alpha < *beta ? alpha : *beta);
}
if (LocaleNCompare(expression,"mod",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
gamma=alpha-floor((alpha*PerceptibleReciprocal(*beta)))*(*beta);
FxReturn(gamma);
}
if (LocaleCompare(expression,"m") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'N':
case 'n':
{
if (LocaleNCompare(expression,"not",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn((double) (alpha < MagickEpsilon));
}
if (LocaleCompare(expression,"n") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'O':
case 'o':
{
if (LocaleCompare(expression,"Opaque") == 0)
FxReturn(1.0);
if (LocaleCompare(expression,"o") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'P':
case 'p':
{
if (LocaleCompare(expression,"phi") == 0)
FxReturn(MagickPHI);
if (LocaleCompare(expression,"pi") == 0)
FxReturn(MagickPI);
if (LocaleNCompare(expression,"pow",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(pow(alpha,*beta));
}
if (LocaleCompare(expression,"p") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'Q':
case 'q':
{
if (LocaleCompare(expression,"QuantumRange") == 0)
FxReturn(QuantumRange);
if (LocaleCompare(expression,"QuantumScale") == 0)
FxReturn(QuantumScale);
break;
}
case 'R':
case 'r':
{
if (LocaleNCompare(expression,"rand",4) == 0)
{
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp critical (MagickCore_FxEvaluateSubexpression)
#endif
alpha=GetPseudoRandomValue(fx_info->random_info);
FxReturn(alpha);
}
if (LocaleNCompare(expression,"round",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
FxReturn(floor(alpha+0.5));
}
if (LocaleCompare(expression,"r") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'S':
case 's':
{
if (LocaleCompare(expression,"saturation") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
if (LocaleNCompare(expression,"sign",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(alpha < 0.0 ? -1.0 : 1.0);
}
if (LocaleNCompare(expression,"sinc",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
if (alpha == 0)
FxReturn(1.0);
gamma=sin((MagickPI*alpha))/(MagickPI*alpha);
FxReturn(gamma);
}
if (LocaleNCompare(expression,"sinh",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(sinh(alpha));
}
if (LocaleNCompare(expression,"sin",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(sin(alpha));
}
if (LocaleNCompare(expression,"sqrt",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(sqrt(alpha));
}
if (LocaleNCompare(expression,"squish",6) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+6,
depth+1,beta,exception);
FxReturn((1.0/(1.0+exp(-alpha))));
}
if (LocaleCompare(expression,"s") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'T':
case 't':
{
if (LocaleNCompare(expression,"tanh",4) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+4,
depth+1,beta,exception);
FxReturn(tanh(alpha));
}
if (LocaleNCompare(expression,"tan",3) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+3,
depth+1,beta,exception);
FxReturn(tan(alpha));
}
if (LocaleCompare(expression,"Transparent") == 0)
FxReturn(0.0);
if (LocaleNCompare(expression,"trunc",5) == 0)
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
if (alpha >= 0.0)
FxReturn(floor(alpha));
FxReturn(ceil(alpha));
}
if (LocaleCompare(expression,"t") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'U':
case 'u':
{
if (LocaleCompare(expression,"u") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'V':
case 'v':
{
if (LocaleCompare(expression,"v") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'W':
case 'w':
{
if (LocaleNCompare(expression,"while",5) == 0)
{
do
{
alpha=FxEvaluateSubexpression(fx_info,channel,x,y,expression+5,
depth+1,beta,exception);
} while (fabs(alpha) >= MagickEpsilon);
FxReturn(*beta);
}
if (LocaleCompare(expression,"w") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'Y':
case 'y':
{
if (LocaleCompare(expression,"y") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
case 'Z':
case 'z':
{
if (LocaleCompare(expression,"z") == 0)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
break;
}
default:
break;
}
subexpression=DestroyString(subexpression);
q=(char *) expression;
alpha=InterpretSiPrefixValue(expression,&q);
if (q == expression)
FxReturn(FxGetSymbol(fx_info,channel,x,y,expression,depth+1,exception));
FxReturn(alpha);
}
MagickPrivate MagickBooleanType FxEvaluateExpression(FxInfo *fx_info,
double *alpha,ExceptionInfo *exception)
{
MagickBooleanType
status;
status=FxEvaluateChannelExpression(fx_info,GrayPixelChannel,0,0,alpha,
exception);
return(status);
}
MagickExport MagickBooleanType FxPreprocessExpression(FxInfo *fx_info,
double *alpha,ExceptionInfo *exception)
{
FILE
*file;
MagickBooleanType
status;
file=fx_info->file;
fx_info->file=(FILE *) NULL;
status=FxEvaluateChannelExpression(fx_info,GrayPixelChannel,0,0,alpha,
exception);
fx_info->file=file;
return(status);
}
MagickPrivate MagickBooleanType FxEvaluateChannelExpression(FxInfo *fx_info,
const PixelChannel channel,const ssize_t x,const ssize_t y,
double *alpha,ExceptionInfo *exception)
{
double
beta;
beta=0.0;
*alpha=FxEvaluateSubexpression(fx_info,channel,x,y,fx_info->expression,0,
&beta,exception);
return(exception->severity == OptionError ? MagickFalse : MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% F x I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% FxImage() applies a mathematical expression to the specified image.
%
% The format of the FxImage method is:
%
% Image *FxImage(const Image *image,const char *expression,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o expression: A mathematical expression.
%
% o exception: return any errors or warnings in this structure.
%
*/
static FxInfo **DestroyFxThreadSet(FxInfo **fx_info)
{
register ssize_t
i;
assert(fx_info != (FxInfo **) NULL);
for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
if (fx_info[i] != (FxInfo *) NULL)
fx_info[i]=DestroyFxInfo(fx_info[i]);
fx_info=(FxInfo **) RelinquishMagickMemory(fx_info);
return(fx_info);
}
static FxInfo **AcquireFxThreadSet(const Image *image,const char *expression,
ExceptionInfo *exception)
{
char
*fx_expression;
FxInfo
**fx_info;
double
alpha;
register ssize_t
i;
size_t
number_threads;
number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
fx_info=(FxInfo **) AcquireQuantumMemory(number_threads,sizeof(*fx_info));
if (fx_info == (FxInfo **) NULL)
{
(void) ThrowMagickException(exception,GetMagickModule(),
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
return((FxInfo **) NULL);
}
(void) memset(fx_info,0,number_threads*sizeof(*fx_info));
if (*expression != '@')
fx_expression=ConstantString(expression);
else
fx_expression=FileToString(expression+1,~0UL,exception);
for (i=0; i < (ssize_t) number_threads; i++)
{
MagickBooleanType
status;
fx_info[i]=AcquireFxInfo(image,fx_expression,exception);
if (fx_info[i] == (FxInfo *) NULL)
break;
status=FxPreprocessExpression(fx_info[i],&alpha,exception);
if (status == MagickFalse)
break;
}
fx_expression=DestroyString(fx_expression);
if (i < (ssize_t) number_threads)
fx_info=DestroyFxThreadSet(fx_info);
return(fx_info);
}
MagickExport Image *FxImage(const Image *image,const char *expression,
ExceptionInfo *exception)
{
#define FxImageTag "Fx/Image"
CacheView
*fx_view,
*image_view;
FxInfo
**magick_restrict fx_info;
Image
*fx_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (expression == (const char *) NULL)
return(CloneImage(image,0,0,MagickTrue,exception));
fx_info=AcquireFxThreadSet(image,expression,exception);
if (fx_info == (FxInfo **) NULL)
return((Image *) NULL);
fx_image=CloneImage(image,0,0,MagickTrue,exception);
if (fx_image == (Image *) NULL)
{
fx_info=DestroyFxThreadSet(fx_info);
return((Image *) NULL);
}
if (SetImageStorageClass(fx_image,DirectClass,exception) == MagickFalse)
{
fx_info=DestroyFxThreadSet(fx_info);
fx_image=DestroyImage(fx_image);
return((Image *) NULL);
}
/*
Fx image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
fx_view=AcquireAuthenticCacheView(fx_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,fx_image,fx_image->rows,1)
#endif
for (y=0; y < (ssize_t) fx_image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(fx_view,0,y,fx_image->columns,1,exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) fx_image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
double
alpha;
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
PixelTrait fx_traits=GetPixelChannelTraits(fx_image,channel);
if ((traits == UndefinedPixelTrait) ||
(fx_traits == UndefinedPixelTrait))
continue;
if ((fx_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(fx_image,channel,p[i],q);
continue;
}
alpha=0.0;
(void) FxEvaluateChannelExpression(fx_info[id],channel,x,y,&alpha,
exception);
q[i]=ClampToQuantum(QuantumRange*alpha);
}
p+=GetPixelChannels(image);
q+=GetPixelChannels(fx_image);
}
if (SyncCacheViewAuthenticPixels(fx_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,FxImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
fx_view=DestroyCacheView(fx_view);
image_view=DestroyCacheView(image_view);
fx_info=DestroyFxThreadSet(fx_info);
if (status == MagickFalse)
fx_image=DestroyImage(fx_image);
return(fx_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% I m p l o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ImplodeImage() creates a new image that is a copy of an existing
% one with the image pixels "implode" by the specified percentage. It
% allocates the memory necessary for the new Image structure and returns a
% pointer to the new image.
