/*
* Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <context.h>
#include <context_mgmt.h>
#include <debug.h>
#include <platform.h>
#include <string.h>
#include <utils.h>
#include "psci_private.h"
/*
* SPD power management operations, expected to be supplied by the registered
* SPD on successful SP initialization
*/
const spd_pm_ops_t *psci_spd_pm;
/*
* PSCI requested local power state map. This array is used to store the local
* power states requested by a CPU for power levels from level 1 to
* PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
* level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
* CPU are the same.
*
* During state coordination, the platform is passed an array containing the
* local states requested for a particular non cpu power domain by each cpu
* within the domain.
*
* TODO: Dense packing of the requested states will cause cache thrashing
* when multiple power domains write to it. If we allocate the requested
* states at each power level in a cache-line aligned per-domain memory,
* the cache thrashing can be avoided.
*/
static plat_local_state_t
psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
/*******************************************************************************
* Arrays that hold the platform's power domain tree information for state
* management of power domains.
* Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
* which is an ancestor of a CPU power domain.
* Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
******************************************************************************/
non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
#if USE_COHERENT_MEM
__section("tzfw_coherent_mem")
#endif
;
/* Lock for PSCI state coordination */
DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
const plat_psci_ops_t *psci_plat_pm_ops;
/******************************************************************************
* Check that the maximum power level supported by the platform makes sense
*****************************************************************************/
CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
assert_platform_max_pwrlvl_check);
/*
* The plat_local_state used by the platform is one of these types: RUN,
* RETENTION and OFF. The platform can define further sub-states for each type
* apart from RUN. This categorization is done to verify the sanity of the
* psci_power_state passed by the platform and to print debug information. The
* categorization is done on the basis of the following conditions:
*
* 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
*
* 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
* STATE_TYPE_RETN.
*
* 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
* STATE_TYPE_OFF.
*/
typedef enum plat_local_state_type {
STATE_TYPE_RUN = 0,
STATE_TYPE_RETN,
STATE_TYPE_OFF
} plat_local_state_type_t;
/* The macro used to categorize plat_local_state. */
#define find_local_state_type(plat_local_state) \
((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE) \
? STATE_TYPE_OFF : STATE_TYPE_RETN) \
: STATE_TYPE_RUN)
/******************************************************************************
* Check that the maximum retention level supported by the platform is less
* than the maximum off level.
*****************************************************************************/
CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
assert_platform_max_off_and_retn_state_check);
/******************************************************************************
* This function ensures that the power state parameter in a CPU_SUSPEND request
* is valid. If so, it returns the requested states for each power level.
*****************************************************************************/
int psci_validate_power_state(unsigned int power_state,
psci_power_state_t *state_info)
{
/* Check SBZ bits in power state are zero */
if (psci_check_power_state(power_state))
return PSCI_E_INVALID_PARAMS;
assert(psci_plat_pm_ops->validate_power_state);
/* Validate the power_state using platform pm_ops */
return psci_plat_pm_ops->validate_power_state(power_state, state_info);
}
/******************************************************************************
* This function retrieves the `psci_power_state_t` for system suspend from
* the platform.
*****************************************************************************/
void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
{
/*
* Assert that the required pm_ops hook is implemented to ensure that
* the capability detected during psci_setup() is valid.
*/
assert(psci_plat_pm_ops->get_sys_suspend_power_state);
/*
* Query the platform for the power_state required for system suspend
*/
psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
}
/*******************************************************************************
* This function verifies that the all the other cores in the system have been
* turned OFF and the current CPU is the last running CPU in the system.
* Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
* otherwise.
******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
unsigned int cpu_idx, my_idx = plat_my_core_pos();
for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
if (cpu_idx == my_idx) {
assert(psci_get_aff_info_state() == AFF_STATE_ON);
continue;
}
if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
return 0;
}
return 1;
}
/*******************************************************************************
* Routine to return the maximum power level to traverse to after a cpu has
* been physically powered up. It is expected to be called immediately after
* reset from assembler code.