%
% The format of the ImplodeImage method is:
%
% Image *ImplodeImage(const Image *image,const double amount,
% const PixelInterpolateMethod method,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o implode_image: Method ImplodeImage returns a pointer to the image
% after it is implode. A null image is returned if there is a memory
% shortage.
%
% o image: the image.
%
% o amount: Define the extent of the implosion.
%
% o method: the pixel interpolation method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ImplodeImage(const Image *image,const double amount,
const PixelInterpolateMethod method,ExceptionInfo *exception)
{
#define ImplodeImageTag "Implode/Image"
CacheView
*canvas_view,
*implode_view,
*interpolate_view;
double
radius;
Image
*canvas_image,
*implode_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PointInfo
center,
scale;
ssize_t
y;
/*
Initialize implode image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
canvas_image=CloneImage(image,0,0,MagickTrue,exception);
if (canvas_image == (Image *) NULL)
return((Image *) NULL);
if ((canvas_image->alpha_trait == UndefinedPixelTrait) &&
(canvas_image->background_color.alpha != OpaqueAlpha))
(void) SetImageAlphaChannel(canvas_image,OpaqueAlphaChannel,exception);
implode_image=CloneImage(canvas_image,0,0,MagickTrue,exception);
if (implode_image == (Image *) NULL)
{
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
if (SetImageStorageClass(implode_image,DirectClass,exception) == MagickFalse)
{
canvas_image=DestroyImage(canvas_image);
implode_image=DestroyImage(implode_image);
return((Image *) NULL);
}
/*
Compute scaling factor.
*/
scale.x=1.0;
scale.y=1.0;
center.x=0.5*canvas_image->columns;
center.y=0.5*canvas_image->rows;
radius=center.x;
if (canvas_image->columns > canvas_image->rows)
scale.y=(double) canvas_image->columns/(double) canvas_image->rows;
else
if (canvas_image->columns < canvas_image->rows)
{
scale.x=(double) canvas_image->rows/(double) canvas_image->columns;
radius=center.y;
}
/*
Implode image.
*/
status=MagickTrue;
progress=0;
canvas_view=AcquireVirtualCacheView(canvas_image,exception);
interpolate_view=AcquireVirtualCacheView(canvas_image,exception);
implode_view=AcquireAuthenticCacheView(implode_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(canvas_image,implode_image,canvas_image->rows,1)
#endif
for (y=0; y < (ssize_t) canvas_image->rows; y++)
{
double
distance;
PointInfo
delta;
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(canvas_view,0,y,canvas_image->columns,1,
exception);
q=QueueCacheViewAuthenticPixels(implode_view,0,y,implode_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
delta.y=scale.y*(double) (y-center.y);
for (x=0; x < (ssize_t) canvas_image->columns; x++)
{
register ssize_t
i;
/*
Determine if the pixel is within an ellipse.
*/
delta.x=scale.x*(double) (x-center.x);
distance=delta.x*delta.x+delta.y*delta.y;
if (distance >= (radius*radius))
for (i=0; i < (ssize_t) GetPixelChannels(canvas_image); i++)
{
PixelChannel channel = GetPixelChannelChannel(canvas_image,i);
PixelTrait traits = GetPixelChannelTraits(canvas_image,channel);
PixelTrait implode_traits = GetPixelChannelTraits(implode_image,
channel);
if ((traits == UndefinedPixelTrait) ||
(implode_traits == UndefinedPixelTrait))
continue;
SetPixelChannel(implode_image,channel,p[i],q);
}
else
{
double
factor;
/*
Implode the pixel.
*/
factor=1.0;
if (distance > 0.0)
factor=pow(sin(MagickPI*sqrt((double) distance)/radius/2),-amount);
status=InterpolatePixelChannels(canvas_image,interpolate_view,
implode_image,method,(double) (factor*delta.x/scale.x+center.x),
(double) (factor*delta.y/scale.y+center.y),q,exception);
if (status == MagickFalse)
break;
}
p+=GetPixelChannels(canvas_image);
q+=GetPixelChannels(implode_image);
}
if (SyncCacheViewAuthenticPixels(implode_view,exception) == MagickFalse)
status=MagickFalse;
if (canvas_image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(canvas_image,ImplodeImageTag,progress,
canvas_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
implode_view=DestroyCacheView(implode_view);
interpolate_view=DestroyCacheView(interpolate_view);
canvas_view=DestroyCacheView(canvas_view);
canvas_image=DestroyImage(canvas_image);
if (status == MagickFalse)
implode_image=DestroyImage(implode_image);
return(implode_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% M o r p h I m a g e s %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The MorphImages() method requires a minimum of two images. The first
% image is transformed into the second by a number of intervening images
% as specified by frames.
%
% The format of the MorphImage method is:
%
% Image *MorphImages(const Image *image,const size_t number_frames,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o number_frames: Define the number of in-between image to generate.
% The more in-between frames, the smoother the morph.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *MorphImages(const Image *image,const size_t number_frames,
ExceptionInfo *exception)
{
#define MorphImageTag "Morph/Image"
double
alpha,
beta;
Image
*morph_image,
*morph_images;
MagickBooleanType
status;
MagickOffsetType
scene;
register const Image
*next;
register ssize_t
n;
ssize_t
y;
/*
Clone first frame in sequence.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
morph_images=CloneImage(image,0,0,MagickTrue,exception);
if (morph_images == (Image *) NULL)
return((Image *) NULL);
if (GetNextImageInList(image) == (Image *) NULL)
{
/*
Morph single image.
*/
for (n=1; n < (ssize_t) number_frames; n++)
{
morph_image=CloneImage(image,0,0,MagickTrue,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,MorphImageTag,(MagickOffsetType) n,
number_frames);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
return(GetFirstImageInList(morph_images));
}
/*
Morph image sequence.
*/
status=MagickTrue;
scene=0;
next=image;
for ( ; GetNextImageInList(next) != (Image *) NULL; next=GetNextImageInList(next))
{
for (n=0; n < (ssize_t) number_frames; n++)
{
CacheView
*image_view,
*morph_view;
beta=(double) (n+1.0)/(double) (number_frames+1.0);
alpha=1.0-beta;
morph_image=ResizeImage(next,(size_t) (alpha*next->columns+beta*
GetNextImageInList(next)->columns+0.5),(size_t) (alpha*next->rows+beta*
GetNextImageInList(next)->rows+0.5),next->filter,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
status=SetImageStorageClass(morph_image,DirectClass,exception);
if (status == MagickFalse)
{
morph_image=DestroyImage(morph_image);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
morph_images=GetLastImageInList(morph_images);
morph_image=ResizeImage(GetNextImageInList(next),morph_images->columns,
morph_images->rows,GetNextImageInList(next)->filter,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
image_view=AcquireVirtualCacheView(morph_image,exception);
morph_view=AcquireAuthenticCacheView(morph_images,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(morph_image,morph_image,morph_image->rows,1)
#endif
for (y=0; y < (ssize_t) morph_images->rows; y++)
{
MagickBooleanType
sync;
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,morph_image->columns,1,
exception);
q=GetCacheViewAuthenticPixels(morph_view,0,y,morph_images->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) morph_images->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(morph_image); i++)
{
PixelChannel channel = GetPixelChannelChannel(morph_image,i);
PixelTrait traits = GetPixelChannelTraits(morph_image,channel);
PixelTrait morph_traits=GetPixelChannelTraits(morph_images,channel);
if ((traits == UndefinedPixelTrait) ||
(morph_traits == UndefinedPixelTrait))
continue;
if ((morph_traits & CopyPixelTrait) != 0)
{
SetPixelChannel(morph_image,channel,p[i],q);
continue;
}
SetPixelChannel(morph_image,channel,ClampToQuantum(alpha*
GetPixelChannel(morph_images,channel,q)+beta*p[i]),q);
}
p+=GetPixelChannels(morph_image);
q+=GetPixelChannels(morph_images);
}
sync=SyncCacheViewAuthenticPixels(morph_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
morph_view=DestroyCacheView(morph_view);
image_view=DestroyCacheView(image_view);
morph_image=DestroyImage(morph_image);
}
if (n < (ssize_t) number_frames)
break;
/*
Clone last frame in sequence.
*/
morph_image=CloneImage(GetNextImageInList(next),0,0,MagickTrue,exception);
if (morph_image == (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
AppendImageToList(&morph_images,morph_image);
morph_images=GetLastImageInList(morph_images);
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,MorphImageTag,scene,
GetImageListLength(image));
if (proceed == MagickFalse)
status=MagickFalse;
}
scene++;
}
if (GetNextImageInList(next) != (Image *) NULL)
{
morph_images=DestroyImageList(morph_images);
return((Image *) NULL);
}
return(GetFirstImageInList(morph_images));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P l a s m a I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PlasmaImage() initializes an image with plasma fractal values. The image
% must be initialized with a base color and the random number generator
% seeded before this method is called.
%
% The format of the PlasmaImage method is:
%
% MagickBooleanType PlasmaImage(Image *image,const SegmentInfo *segment,
% size_t attenuate,size_t depth,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o segment: Define the region to apply plasma fractals values.
%
% o attenuate: Define the plasma attenuation factor.
%
% o depth: Limit the plasma recursion depth.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline Quantum PlasmaPixel(RandomInfo *random_info,
const double pixel,const double noise)
{
Quantum
plasma;
plasma=ClampToQuantum(pixel+noise*GetPseudoRandomValue(random_info)-
noise/2.0);
if (plasma <= 0)
return((Quantum) 0);
if (plasma >= QuantumRange)
return(QuantumRange);
return(plasma);
}
static MagickBooleanType PlasmaImageProxy(Image *image,CacheView *image_view,
CacheView *u_view,CacheView *v_view,RandomInfo *random_info,
const SegmentInfo *segment,size_t attenuate,size_t depth,
ExceptionInfo *exception)
{
double
plasma;
register const Quantum
*magick_restrict u,
*magick_restrict v;
register Quantum
*magick_restrict q;
register ssize_t
i;
ssize_t
x,
x_mid,
y,
y_mid;
if ((fabs(segment->x2-segment->x1) <= MagickEpsilon) &&
(fabs(segment->y2-segment->y1) <= MagickEpsilon))
return(MagickTrue);
if (depth != 0)
{
MagickBooleanType
status;
SegmentInfo
local_info;
/*
Divide the area into quadrants and recurse.
*/
depth--;
attenuate++;
x_mid=(ssize_t) ceil((segment->x1+segment->x2)/2-0.5);
y_mid=(ssize_t) ceil((segment->y1+segment->y2)/2-0.5);
local_info=(*segment);
local_info.x2=(double) x_mid;
local_info.y2=(double) y_mid;
(void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth,exception);
local_info=(*segment);
local_info.y1=(double) y_mid;
local_info.x2=(double) x_mid;
(void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth,exception);
local_info=(*segment);
local_info.x1=(double) x_mid;
local_info.y2=(double) y_mid;
(void) PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth,exception);
local_info=(*segment);
local_info.x1=(double) x_mid;
local_info.y1=(double) y_mid;
status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,
&local_info,attenuate,depth,exception);
return(status);
}
x_mid=(ssize_t) ceil((segment->x1+segment->x2)/2-0.5);
y_mid=(ssize_t) ceil((segment->y1+segment->y2)/2-0.5);
if ((fabs(segment->x1-x_mid) < MagickEpsilon) &&
(fabs(segment->x2-x_mid) < MagickEpsilon) &&
(fabs(segment->y1-y_mid) < MagickEpsilon) &&
(fabs(segment->y2-y_mid) < MagickEpsilon))
return(MagickFalse);
/*
Average pixels and apply plasma.
*/
plasma=(double) QuantumRange/(2.0*attenuate);
if ((fabs(segment->x1-x_mid) > MagickEpsilon) ||
(fabs(segment->x2-x_mid) > MagickEpsilon))
{
/*
Left pixel.
*/
x=(ssize_t) ceil(segment->x1-0.5);
u=GetCacheViewVirtualPixels(u_view,x,(ssize_t) ceil(segment->y1-0.5),1,1,
exception);
v=GetCacheViewVirtualPixels(v_view,x,(ssize_t) ceil(segment->y2-0.5),1,1,
exception);
q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception);
if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
return(MagickTrue);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma);
}
(void) SyncCacheViewAuthenticPixels(image_view,exception);
if (fabs(segment->x1-segment->x2) > MagickEpsilon)
{
/*
Right pixel.
*/
x=(ssize_t) ceil(segment->x2-0.5);
u=GetCacheViewVirtualPixels(u_view,x,(ssize_t) ceil(segment->y1-0.5),
1,1,exception);
v=GetCacheViewVirtualPixels(v_view,x,(ssize_t) ceil(segment->y2-0.5),
1,1,exception);
q=QueueCacheViewAuthenticPixels(image_view,x,y_mid,1,1,exception);
if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
return(MagickTrue);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma);
}
(void) SyncCacheViewAuthenticPixels(image_view,exception);
}
}
if ((fabs(segment->y1-y_mid) > MagickEpsilon) ||
(fabs(segment->y2-y_mid) > MagickEpsilon))
{
if ((fabs(segment->x1-x_mid) > MagickEpsilon) ||
(fabs(segment->y2-y_mid) > MagickEpsilon))
{
/*
Bottom pixel.
*/
y=(ssize_t) ceil(segment->y2-0.5);
u=GetCacheViewVirtualPixels(u_view,(ssize_t) ceil(segment->x1-0.5),y,
1,1,exception);
v=GetCacheViewVirtualPixels(v_view,(ssize_t) ceil(segment->x2-0.5),y,
1,1,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception);
if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
return(MagickTrue);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma);
}
(void) SyncCacheViewAuthenticPixels(image_view,exception);
}
if (fabs(segment->y1-segment->y2) > MagickEpsilon)
{
/*
Top pixel.
*/
y=(ssize_t) ceil(segment->y1-0.5);
u=GetCacheViewVirtualPixels(u_view,(ssize_t) ceil(segment->x1-0.5),y,
1,1,exception);
v=GetCacheViewVirtualPixels(v_view,(ssize_t) ceil(segment->x2-0.5),y,
1,1,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y,1,1,exception);
if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
return(MagickTrue);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma);
}
(void) SyncCacheViewAuthenticPixels(image_view,exception);
}
}
if ((fabs(segment->x1-segment->x2) > MagickEpsilon) ||
(fabs(segment->y1-segment->y2) > MagickEpsilon))
{
/*
Middle pixel.
*/
x=(ssize_t) ceil(segment->x1-0.5);
y=(ssize_t) ceil(segment->y1-0.5);
u=GetCacheViewVirtualPixels(u_view,x,y,1,1,exception);
x=(ssize_t) ceil(segment->x2-0.5);
y=(ssize_t) ceil(segment->y2-0.5);
v=GetCacheViewVirtualPixels(v_view,x,y,1,1,exception);
q=QueueCacheViewAuthenticPixels(image_view,x_mid,y_mid,1,1,exception);
if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL) ||
(q == (Quantum *) NULL))
return(MagickTrue);
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=PlasmaPixel(random_info,(u[i]+v[i])/2.0,plasma);
}
(void) SyncCacheViewAuthenticPixels(image_view,exception);
}
if ((fabs(segment->x2-segment->x1) < 3.0) &&
(fabs(segment->y2-segment->y1) < 3.0))
return(MagickTrue);
return(MagickFalse);
}
MagickExport MagickBooleanType PlasmaImage(Image *image,
const SegmentInfo *segment,size_t attenuate,size_t depth,
ExceptionInfo *exception)
{
CacheView
*image_view,
*u_view,
*v_view;
MagickBooleanType
status;
RandomInfo
*random_info;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
return(MagickFalse);
image_view=AcquireAuthenticCacheView(image,exception);
u_view=AcquireVirtualCacheView(image,exception);
v_view=AcquireVirtualCacheView(image,exception);
random_info=AcquireRandomInfo();
status=PlasmaImageProxy(image,image_view,u_view,v_view,random_info,segment,
attenuate,depth,exception);
random_info=DestroyRandomInfo(random_info);
v_view=DestroyCacheView(v_view);
u_view=DestroyCacheView(u_view);
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P o l a r o i d I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PolaroidImage() simulates a Polaroid picture.
%
% The format of the PolaroidImage method is:
%
% Image *PolaroidImage(const Image *image,const DrawInfo *draw_info,
% const char *caption,const double angle,
% const PixelInterpolateMethod method,ExceptionInfo exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o draw_info: the draw info.
%
% o caption: the Polaroid caption.
%
% o angle: Apply the effect along this angle.
%
% o method: the pixel interpolation method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *PolaroidImage(const Image *image,const DrawInfo *draw_info,
const char *caption,const double angle,const PixelInterpolateMethod method,
ExceptionInfo *exception)
{
Image
*bend_image,
*caption_image,
*flop_image,
*picture_image,
*polaroid_image,
*rotate_image,
*trim_image;
size_t
height;
ssize_t
quantum;
/*
Simulate a Polaroid picture.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
quantum=(ssize_t) MagickMax(MagickMax((double) image->columns,(double)
image->rows)/25.0,10.0);
height=image->rows+2*quantum;
caption_image=(Image *) NULL;
if (caption != (const char *) NULL)
{
char
*text;
/*
Generate caption image.