******************************************************************************/
static unsigned int get_power_on_target_pwrlvl(void)
{
unsigned int pwrlvl;
/*
* Assume that this cpu was suspended and retrieve its target power
* level. If it is invalid then it could only have been turned off
* earlier. PLAT_MAX_PWR_LVL will be the highest power level a
* cpu can be turned off to.
*/
pwrlvl = psci_get_suspend_pwrlvl();
if (pwrlvl == PSCI_INVALID_PWR_LVL)
pwrlvl = PLAT_MAX_PWR_LVL;
return pwrlvl;
}
/******************************************************************************
* Helper function to update the requested local power state array. This array
* does not store the requested state for the CPU power level. Hence an
* assertion is added to prevent us from accessing the wrong index.
*****************************************************************************/
static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
unsigned int cpu_idx,
plat_local_state_t req_pwr_state)
{
/*
* This should never happen, we have this here to avoid
* "array subscript is above array bounds" errors in GCC.
*/
assert(pwrlvl > PSCI_CPU_PWR_LVL);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
#pragma GCC diagnostic pop
}
/******************************************************************************
* This function initializes the psci_req_local_pwr_states.
*****************************************************************************/
void psci_init_req_local_pwr_states(void)
{
/* Initialize the requested state of all non CPU power domains as OFF */
memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
sizeof(psci_req_local_pwr_states));
}
/******************************************************************************
* Helper function to return a reference to an array containing the local power
* states requested by each cpu for a power domain at 'pwrlvl'. The size of the
* array will be the number of cpu power domains of which this power domain is
* an ancestor. These requested states will be used to determine a suitable
* target state for this power domain during psci state coordination. An
* assertion is added to prevent us from accessing the CPU power level.
*****************************************************************************/
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
unsigned int cpu_idx)
{
assert(pwrlvl > PSCI_CPU_PWR_LVL);
return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
}
/*
* psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
* memory.
*
* With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
* it's accessed by both cached and non-cached participants. To serve the common
* minimum, perform a cache flush before read and after write so that non-cached
* participants operate on latest data in main memory.
*
* When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
* memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
* In both cases, no cache operations are required.
*/
/*
* Retrieve local state of non-CPU power domain node from a non-cached CPU,
* after any required cache maintenance operation.
*/
static plat_local_state_t get_non_cpu_pd_node_local_state(
unsigned int parent_idx)
{
#if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
flush_dcache_range(
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
return psci_non_cpu_pd_nodes[parent_idx].local_state;
}
/*
* Update local state of non-CPU power domain node from a cached CPU; perform
* any required cache maintenance operation afterwards.
*/
static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
plat_local_state_t state)
{
psci_non_cpu_pd_nodes[parent_idx].local_state = state;
#if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
flush_dcache_range(
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
#endif
}
/******************************************************************************
* Helper function to return the current local power state of each power domain
* from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
* function will be called after a cpu is powered on to find the local state
* each power domain has emerged from.
*****************************************************************************/
void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
psci_power_state_t *target_state)
{
unsigned int parent_idx, lvl;
plat_local_state_t *pd_state = target_state->pwr_domain_state;
pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local power state from node to state_info */
for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/* Set the the higher levels to RUN */
for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}
/******************************************************************************
* Helper function to set the target local power state that each power domain
* from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
* enter. This function will be called after coordination of requested power
* states has been done for each power level.
*****************************************************************************/
static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
const psci_power_state_t *target_state)
{
unsigned int parent_idx, lvl;
const plat_local_state_t *pd_state = target_state->pwr_domain_state;
psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
/*
* Need to flush as local_state might be accessed with Data Cache
* disabled during power on
*/
psci_flush_cpu_data(psci_svc_cpu_data.local_state);
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local_state from state_info */
for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
}
/*******************************************************************************
* PSCI helper function to get the parent nodes corresponding to a cpu_index.
******************************************************************************/
void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
unsigned int end_lvl,
unsigned int node_index[])
{
unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
unsigned int i;
for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
*node_index++ = parent_node;
parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
}
}
/******************************************************************************
* This function is invoked post CPU power up and initialization. It sets the
* affinity info state, target power state and requested power state for the
* current CPU and all its ancestor power domains to RUN.