*/
caption_image=CloneImage(image,image->columns,1,MagickTrue,exception);
if (caption_image == (Image *) NULL)
return((Image *) NULL);
text=InterpretImageProperties((ImageInfo *) NULL,(Image *) image,caption,
exception);
if (text != (char *) NULL)
{
char
geometry[MagickPathExtent];
DrawInfo
*annotate_info;
MagickBooleanType
status;
ssize_t
count;
TypeMetric
metrics;
annotate_info=CloneDrawInfo((const ImageInfo *) NULL,draw_info);
(void) CloneString(&annotate_info->text,text);
count=FormatMagickCaption(caption_image,annotate_info,MagickTrue,
&metrics,&text,exception);
status=SetImageExtent(caption_image,image->columns,(size_t)
((count+1)*(metrics.ascent-metrics.descent)+0.5),exception);
if (status == MagickFalse)
caption_image=DestroyImage(caption_image);
else
{
caption_image->background_color=image->border_color;
(void) SetImageBackgroundColor(caption_image,exception);
(void) CloneString(&annotate_info->text,text);
(void) FormatLocaleString(geometry,MagickPathExtent,"+0+%.20g",
metrics.ascent);
if (annotate_info->gravity == UndefinedGravity)
(void) CloneString(&annotate_info->geometry,AcquireString(
geometry));
(void) AnnotateImage(caption_image,annotate_info,exception);
height+=caption_image->rows;
}
annotate_info=DestroyDrawInfo(annotate_info);
text=DestroyString(text);
}
}
picture_image=CloneImage(image,image->columns+2*quantum,height,MagickTrue,
exception);
if (picture_image == (Image *) NULL)
{
if (caption_image != (Image *) NULL)
caption_image=DestroyImage(caption_image);
return((Image *) NULL);
}
picture_image->background_color=image->border_color;
(void) SetImageBackgroundColor(picture_image,exception);
(void) CompositeImage(picture_image,image,OverCompositeOp,MagickTrue,quantum,
quantum,exception);
if (caption_image != (Image *) NULL)
{
(void) CompositeImage(picture_image,caption_image,OverCompositeOp,
MagickTrue,quantum,(ssize_t) (image->rows+3*quantum/2),exception);
caption_image=DestroyImage(caption_image);
}
(void) QueryColorCompliance("none",AllCompliance,
&picture_image->background_color,exception);
(void) SetImageAlphaChannel(picture_image,OpaqueAlphaChannel,exception);
rotate_image=RotateImage(picture_image,90.0,exception);
picture_image=DestroyImage(picture_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
picture_image=rotate_image;
bend_image=WaveImage(picture_image,0.01*picture_image->rows,2.0*
picture_image->columns,method,exception);
picture_image=DestroyImage(picture_image);
if (bend_image == (Image *) NULL)
return((Image *) NULL);
picture_image=bend_image;
rotate_image=RotateImage(picture_image,-90.0,exception);
picture_image=DestroyImage(picture_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
picture_image=rotate_image;
picture_image->background_color=image->background_color;
polaroid_image=ShadowImage(picture_image,80.0,2.0,quantum/3,quantum/3,
exception);
if (polaroid_image == (Image *) NULL)
{
picture_image=DestroyImage(picture_image);
return(picture_image);
}
flop_image=FlopImage(polaroid_image,exception);
polaroid_image=DestroyImage(polaroid_image);
if (flop_image == (Image *) NULL)
{
picture_image=DestroyImage(picture_image);
return(picture_image);
}
polaroid_image=flop_image;
(void) CompositeImage(polaroid_image,picture_image,OverCompositeOp,
MagickTrue,(ssize_t) (-0.01*picture_image->columns/2.0),0L,exception);
picture_image=DestroyImage(picture_image);
(void) QueryColorCompliance("none",AllCompliance,
&polaroid_image->background_color,exception);
rotate_image=RotateImage(polaroid_image,angle,exception);
polaroid_image=DestroyImage(polaroid_image);
if (rotate_image == (Image *) NULL)
return((Image *) NULL);
polaroid_image=rotate_image;
trim_image=TrimImage(polaroid_image,exception);
polaroid_image=DestroyImage(polaroid_image);
if (trim_image == (Image *) NULL)
return((Image *) NULL);
polaroid_image=trim_image;
return(polaroid_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S e p i a T o n e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% MagickSepiaToneImage() applies a special effect to the image, similar to the
% effect achieved in a photo darkroom by sepia toning. Threshold ranges from
% 0 to QuantumRange and is a measure of the extent of the sepia toning. A
% threshold of 80% is a good starting point for a reasonable tone.
%
% The format of the SepiaToneImage method is:
%
% Image *SepiaToneImage(const Image *image,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o threshold: the tone threshold.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SepiaToneImage(const Image *image,const double threshold,
ExceptionInfo *exception)
{
#define SepiaToneImageTag "SepiaTone/Image"
CacheView
*image_view,
*sepia_view;
Image
*sepia_image;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
/*
Initialize sepia-toned image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
sepia_image=CloneImage(image,0,0,MagickTrue,exception);
if (sepia_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(sepia_image,DirectClass,exception) == MagickFalse)
{
sepia_image=DestroyImage(sepia_image);
return((Image *) NULL);
}
/*
Tone each row of the image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
sepia_view=AcquireAuthenticCacheView(sepia_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,sepia_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=GetCacheViewAuthenticPixels(sepia_view,0,y,sepia_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
double
intensity,
tone;
intensity=GetPixelIntensity(image,p);
tone=intensity > threshold ? (double) QuantumRange : intensity+
(double) QuantumRange-threshold;
SetPixelRed(sepia_image,ClampToQuantum(tone),q);
tone=intensity > (7.0*threshold/6.0) ? (double) QuantumRange :
intensity+(double) QuantumRange-7.0*threshold/6.0;
SetPixelGreen(sepia_image,ClampToQuantum(tone),q);
tone=intensity < (threshold/6.0) ? 0 : intensity-threshold/6.0;
SetPixelBlue(sepia_image,ClampToQuantum(tone),q);
tone=threshold/7.0;
if ((double) GetPixelGreen(image,q) < tone)
SetPixelGreen(sepia_image,ClampToQuantum(tone),q);
if ((double) GetPixelBlue(image,q) < tone)
SetPixelBlue(sepia_image,ClampToQuantum(tone),q);
SetPixelAlpha(sepia_image,GetPixelAlpha(image,p),q);
p+=GetPixelChannels(image);
q+=GetPixelChannels(sepia_image);
}
if (SyncCacheViewAuthenticPixels(sepia_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SepiaToneImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
sepia_view=DestroyCacheView(sepia_view);
image_view=DestroyCacheView(image_view);
(void) NormalizeImage(sepia_image,exception);
(void) ContrastImage(sepia_image,MagickTrue,exception);
if (status == MagickFalse)
sepia_image=DestroyImage(sepia_image);
return(sepia_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S h a d o w I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ShadowImage() simulates a shadow from the specified image and returns it.
%
% The format of the ShadowImage method is:
%
% Image *ShadowImage(const Image *image,const double alpha,
% const double sigma,const ssize_t x_offset,const ssize_t y_offset,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o alpha: percentage transparency.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o x_offset: the shadow x-offset.
%
% o y_offset: the shadow y-offset.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *ShadowImage(const Image *image,const double alpha,
const double sigma,const ssize_t x_offset,const ssize_t y_offset,
ExceptionInfo *exception)
{
#define ShadowImageTag "Shadow/Image"
CacheView
*image_view;
ChannelType
channel_mask;
Image
*border_image,
*clone_image,
*shadow_image;
MagickBooleanType
status;
PixelInfo
background_color;
RectangleInfo
border_info;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
clone_image=CloneImage(image,0,0,MagickTrue,exception);
if (clone_image == (Image *) NULL)
return((Image *) NULL);
if (IsGrayColorspace(image->colorspace) != MagickFalse)
(void) SetImageColorspace(clone_image,sRGBColorspace,exception);
(void) SetImageVirtualPixelMethod(clone_image,EdgeVirtualPixelMethod,
exception);
border_info.width=(size_t) floor(2.0*sigma+0.5);
border_info.height=(size_t) floor(2.0*sigma+0.5);
border_info.x=0;
border_info.y=0;
(void) QueryColorCompliance("none",AllCompliance,&clone_image->border_color,
exception);
clone_image->alpha_trait=BlendPixelTrait;
border_image=BorderImage(clone_image,&border_info,OverCompositeOp,exception);
clone_image=DestroyImage(clone_image);
if (border_image == (Image *) NULL)
return((Image *) NULL);
if (border_image->alpha_trait == UndefinedPixelTrait)
(void) SetImageAlphaChannel(border_image,OpaqueAlphaChannel,exception);
/*
Shadow image.
*/
status=MagickTrue;
background_color=border_image->background_color;
background_color.alpha_trait=BlendPixelTrait;
image_view=AcquireAuthenticCacheView(border_image,exception);
for (y=0; y < (ssize_t) border_image->rows; y++)
{
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(image_view,0,y,border_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) border_image->columns; x++)
{
if (border_image->alpha_trait != UndefinedPixelTrait)
background_color.alpha=GetPixelAlpha(border_image,q)*alpha/100.0;
SetPixelViaPixelInfo(border_image,&background_color,q);
q+=GetPixelChannels(border_image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
}
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
{
border_image=DestroyImage(border_image);
return((Image *) NULL);
}
channel_mask=SetImageChannelMask(border_image,AlphaChannel);
shadow_image=BlurImage(border_image,0.0,sigma,exception);
border_image=DestroyImage(border_image);
if (shadow_image == (Image *) NULL)
return((Image *) NULL);
(void) SetPixelChannelMask(shadow_image,channel_mask);
if (shadow_image->page.width == 0)
shadow_image->page.width=shadow_image->columns;
if (shadow_image->page.height == 0)
shadow_image->page.height=shadow_image->rows;
shadow_image->page.width+=x_offset-(ssize_t) border_info.width;
shadow_image->page.height+=y_offset-(ssize_t) border_info.height;
shadow_image->page.x+=x_offset-(ssize_t) border_info.width;
shadow_image->page.y+=y_offset-(ssize_t) border_info.height;
return(shadow_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S k e t c h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SketchImage() simulates a pencil sketch. We convolve the image with a
% Gaussian operator of the given radius and standard deviation (sigma). For
% reasonable results, radius should be larger than sigma. Use a radius of 0
% and SketchImage() selects a suitable radius for you. Angle gives the angle
% of the sketch.
%
% The format of the SketchImage method is:
%
% Image *SketchImage(const Image *image,const double radius,
% const double sigma,const double angle,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the Gaussian, in pixels, not counting the
% center pixel.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o angle: apply the effect along this angle.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SketchImage(const Image *image,const double radius,
const double sigma,const double angle,ExceptionInfo *exception)
{
CacheView
*random_view;
Image
*blend_image,
*blur_image,
*dodge_image,
*random_image,
*sketch_image;
MagickBooleanType
status;
RandomInfo
**magick_restrict random_info;
ssize_t
y;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
unsigned long
key;
#endif
/*
Sketch image.
*/
random_image=CloneImage(image,image->columns << 1,image->rows << 1,
MagickTrue,exception);
if (random_image == (Image *) NULL)
return((Image *) NULL);
status=MagickTrue;
random_info=AcquireRandomInfoThreadSet();
random_view=AcquireAuthenticCacheView(random_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
key=GetRandomSecretKey(random_info[0]);
#pragma omp parallel for schedule(static) shared(status) \
magick_number_threads(random_image,random_image,random_image->rows,key == ~0UL)
#endif
for (y=0; y < (ssize_t) random_image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
q=QueueCacheViewAuthenticPixels(random_view,0,y,random_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) random_image->columns; x++)
{
double
value;
register ssize_t
i;
value=GetPseudoRandomValue(random_info[id]);
for (i=0; i < (ssize_t) GetPixelChannels(random_image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if (traits == UndefinedPixelTrait)
continue;
q[i]=ClampToQuantum(QuantumRange*value);
}
q+=GetPixelChannels(random_image);
}
if (SyncCacheViewAuthenticPixels(random_view,exception) == MagickFalse)
status=MagickFalse;
}
random_view=DestroyCacheView(random_view);
random_info=DestroyRandomInfoThreadSet(random_info);
if (status == MagickFalse)
{
random_image=DestroyImage(random_image);
return(random_image);
}
blur_image=MotionBlurImage(random_image,radius,sigma,angle,exception);
random_image=DestroyImage(random_image);
if (blur_image == (Image *) NULL)
return((Image *) NULL);
dodge_image=EdgeImage(blur_image,radius,exception);
blur_image=DestroyImage(blur_image);
if (dodge_image == (Image *) NULL)
return((Image *) NULL);
status=ClampImage(dodge_image,exception);
if (status != MagickFalse)
status=NormalizeImage(dodge_image,exception);
if (status != MagickFalse)
status=NegateImage(dodge_image,MagickFalse,exception);
if (status != MagickFalse)
status=TransformImage(&dodge_image,(char *) NULL,"50%",exception);
sketch_image=CloneImage(image,0,0,MagickTrue,exception);
if (sketch_image == (Image *) NULL)
{
dodge_image=DestroyImage(dodge_image);
return((Image *) NULL);
}
(void) CompositeImage(sketch_image,dodge_image,ColorDodgeCompositeOp,
MagickTrue,0,0,exception);
dodge_image=DestroyImage(dodge_image);
blend_image=CloneImage(image,0,0,MagickTrue,exception);
if (blend_image == (Image *) NULL)
{
sketch_image=DestroyImage(sketch_image);
return((Image *) NULL);
}
if (blend_image->alpha_trait != BlendPixelTrait)
(void) SetImageAlpha(blend_image,TransparentAlpha,exception);
(void) SetImageArtifact(blend_image,"compose:args","20x80");
(void) CompositeImage(sketch_image,blend_image,BlendCompositeOp,MagickTrue,
0,0,exception);
blend_image=DestroyImage(blend_image);
return(sketch_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S o l a r i z e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SolarizeImage() applies a special effect to the image, similar to the effect
% achieved in a photo darkroom by selectively exposing areas of photo
% sensitive paper to light. Threshold ranges from 0 to QuantumRange and is a
% measure of the extent of the solarization.
%
% The format of the SolarizeImage method is:
%
% MagickBooleanType SolarizeImage(Image *image,const double threshold,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o threshold: Define the extent of the solarization.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SolarizeImage(Image *image,
const double threshold,ExceptionInfo *exception)
{
#define SolarizeImageTag "Solarize/Image"
CacheView
*image_view;
MagickBooleanType
status;
MagickOffsetType
progress;
ssize_t
y;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
if (IsGrayColorspace(image->colorspace) != MagickFalse)
(void) SetImageColorspace(image,sRGBColorspace,exception);
if (image->storage_class == PseudoClass)
{
register ssize_t
i;
/*
Solarize colormap.
*/
for (i=0; i < (ssize_t) image->colors; i++)
{
if ((double) image->colormap[i].red > threshold)
image->colormap[i].red=QuantumRange-image->colormap[i].red;
if ((double) image->colormap[i].green > threshold)
image->colormap[i].green=QuantumRange-image->colormap[i].green;
if ((double) image->colormap[i].blue > threshold)
image->colormap[i].blue=QuantumRange-image->colormap[i].blue;
}
}
/*
Solarize image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
{
PixelChannel channel = GetPixelChannelChannel(image,i);
PixelTrait traits = GetPixelChannelTraits(image,channel);
if ((traits & UpdatePixelTrait) == 0)
continue;
if ((double) q[i] > threshold)
q[i]=QuantumRange-q[i];
}
q+=GetPixelChannels(image);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,SolarizeImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
return(status);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S t e g a n o I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SteganoImage() hides a digital watermark within the image. Recover
% the hidden watermark later to prove that the authenticity of an image.
% Offset defines the start position within the image to hide the watermark.
%
% The format of the SteganoImage method is:
%
% Image *SteganoImage(const Image *image,Image *watermark,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o watermark: the watermark image.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SteganoImage(const Image *image,const Image *watermark,
ExceptionInfo *exception)
{
#define GetBit(alpha,i) ((((size_t) (alpha) >> (size_t) (i)) & 0x01) != 0)
#define SetBit(alpha,i,set) (Quantum) ((set) != 0 ? (size_t) (alpha) \
| (one << (size_t) (i)) : (size_t) (alpha) & ~(one << (size_t) (i)))
#define SteganoImageTag "Stegano/Image"
CacheView
*stegano_view,
*watermark_view;
Image
*stegano_image;
int
c;
MagickBooleanType
status;
PixelInfo
pixel;
register Quantum
*q;
register ssize_t
x;
size_t
depth,
one;
ssize_t
i,
j,
k,
y;
/*
Initialize steganographic image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(watermark != (const Image *) NULL);
assert(watermark->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
one=1UL;
stegano_image=CloneImage(image,0,0,MagickTrue,exception);
if (stegano_image == (Image *) NULL)
return((Image *) NULL);
stegano_image->depth=MAGICKCORE_QUANTUM_DEPTH;
if (SetImageStorageClass(stegano_image,DirectClass,exception) == MagickFalse)
{
stegano_image=DestroyImage(stegano_image);
return((Image *) NULL);
}
/*
Hide watermark in low-order bits of image.
*/
c=0;
i=0;
j=0;
depth=stegano_image->depth;
k=stegano_image->offset;
status=MagickTrue;
watermark_view=AcquireVirtualCacheView(watermark,exception);
stegano_view=AcquireAuthenticCacheView(stegano_image,exception);
for (i=(ssize_t) depth-1; (i >= 0) && (j < (ssize_t) depth); i--)
{
for (y=0; (y < (ssize_t) watermark->rows) && (j < (ssize_t) depth); y++)
{
for (x=0; (x < (ssize_t) watermark->columns) && (j < (ssize_t) depth); x++)
{
ssize_t
offset;
(void) GetOneCacheViewVirtualPixelInfo(watermark_view,x,y,&pixel,
exception);
offset=k/(ssize_t) stegano_image->columns;
if (offset >= (ssize_t) stegano_image->rows)
break;
q=GetCacheViewAuthenticPixels(stegano_view,k % (ssize_t)
stegano_image->columns,k/(ssize_t) stegano_image->columns,1,1,
exception);
if (q == (Quantum *) NULL)
break;
switch (c)
{
case 0:
{
SetPixelRed(stegano_image,SetBit(GetPixelRed(stegano_image,q),j,
GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q);
break;
}
case 1:
{
SetPixelGreen(stegano_image,SetBit(GetPixelGreen(stegano_image,q),j,
GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q);
break;
}
case 2:
{
SetPixelBlue(stegano_image,SetBit(GetPixelBlue(stegano_image,q),j,
GetBit(GetPixelInfoIntensity(stegano_image,&pixel),i)),q);
break;
}
}
if (SyncCacheViewAuthenticPixels(stegano_view,exception) == MagickFalse)
break;
c++;
if (c == 3)
c=0;
k++;
if (k == (ssize_t) (stegano_image->columns*stegano_image->columns))
k=0;
if (k == stegano_image->offset)
j++;
}
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,SteganoImageTag,(MagickOffsetType)
(depth-i),depth);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
stegano_view=DestroyCacheView(stegano_view);
watermark_view=DestroyCacheView(watermark_view);
if (status == MagickFalse)
stegano_image=DestroyImage(stegano_image);
return(stegano_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S t e r e o A n a g l y p h I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% StereoAnaglyphImage() combines two images and produces a single image that
% is the composite of a left and right image of a stereo pair. Special
% red-green stereo glasses are required to view this effect.