*****************************************************************************/
void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
{
unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/* Reset the local_state to RUN for the non cpu power domains. */
for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx,
PSCI_LOCAL_STATE_RUN);
psci_set_req_local_pwr_state(lvl,
cpu_idx,
PSCI_LOCAL_STATE_RUN);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/* Set the affinity info state to ON */
psci_set_aff_info_state(AFF_STATE_ON);
psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
psci_flush_cpu_data(psci_svc_cpu_data);
}
/******************************************************************************
* This function is passed the local power states requested for each power
* domain (state_info) between the current CPU domain and its ancestors until
* the target power level (end_pwrlvl). It updates the array of requested power
* states with this information.
*
* Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
* retrieves the states requested by all the cpus of which the power domain at
* that level is an ancestor. It passes this information to the platform to
* coordinate and return the target power state. If the target state for a level
* is RUN then subsequent levels are not considered. At the CPU level, state
* coordination is not required. Hence, the requested and the target states are
* the same.
*
* The 'state_info' is updated with the target state for each level between the
* CPU and the 'end_pwrlvl' and returned to the caller.
*
* This function will only be invoked with data cache enabled and while
* powering down a core.
*****************************************************************************/
void psci_do_state_coordination(unsigned int end_pwrlvl,
psci_power_state_t *state_info)
{
unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
unsigned int start_idx, ncpus;
plat_local_state_t target_state, *req_states;
assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/* For level 0, the requested state will be equivalent
to target state */
for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
/* First update the requested power state */
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl]);
/* Get the requested power states for this power level */
start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
req_states = psci_get_req_local_pwr_states(lvl, start_idx);
/*
* Let the platform coordinate amongst the requested states at
* this power level and return the target local power state.
*/
ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
target_state = plat_get_target_pwr_state(lvl,
req_states,
ncpus);
state_info->pwr_domain_state[lvl] = target_state;
/* Break early if the negotiated target power state is RUN */
if (is_local_state_run(state_info->pwr_domain_state[lvl]))
break;
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/*
* This is for cases when we break out of the above loop early because
* the target power state is RUN at a power level < end_pwlvl.
* We update the requested power state from state_info and then
* set the target state as RUN.
*/
for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl]);
state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
}
/* Update the target state in the power domain nodes */
psci_set_target_local_pwr_states(end_pwrlvl, state_info);
}
/******************************************************************************
* This function validates a suspend request by making sure that if a standby
* state is requested then no power level is turned off and the highest power
* level is placed in a standby/retention state.
*
* It also ensures that the state level X will enter is not shallower than the
* state level X + 1 will enter.
*
* This validation will be enabled only for DEBUG builds as the platform is
* expected to perform these validations as well.
*****************************************************************************/
int psci_validate_suspend_req(const psci_power_state_t *state_info,
unsigned int is_power_down_state)
{
unsigned int max_off_lvl, target_lvl, max_retn_lvl;
plat_local_state_t state;
plat_local_state_type_t req_state_type, deepest_state_type;
int i;
/* Find the target suspend power level */
target_lvl = psci_find_target_suspend_lvl(state_info);
if (target_lvl == PSCI_INVALID_PWR_LVL)
return PSCI_E_INVALID_PARAMS;
/* All power domain levels are in a RUN state to begin with */
deepest_state_type = STATE_TYPE_RUN;
for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
state = state_info->pwr_domain_state[i];
req_state_type = find_local_state_type(state);
/*
* While traversing from the highest power level to the lowest,
* the state requested for lower levels has to be the same or
* deeper i.e. equal to or greater than the state at the higher
* levels. If this condition is true, then the requested state
* becomes the deepest state encountered so far.
*/
if (req_state_type < deepest_state_type)
return PSCI_E_INVALID_PARAMS;
deepest_state_type = req_state_type;
}
/* Find the highest off power level */
max_off_lvl = psci_find_max_off_lvl(state_info);
/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
max_retn_lvl = PSCI_INVALID_PWR_LVL;
if (target_lvl != max_off_lvl)
max_retn_lvl = target_lvl;
/*
* If this is not a request for a power down state then max off level
* has to be invalid and max retention level has to be a valid power
* level.
*/
if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
max_retn_lvl == PSCI_INVALID_PWR_LVL))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/******************************************************************************
* This function finds the highest power level which will be powered down
* amongst all the power levels specified in the 'state_info' structure
*****************************************************************************/
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
{
int i;
for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
if (is_local_state_off(state_info->pwr_domain_state[i]))
return i;
}
return PSCI_INVALID_PWR_LVL;
}
/******************************************************************************
* This functions finds the level of the highest power domain which will be
* placed in a low power state during a suspend operation.
*****************************************************************************/
unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
{
int i;
for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
if (!is_local_state_run(state_info->pwr_domain_state[i]))
return i;
}
return PSCI_INVALID_PWR_LVL;
}
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree that the operation should be applied to. It picks up locks in order of
* increasing power domain level in the range specified.
******************************************************************************/
void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
unsigned int cpu_idx)
{
unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
unsigned int level;
/* No locking required for level 0. Hence start locking from level 1 */
for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
}
/*******************************************************************************
* This function is passed a cpu_index and the highest level in the topology
* tree that the operation should be applied to. It releases the locks in order
* of decreasing power domain level in the range specified.
******************************************************************************/
void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
unsigned int cpu_idx)
{
unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
int level;
/* Get the parent nodes */
psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
/* Unlock top down. No unlocking required for level 0. */
for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
parent_idx = parent_nodes[level - 1];
psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
}
}
/*******************************************************************************
* Simple routine to determine whether a mpidr is valid or not.
******************************************************************************/
int psci_validate_mpidr(u_register_t mpidr)
{
if (plat_core_pos_by_mpidr(mpidr) < 0)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function determines the full entrypoint information for the requested
* PSCI entrypoint on power on/resume and returns it.
******************************************************************************/
#ifdef AARCH32
static int psci_get_ns_ep_info(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
u_register_t ep_attr;
unsigned int aif, ee, mode;
u_register_t scr = read_scr();
u_register_t ns_sctlr, sctlr;
/* Switch to non secure state */
write_scr(scr | SCR_NS_BIT);
isb();
ns_sctlr = read_sctlr();
sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
/* Return to original state */
write_scr(scr);
isb();
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
zeromem(&ep->args, sizeof(ep->args));
ep->args.arg0 = context_id;
mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
return PSCI_E_SUCCESS;
}
#else
static int psci_get_ns_ep_info(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
u_register_t ep_attr, sctlr;
unsigned int daif, ee, mode;
u_register_t ns_scr_el3 = read_scr_el3();
u_register_t ns_sctlr_el1 = read_sctlr_el1();
sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
if (sctlr & SCTLR_EE_BIT) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
ep->pc = entrypoint;
zeromem(&ep->args, sizeof(ep->args));
ep->args.arg0 = context_id;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
if (ns_scr_el3 & SCR_RW_BIT) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_ADDRESS;
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
}
return PSCI_E_SUCCESS;
}
#endif
/*******************************************************************************
* This function validates the entrypoint with the platform layer if the
* appropriate pm_ops hook is exported by the platform and returns the
* 'entry_point_info'.
******************************************************************************/
int psci_validate_entry_point(entry_point_info_t *ep,
uintptr_t entrypoint,
u_register_t context_id)
{
int rc;
/* Validate the entrypoint using platform psci_ops */
if (psci_plat_pm_ops->validate_ns_entrypoint) {
rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
if (rc != PSCI_E_SUCCESS)
return PSCI_E_INVALID_ADDRESS;
}
/*
* Verify and derive the re-entry information for
* the non-secure world from the non-secure state from
* where this call originated.
*/
rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
return rc;
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses the node information and finds the highest power level powered
* off and performs generic, architectural, platform setup and state management
* to power on that power level and power levels below it.