%
% The format of the StereoAnaglyphImage method is:
%
% Image *StereoImage(const Image *left_image,const Image *right_image,
% ExceptionInfo *exception)
% Image *StereoAnaglyphImage(const Image *left_image,
% const Image *right_image,const ssize_t x_offset,const ssize_t y_offset,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o left_image: the left image.
%
% o right_image: the right image.
%
% o exception: return any errors or warnings in this structure.
%
% o x_offset: amount, in pixels, by which the left image is offset to the
% right of the right image.
%
% o y_offset: amount, in pixels, by which the left image is offset to the
% bottom of the right image.
%
%
*/
MagickExport Image *StereoImage(const Image *left_image,
const Image *right_image,ExceptionInfo *exception)
{
return(StereoAnaglyphImage(left_image,right_image,0,0,exception));
}
MagickExport Image *StereoAnaglyphImage(const Image *left_image,
const Image *right_image,const ssize_t x_offset,const ssize_t y_offset,
ExceptionInfo *exception)
{
#define StereoImageTag "Stereo/Image"
const Image
*image;
Image
*stereo_image;
MagickBooleanType
status;
ssize_t
y;
assert(left_image != (const Image *) NULL);
assert(left_image->signature == MagickCoreSignature);
if (left_image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
left_image->filename);
assert(right_image != (const Image *) NULL);
assert(right_image->signature == MagickCoreSignature);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=left_image;
if ((left_image->columns != right_image->columns) ||
(left_image->rows != right_image->rows))
ThrowImageException(ImageError,"LeftAndRightImageSizesDiffer");
/*
Initialize stereo image attributes.
*/
stereo_image=CloneImage(left_image,left_image->columns,left_image->rows,
MagickTrue,exception);
if (stereo_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(stereo_image,DirectClass,exception) == MagickFalse)
{
stereo_image=DestroyImage(stereo_image);
return((Image *) NULL);
}
(void) SetImageColorspace(stereo_image,sRGBColorspace,exception);
/*
Copy left image to red channel and right image to blue channel.
*/
status=MagickTrue;
for (y=0; y < (ssize_t) stereo_image->rows; y++)
{
register const Quantum
*magick_restrict p,
*magick_restrict q;
register ssize_t
x;
register Quantum
*magick_restrict r;
p=GetVirtualPixels(left_image,-x_offset,y-y_offset,image->columns,1,
exception);
q=GetVirtualPixels(right_image,0,y,right_image->columns,1,exception);
r=QueueAuthenticPixels(stereo_image,0,y,stereo_image->columns,1,exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL) ||
(r == (Quantum *) NULL))
break;
for (x=0; x < (ssize_t) stereo_image->columns; x++)
{
SetPixelRed(stereo_image,GetPixelRed(left_image,p),r);
SetPixelGreen(stereo_image,GetPixelGreen(right_image,q),r);
SetPixelBlue(stereo_image,GetPixelBlue(right_image,q),r);
if ((GetPixelAlphaTraits(stereo_image) & CopyPixelTrait) != 0)
SetPixelAlpha(stereo_image,(GetPixelAlpha(left_image,p)+
GetPixelAlpha(right_image,q))/2,r);
p+=GetPixelChannels(left_image);
q+=GetPixelChannels(right_image);
r+=GetPixelChannels(stereo_image);
}
if (SyncAuthenticPixels(stereo_image,exception) == MagickFalse)
break;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,StereoImageTag,(MagickOffsetType) y,
stereo_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
if (status == MagickFalse)
stereo_image=DestroyImage(stereo_image);
return(stereo_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% S w i r l I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SwirlImage() swirls the pixels about the center of the image, where
% degrees indicates the sweep of the arc through which each pixel is moved.
% You get a more dramatic effect as the degrees move from 1 to 360.
%
% The format of the SwirlImage method is:
%
% Image *SwirlImage(const Image *image,double degrees,
% const PixelInterpolateMethod method,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o degrees: Define the tightness of the swirling effect.
%
% o method: the pixel interpolation method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SwirlImage(const Image *image,double degrees,
const PixelInterpolateMethod method,ExceptionInfo *exception)
{
#define SwirlImageTag "Swirl/Image"
CacheView
*canvas_view,
*interpolate_view,
*swirl_view;
double
radius;
Image
*canvas_image,
*swirl_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PointInfo
center,
scale;
ssize_t
y;
/*
Initialize swirl image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
canvas_image=CloneImage(image,0,0,MagickTrue,exception);
if (canvas_image == (Image *) NULL)
return((Image *) NULL);
if ((canvas_image->alpha_trait == UndefinedPixelTrait) &&
(canvas_image->background_color.alpha != OpaqueAlpha))
(void) SetImageAlphaChannel(canvas_image,OpaqueAlphaChannel,exception);
swirl_image=CloneImage(canvas_image,0,0,MagickTrue,exception);
if (swirl_image == (Image *) NULL)
{
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
if (SetImageStorageClass(swirl_image,DirectClass,exception) == MagickFalse)
{
canvas_image=DestroyImage(canvas_image);
swirl_image=DestroyImage(swirl_image);
return((Image *) NULL);
}
/*
Compute scaling factor.
*/
center.x=(double) canvas_image->columns/2.0;
center.y=(double) canvas_image->rows/2.0;
radius=MagickMax(center.x,center.y);
scale.x=1.0;
scale.y=1.0;
if (canvas_image->columns > canvas_image->rows)
scale.y=(double) canvas_image->columns/(double) canvas_image->rows;
else
if (canvas_image->columns < canvas_image->rows)
scale.x=(double) canvas_image->rows/(double) canvas_image->columns;
degrees=(double) DegreesToRadians(degrees);
/*
Swirl image.
*/
status=MagickTrue;
progress=0;
canvas_view=AcquireVirtualCacheView(canvas_image,exception);
interpolate_view=AcquireVirtualCacheView(image,exception);
swirl_view=AcquireAuthenticCacheView(swirl_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(canvas_image,swirl_image,canvas_image->rows,1)
#endif
for (y=0; y < (ssize_t) canvas_image->rows; y++)
{
double
distance;
PointInfo
delta;
register const Quantum
*magick_restrict p;
register ssize_t
x;
register Quantum
*magick_restrict q;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(canvas_view,0,y,canvas_image->columns,1,
exception);
q=QueueCacheViewAuthenticPixels(swirl_view,0,y,swirl_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
delta.y=scale.y*(double) (y-center.y);
for (x=0; x < (ssize_t) canvas_image->columns; x++)
{
/*
Determine if the pixel is within an ellipse.
*/
delta.x=scale.x*(double) (x-center.x);
distance=delta.x*delta.x+delta.y*delta.y;
if (distance >= (radius*radius))
{
register ssize_t
i;
for (i=0; i < (ssize_t) GetPixelChannels(canvas_image); i++)
{
PixelChannel channel = GetPixelChannelChannel(canvas_image,i);
PixelTrait traits = GetPixelChannelTraits(canvas_image,channel);
PixelTrait swirl_traits = GetPixelChannelTraits(swirl_image,
channel);
if ((traits == UndefinedPixelTrait) ||
(swirl_traits == UndefinedPixelTrait))
continue;
SetPixelChannel(swirl_image,channel,p[i],q);
}
}
else
{
double
cosine,
factor,
sine;
/*
Swirl the pixel.
*/
factor=1.0-sqrt((double) distance)/radius;
sine=sin((double) (degrees*factor*factor));
cosine=cos((double) (degrees*factor*factor));
status=InterpolatePixelChannels(canvas_image,interpolate_view,
swirl_image,method,((cosine*delta.x-sine*delta.y)/scale.x+center.x),
(double) ((sine*delta.x+cosine*delta.y)/scale.y+center.y),q,
exception);
if (status == MagickFalse)
break;
}
p+=GetPixelChannels(canvas_image);
q+=GetPixelChannels(swirl_image);
}
if (SyncCacheViewAuthenticPixels(swirl_view,exception) == MagickFalse)
status=MagickFalse;
if (canvas_image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(canvas_image,SwirlImageTag,progress,
canvas_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
swirl_view=DestroyCacheView(swirl_view);
interpolate_view=DestroyCacheView(interpolate_view);
canvas_view=DestroyCacheView(canvas_view);
canvas_image=DestroyImage(canvas_image);
if (status == MagickFalse)
swirl_image=DestroyImage(swirl_image);
return(swirl_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% T i n t I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% TintImage() applies a color vector to each pixel in the image. The length
% of the vector is 0 for black and white and at its maximum for the midtones.
% The vector weighting function is f(x)=(1-(4.0*((x-0.5)*(x-0.5))))
%
% The format of the TintImage method is:
%
% Image *TintImage(const Image *image,const char *blend,
% const PixelInfo *tint,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o blend: A color value used for tinting.