* e.g. For a cpu that's been powered on, it will call the platform specific
* code to enable the gic cpu interface and for a cluster it will enable
* coherency at the interconnect level in addition to gic cpu interface.
******************************************************************************/
void psci_warmboot_entrypoint(void)
{
unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
/*
* Verify that we have been explicitly turned ON or resumed from
* suspend.
*/
if (psci_get_aff_info_state() == AFF_STATE_OFF) {
ERROR("Unexpected affinity info state");
panic();
}
/*
* Get the maximum power domain level to traverse to after this cpu
* has been physically powered up.
*/
end_pwrlvl = get_power_on_target_pwrlvl();
/*
* This function acquires the lock corresponding to each power level so
* that by the time all locks are taken, the system topology is snapshot
* and state management can be done safely.
*/
psci_acquire_pwr_domain_locks(end_pwrlvl,
cpu_idx);
#if ENABLE_PSCI_STAT
plat_psci_stat_accounting_stop(&state_info);
#endif
psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
/*
* This CPU could be resuming from suspend or it could have just been
* turned on. To distinguish between these 2 cases, we examine the
* affinity state of the CPU:
* - If the affinity state is ON_PENDING then it has just been
* turned on.
* - Else it is resuming from suspend.
*
* Depending on the type of warm reset identified, choose the right set
* of power management handler and perform the generic, architecture
* and platform specific handling.
*/
if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
psci_cpu_on_finish(cpu_idx, &state_info);
else
psci_cpu_suspend_finish(cpu_idx, &state_info);
/*
* Set the requested and target state of this CPU and all the higher
* power domains which are ancestors of this CPU to run.
*/
psci_set_pwr_domains_to_run(end_pwrlvl);
#if ENABLE_PSCI_STAT
/*
* Update PSCI stats.
* Caches are off when writing stats data on the power down path.
* Since caches are now enabled, it's necessary to do cache
* maintenance before reading that same data.
*/
psci_stats_update_pwr_up(end_pwrlvl, &state_info);
#endif
/*
* This loop releases the lock corresponding to each power level
* in the reverse order to which they were acquired.
*/
psci_release_pwr_domain_locks(end_pwrlvl,
cpu_idx);
}
/*******************************************************************************
* This function initializes the set of hooks that PSCI invokes as part of power
* management operation. The power management hooks are expected to be provided
* by the SPD, after it finishes all its initialization
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
assert(pm);
psci_spd_pm = pm;
if (pm->svc_migrate)
psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
if (pm->svc_migrate_info)
psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
| define_psci_cap(PSCI_MIG_INFO_TYPE);
}
/*******************************************************************************
* This function invokes the migrate info hook in the spd_pm_ops. It performs
* the necessary return value validation. If the Secure Payload is UP and
* migrate capable, it returns the mpidr of the CPU on which the Secure payload
* is resident through the mpidr parameter. Else the value of the parameter on
* return is undefined.
******************************************************************************/
int psci_spd_migrate_info(u_register_t *mpidr)
{
int rc;
if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
return PSCI_E_NOT_SUPPORTED;
rc = psci_spd_pm->svc_migrate_info(mpidr);
assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
return rc;
}
/*******************************************************************************
* This function prints the state of all power domains present in the
* system
******************************************************************************/
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
unsigned int idx;
plat_local_state_t state;
plat_local_state_type_t state_type;
/* This array maps to the PSCI_STATE_X definitions in psci.h */
static const char * const psci_state_type_str[] = {
"ON",
"RETENTION",
"OFF",
};
INFO("PSCI Power Domain Map:\n");
for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
idx++) {
state_type = find_local_state_type(
psci_non_cpu_pd_nodes[idx].local_state);
INFO(" Domain Node : Level %u, parent_node %d,"
" State %s (0x%x)\n",
psci_non_cpu_pd_nodes[idx].level,
psci_non_cpu_pd_nodes[idx].parent_node,
psci_state_type_str[state_type],
psci_non_cpu_pd_nodes[idx].local_state);
}
for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
state = psci_get_cpu_local_state_by_idx(idx);
state_type = find_local_state_type(state);
INFO(" CPU Node : MPID 0x%llx, parent_node %d,"
" State %s (0x%x)\n",
(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
psci_cpu_pd_nodes[idx].parent_node,
psci_state_type_str[state_type],
psci_get_cpu_local_state_by_idx(idx));
}
#endif
}
/******************************************************************************
* Return whether any secondaries were powered up with CPU_ON call. A CPU that
* have ever been powered up would have set its MPDIR value to something other
* than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
* PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
* meaningful only when called on the primary CPU during early boot.
*****************************************************************************/
int psci_secondaries_brought_up(void)
{
unsigned int idx, n_valid = 0;
for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
n_valid++;
}
assert(n_valid);
return (n_valid > 1);
}
#if ENABLE_PLAT_COMPAT
/*******************************************************************************
* PSCI Compatibility helper function to return the 'power_state' parameter of
* the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
* if not invoked within CPU_SUSPEND for the current CPU.
******************************************************************************/
int psci_get_suspend_powerstate(void)
{
/* Sanity check to verify that CPU is within CPU_SUSPEND */
if (psci_get_aff_info_state() == AFF_STATE_ON &&
!is_local_state_run(psci_get_cpu_local_state()))
return psci_power_state_compat[plat_my_core_pos()];
return PSCI_INVALID_DATA;
}
/*******************************************************************************
* PSCI Compatibility helper function to return the state id of the current
* cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
* if not invoked within CPU_SUSPEND for the current CPU.
******************************************************************************/
int psci_get_suspend_stateid(void)
{
unsigned int power_state;
power_state = psci_get_suspend_powerstate();
if (power_state != PSCI_INVALID_DATA)
return psci_get_pstate_id(power_state);
return PSCI_INVALID_DATA;
}
/*******************************************************************************
* PSCI Compatibility helper function to return the state id encoded in the
* 'power_state' parameter of the CPU specified by 'mpidr'. Returns
* PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
******************************************************************************/
int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
{
int cpu_idx = plat_core_pos_by_mpidr(mpidr);
if (cpu_idx == -1)
return PSCI_INVALID_DATA;
/* Sanity check to verify that the CPU is in CPU_SUSPEND */
if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
return PSCI_INVALID_DATA;
}
/*******************************************************************************
* This function returns highest affinity level which is in OFF
* state. The affinity instance with which the level is associated is
* determined by the caller.
******************************************************************************/
unsigned int psci_get_max_phys_off_afflvl(void)
{
psci_power_state_t state_info;
zeromem(&state_info, sizeof(state_info));
psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
return psci_find_target_suspend_lvl(&state_info);
}
/*******************************************************************************
* PSCI Compatibility helper function to return target affinity level requested
* for the CPU_SUSPEND. This function assumes affinity levels correspond to
* power domain levels on the platform.
******************************************************************************/
int psci_get_suspend_afflvl(void)
{
return psci_get_suspend_pwrlvl();
}
#endif
/*******************************************************************************
* Initiate power down sequence, by calling power down operations registered for
* this CPU.
******************************************************************************/
void psci_do_pwrdown_sequence(unsigned int power_level)
{
#if HW_ASSISTED_COHERENCY
/*
* With hardware-assisted coherency, the CPU drivers only initiate the
* power down sequence, without performing cache-maintenance operations
* in software. Data caches and MMU remain enabled both before and after
* this call.
*/
prepare_cpu_pwr_dwn(power_level);
#else
/*
* Without hardware-assisted coherency, the CPU drivers disable data
* caches and MMU, then perform cache-maintenance operations in
* software.
*
* We ought to call prepare_cpu_pwr_dwn() to initiate power down
* sequence. We currently have data caches and MMU enabled, but the
* function will return with data caches and MMU disabled. We must
* ensure that the stack memory is flushed out to memory before we start
* popping from it again.
*/
psci_do_pwrdown_cache_maintenance(power_level);
#endif
}