%
% o tint: A color value used for tinting.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *TintImage(const Image *image,const char *blend,
const PixelInfo *tint,ExceptionInfo *exception)
{
#define TintImageTag "Tint/Image"
CacheView
*image_view,
*tint_view;
double
intensity;
GeometryInfo
geometry_info;
Image
*tint_image;
MagickBooleanType
status;
MagickOffsetType
progress;
PixelInfo
color_vector;
MagickStatusType
flags;
ssize_t
y;
/*
Allocate tint image.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
tint_image=CloneImage(image,0,0,MagickTrue,exception);
if (tint_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(tint_image,DirectClass,exception) == MagickFalse)
{
tint_image=DestroyImage(tint_image);
return((Image *) NULL);
}
if ((IsGrayColorspace(image->colorspace) != MagickFalse) &&
(IsPixelInfoGray(tint) == MagickFalse))
(void) SetImageColorspace(tint_image,sRGBColorspace,exception);
if (blend == (const char *) NULL)
return(tint_image);
/*
Determine RGB values of the color.
*/
GetPixelInfo(image,&color_vector);
flags=ParseGeometry(blend,&geometry_info);
color_vector.red=geometry_info.rho;
color_vector.green=geometry_info.rho;
color_vector.blue=geometry_info.rho;
color_vector.alpha=(MagickRealType) OpaqueAlpha;
if ((flags & SigmaValue) != 0)
color_vector.green=geometry_info.sigma;
if ((flags & XiValue) != 0)
color_vector.blue=geometry_info.xi;
if ((flags & PsiValue) != 0)
color_vector.alpha=geometry_info.psi;
if (image->colorspace == CMYKColorspace)
{
color_vector.black=geometry_info.rho;
if ((flags & PsiValue) != 0)
color_vector.black=geometry_info.psi;
if ((flags & ChiValue) != 0)
color_vector.alpha=geometry_info.chi;
}
intensity=(double) GetPixelInfoIntensity((const Image *) NULL,tint);
color_vector.red=(double) (color_vector.red*tint->red/100.0-intensity);
color_vector.green=(double) (color_vector.green*tint->green/100.0-intensity);
color_vector.blue=(double) (color_vector.blue*tint->blue/100.0-intensity);
color_vector.black=(double) (color_vector.black*tint->black/100.0-intensity);
color_vector.alpha=(double) (color_vector.alpha*tint->alpha/100.0-intensity);
/*
Tint image.
*/
status=MagickTrue;
progress=0;
image_view=AcquireVirtualCacheView(image,exception);
tint_view=AcquireAuthenticCacheView(tint_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(image,tint_image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
q=QueueCacheViewAuthenticPixels(tint_view,0,y,tint_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
PixelInfo
pixel;
double
weight;
GetPixelInfo(image,&pixel);
weight=QuantumScale*GetPixelRed(image,p)-0.5;
pixel.red=(MagickRealType) GetPixelRed(image,p)+color_vector.red*
(1.0-(4.0*(weight*weight)));
weight=QuantumScale*GetPixelGreen(image,p)-0.5;
pixel.green=(MagickRealType) GetPixelGreen(image,p)+color_vector.green*
(1.0-(4.0*(weight*weight)));
weight=QuantumScale*GetPixelBlue(image,p)-0.5;
pixel.blue=(MagickRealType) GetPixelBlue(image,p)+color_vector.blue*
(1.0-(4.0*(weight*weight)));
weight=QuantumScale*GetPixelBlack(image,p)-0.5;
pixel.black=(MagickRealType) GetPixelBlack(image,p)+color_vector.black*
(1.0-(4.0*(weight*weight)));
pixel.alpha=(MagickRealType) GetPixelAlpha(image,p);
SetPixelViaPixelInfo(tint_image,&pixel,q);
p+=GetPixelChannels(image);
q+=GetPixelChannels(tint_image);
}
if (SyncCacheViewAuthenticPixels(tint_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,TintImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
tint_view=DestroyCacheView(tint_view);
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
tint_image=DestroyImage(tint_image);
return(tint_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% V i g n e t t e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% VignetteImage() softens the edges of the image in vignette style.
%
% The format of the VignetteImage method is:
%
% Image *VignetteImage(const Image *image,const double radius,
% const double sigma,const ssize_t x,const ssize_t y,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o radius: the radius of the pixel neighborhood.
%
% o sigma: the standard deviation of the Gaussian, in pixels.
%
% o x, y: Define the x and y ellipse offset.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *VignetteImage(const Image *image,const double radius,
const double sigma,const ssize_t x,const ssize_t y,ExceptionInfo *exception)
{
char
ellipse[MagickPathExtent];
DrawInfo
*draw_info;
Image
*canvas,
*blur_image,
*oval_image,
*vignette_image;
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
canvas=CloneImage(image,0,0,MagickTrue,exception);
if (canvas == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(canvas,DirectClass,exception) == MagickFalse)
{
canvas=DestroyImage(canvas);
return((Image *) NULL);
}
canvas->alpha_trait=BlendPixelTrait;
oval_image=CloneImage(canvas,canvas->columns,canvas->rows,MagickTrue,
exception);
if (oval_image == (Image *) NULL)
{
canvas=DestroyImage(canvas);
return((Image *) NULL);
}
(void) QueryColorCompliance("#000000",AllCompliance,
&oval_image->background_color,exception);
(void) SetImageBackgroundColor(oval_image,exception);
draw_info=CloneDrawInfo((const ImageInfo *) NULL,(const DrawInfo *) NULL);
(void) QueryColorCompliance("#ffffff",AllCompliance,&draw_info->fill,
exception);
(void) QueryColorCompliance("#ffffff",AllCompliance,&draw_info->stroke,
exception);
(void) FormatLocaleString(ellipse,MagickPathExtent,"ellipse %g,%g,%g,%g,"
"0.0,360.0",image->columns/2.0,image->rows/2.0,image->columns/2.0-x,
image->rows/2.0-y);
draw_info->primitive=AcquireString(ellipse);
(void) DrawImage(oval_image,draw_info,exception);
draw_info=DestroyDrawInfo(draw_info);
blur_image=BlurImage(oval_image,radius,sigma,exception);
oval_image=DestroyImage(oval_image);
if (blur_image == (Image *) NULL)
{
canvas=DestroyImage(canvas);
return((Image *) NULL);
}
blur_image->alpha_trait=UndefinedPixelTrait;
(void) CompositeImage(canvas,blur_image,IntensityCompositeOp,MagickTrue,
0,0,exception);
blur_image=DestroyImage(blur_image);
vignette_image=MergeImageLayers(canvas,FlattenLayer,exception);
canvas=DestroyImage(canvas);
if (vignette_image != (Image *) NULL)
(void) TransformImageColorspace(vignette_image,image->colorspace,exception);
return(vignette_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W a v e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WaveImage() creates a "ripple" effect in the image by shifting the pixels
% vertically along a sine wave whose amplitude and wavelength is specified
% by the given parameters.
%
% The format of the WaveImage method is:
%
% Image *WaveImage(const Image *image,const double amplitude,
% const double wave_length,const PixelInterpolateMethod method,
% ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o amplitude, wave_length: Define the amplitude and wave length of the
% sine wave.
%
% o interpolate: the pixel interpolation method.
%
% o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *WaveImage(const Image *image,const double amplitude,
const double wave_length,const PixelInterpolateMethod method,
ExceptionInfo *exception)
{
#define WaveImageTag "Wave/Image"
CacheView
*canvas_image_view,
*wave_view;
Image
*canvas_image,
*wave_image;
MagickBooleanType
status;
MagickOffsetType
progress;
double
*sine_map;
register ssize_t
i;
ssize_t
y;
/*
Initialize wave image attributes.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
canvas_image=CloneImage(image,0,0,MagickTrue,exception);
if (canvas_image == (Image *) NULL)
return((Image *) NULL);
if ((canvas_image->alpha_trait == UndefinedPixelTrait) &&
(canvas_image->background_color.alpha != OpaqueAlpha))
(void) SetImageAlpha(canvas_image,OpaqueAlpha,exception);
wave_image=CloneImage(canvas_image,canvas_image->columns,(size_t)
(canvas_image->rows+2.0*fabs(amplitude)),MagickTrue,exception);
if (wave_image == (Image *) NULL)
{
canvas_image=DestroyImage(canvas_image);
return((Image *) NULL);
}
if (SetImageStorageClass(wave_image,DirectClass,exception) == MagickFalse)
{
canvas_image=DestroyImage(canvas_image);
wave_image=DestroyImage(wave_image);
return((Image *) NULL);
}
/*
Allocate sine map.
*/
sine_map=(double *) AcquireQuantumMemory((size_t) wave_image->columns,
sizeof(*sine_map));
if (sine_map == (double *) NULL)
{
canvas_image=DestroyImage(canvas_image);
wave_image=DestroyImage(wave_image);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
for (i=0; i < (ssize_t) wave_image->columns; i++)
sine_map[i]=fabs(amplitude)+amplitude*sin((double) ((2.0*MagickPI*i)/
wave_length));
/*
Wave image.
*/
status=MagickTrue;
progress=0;
canvas_image_view=AcquireVirtualCacheView(canvas_image,exception);
wave_view=AcquireAuthenticCacheView(wave_image,exception);
(void) SetCacheViewVirtualPixelMethod(canvas_image_view,
BackgroundVirtualPixelMethod);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static) shared(progress,status) \
magick_number_threads(canvas_image,wave_image,wave_image->rows,1)
#endif
for (y=0; y < (ssize_t) wave_image->rows; y++)
{
register const Quantum
*magick_restrict p;
register Quantum
*magick_restrict q;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(canvas_image_view,0,y,canvas_image->columns,1,
exception);
q=QueueCacheViewAuthenticPixels(wave_view,0,y,wave_image->columns,1,
exception);
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) wave_image->columns; x++)
{
status=InterpolatePixelChannels(canvas_image,canvas_image_view,
wave_image,method,(double) x,(double) (y-sine_map[x]),q,exception);
if (status == MagickFalse)
break;
p+=GetPixelChannels(canvas_image);
q+=GetPixelChannels(wave_image);
}
if (SyncCacheViewAuthenticPixels(wave_view,exception) == MagickFalse)
status=MagickFalse;
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(canvas_image,WaveImageTag,progress,
canvas_image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
wave_view=DestroyCacheView(wave_view);
canvas_image_view=DestroyCacheView(canvas_image_view);
canvas_image=DestroyImage(canvas_image);
sine_map=(double *) RelinquishMagickMemory(sine_map);
if (status == MagickFalse)
wave_image=DestroyImage(wave_image);
return(wave_image);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% W a v e l e t D e n o i s e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% WaveletDenoiseImage() removes noise from the image using a wavelet
% transform. The wavelet transform is a fast hierarchical scheme for
% processing an image using a set of consecutive lowpass and high_pass filters,
% followed by a decimation. This results in a decomposition into different
% scales which can be regarded as different “frequency bands”, determined by
% the mother wavelet. Adapted from dcraw.c by David Coffin.
%
% The format of the WaveletDenoiseImage method is:
%
% Image *WaveletDenoiseImage(const Image *image,const double threshold,
% const double softness,ExceptionInfo *exception)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o threshold: set the threshold for smoothing.
%
% o softness: attenuate the smoothing threshold.
%
% o exception: return any errors or warnings in this structure.
%
*/
static inline void HatTransform(const float *magick_restrict pixels,
const size_t stride,const size_t extent,const size_t scale,float *kernel)
{
const float
*magick_restrict p,
*magick_restrict q,
*magick_restrict r;
register ssize_t
i;
p=pixels;
q=pixels+scale*stride;
r=pixels+scale*stride;
for (i=0; i < (ssize_t) scale; i++)
{
kernel[i]=0.25f*(*p+(*p)+(*q)+(*r));
p+=stride;
q-=stride;
r+=stride;
}
for ( ; i < (ssize_t) (extent-scale); i++)
{
kernel[i]=0.25f*(2.0f*(*p)+*(p-scale*stride)+*(p+scale*stride));
p+=stride;
}
q=p-scale*stride;
r=pixels+stride*(extent-2);
for ( ; i < (ssize_t) extent; i++)
{
kernel[i]=0.25f*(*p+(*p)+(*q)+(*r));
p+=stride;
q+=stride;
r-=stride;
}
}
MagickExport Image *WaveletDenoiseImage(const Image *image,
const double threshold,const double softness,ExceptionInfo *exception)
{
CacheView
*image_view,
*noise_view;
float
*kernel,
*pixels;
Image
*noise_image;
MagickBooleanType
status;
MagickSizeType
number_pixels;
MemoryInfo
*pixels_info;
ssize_t
channel;
static const float
noise_levels[] = { 0.8002f, 0.2735f, 0.1202f, 0.0585f, 0.0291f, 0.0152f,
0.0080f, 0.0044f };
/*
Initialize noise image attributes.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
#if defined(MAGICKCORE_OPENCL_SUPPORT)
noise_image=AccelerateWaveletDenoiseImage(image,threshold,exception);
if (noise_image != (Image *) NULL)
return(noise_image);
#endif
noise_image=CloneImage(image,0,0,MagickTrue,exception);
if (noise_image == (Image *) NULL)
return((Image *) NULL);
if (SetImageStorageClass(noise_image,DirectClass,exception) == MagickFalse)
{
noise_image=DestroyImage(noise_image);
return((Image *) NULL);
}
if (AcquireMagickResource(WidthResource,4*image->columns) == MagickFalse)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
pixels_info=AcquireVirtualMemory(3*image->columns,image->rows*
sizeof(*pixels));
kernel=(float *) AcquireQuantumMemory(MagickMax(image->rows,image->columns)+1,
GetOpenMPMaximumThreads()*sizeof(*kernel));
if ((pixels_info == (MemoryInfo *) NULL) || (kernel == (float *) NULL))
{
if (kernel != (float *) NULL)
kernel=(float *) RelinquishMagickMemory(kernel);
if (pixels_info != (MemoryInfo *) NULL)
pixels_info=RelinquishVirtualMemory(pixels_info);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
pixels=(float *) GetVirtualMemoryBlob(pixels_info);
status=MagickTrue;
number_pixels=(MagickSizeType) image->columns*image->rows;
image_view=AcquireAuthenticCacheView(image,exception);
noise_view=AcquireAuthenticCacheView(noise_image,exception);
for (channel=0; channel < (ssize_t) GetPixelChannels(image); channel++)
{
register ssize_t
i;
size_t
high_pass,
low_pass;
ssize_t
level,
y;
PixelChannel
pixel_channel;
PixelTrait
traits;
if (status == MagickFalse)
continue;
traits=GetPixelChannelTraits(image,(PixelChannel) channel);
if (traits == UndefinedPixelTrait)
continue;
pixel_channel=GetPixelChannelChannel(image,channel);
if ((pixel_channel != RedPixelChannel) &&
(pixel_channel != GreenPixelChannel) &&
(pixel_channel != BluePixelChannel))
continue;
/*
Copy channel from image to wavelet pixel array.
*/
i=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
register const Quantum
*magick_restrict p;
ssize_t
x;
p=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
{
status=MagickFalse;
break;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
pixels[i++]=(float) p[channel];
p+=GetPixelChannels(image);
}
}
/*
Low pass filter outputs are called approximation kernel & high pass
filters are referred to as detail kernel. The detail kernel
have high values in the noisy parts of the signal.
*/
high_pass=0;
for (level=0; level < 5; level++)
{
double
magnitude;
ssize_t
x,
y;
low_pass=(size_t) (number_pixels*((level & 0x01)+1));
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) \
magick_number_threads(image,image,image->rows,1)
#endif
for (y=0; y < (ssize_t) image->rows; y++)
{
const int
id = GetOpenMPThreadId();
register float
*magick_restrict p,
*magick_restrict q;
register ssize_t
x;
p=kernel+id*image->columns;
q=pixels+y*image->columns;
HatTransform(q+high_pass,1,image->columns,(size_t) (1UL << level),p);
q+=low_pass;
for (x=0; x < (ssize_t) image->columns; x++)
*q++=(*p++);
}
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp parallel for schedule(static,1) \
magick_number_threads(image,image,image->columns,1)
#endif
for (x=0; x < (ssize_t) image->columns; x++)
{
const int
id = GetOpenMPThreadId();
register float
*magick_restrict p,
*magick_restrict q;
register ssize_t
y;
p=kernel+id*image->rows;
q=pixels+x+low_pass;
HatTransform(q,image->columns,image->rows,(size_t) (1UL << level),p);
for (y=0; y < (ssize_t) image->rows; y++)
{
*q=(*p++);
q+=image->columns;
}
}
/*
To threshold, each coefficient is compared to a threshold value and
attenuated / shrunk by some factor.
*/
magnitude=threshold*noise_levels[level];
for (i=0; i < (ssize_t) number_pixels; ++i)
{
pixels[high_pass+i]-=pixels[low_pass+i];
if (pixels[high_pass+i] < -magnitude)
pixels[high_pass+i]+=magnitude-softness*magnitude;
else
if (pixels[high_pass+i] > magnitude)
pixels[high_pass+i]-=magnitude-softness*magnitude;
else
pixels[high_pass+i]*=softness;
if (high_pass != 0)
pixels[i]+=pixels[high_pass+i];
}
high_pass=low_pass;
}
/*
Reconstruct image from the thresholded wavelet kernel.
*/
i=0;
for (y=0; y < (ssize_t) image->rows; y++)
{
MagickBooleanType
sync;
register Quantum
*magick_restrict q;
register ssize_t
x;
ssize_t
offset;
q=GetCacheViewAuthenticPixels(noise_view,0,y,noise_image->columns,1,
exception);
if (q == (Quantum *) NULL)
{
status=MagickFalse;
break;
}
offset=GetPixelChannelOffset(noise_image,pixel_channel);
for (x=0; x < (ssize_t) image->columns; x++)
{
MagickRealType
pixel;
pixel=(MagickRealType) pixels[i]+pixels[low_pass+i];
q[offset]=ClampToQuantum(pixel);
i++;
q+=GetPixelChannels(noise_image);
}
sync=SyncCacheViewAuthenticPixels(noise_view,exception);
if (sync == MagickFalse)
status=MagickFalse;
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
proceed=SetImageProgress(image,AddNoiseImageTag,(MagickOffsetType)
channel,GetPixelChannels(image));
if (proceed == MagickFalse)
status=MagickFalse;
}
}
noise_view=DestroyCacheView(noise_view);
image_view=DestroyCacheView(image_view);
kernel=(float *) RelinquishMagickMemory(kernel);
pixels_info=RelinquishVirtualMemory(pixels_info);
if (status == MagickFalse)
noise_image=DestroyImage(noise_image);
return(noise_image);
}