C++程序  |  391行  |  11.83 KB

/*
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#ifndef __GICV3_PRIVATE_H__
#define __GICV3_PRIVATE_H__

#include <assert.h>
#include <gic_common.h>
#include <gicv3.h>
#include <mmio.h>
#include <stdint.h>
#include "../common/gic_common_private.h"

/*******************************************************************************
 * GICv3 private macro definitions
 ******************************************************************************/

/* Constants to indicate the status of the RWP bit */
#define RWP_TRUE		1
#define RWP_FALSE		0

/*
 * Macro to convert an mpidr to a value suitable for programming into a
 * GICD_IROUTER. Bits[31:24] in the MPIDR are cleared as they are not relevant
 * to GICv3.
 */
#define gicd_irouter_val_from_mpidr(mpidr, irm)		\
	((mpidr & ~(0xff << 24)) |			\
	 (irm & IROUTER_IRM_MASK) << IROUTER_IRM_SHIFT)

/*
 * Macro to convert a GICR_TYPER affinity value into a MPIDR value. Bits[31:24]
 * are zeroes.
 */
#ifdef AARCH32
#define mpidr_from_gicr_typer(typer_val)	(((typer_val) >> 32) & 0xffffff)
#else
#define mpidr_from_gicr_typer(typer_val)				 \
	(((((typer_val) >> 56) & MPIDR_AFFLVL_MASK) << MPIDR_AFF3_SHIFT) | \
	 (((typer_val) >> 32) & 0xffffff))
#endif

/*******************************************************************************
 * GICv3 private global variables declarations
 ******************************************************************************/
extern const gicv3_driver_data_t *gicv3_driver_data;

/*******************************************************************************
 * Private GICv3 function prototypes for accessing entire registers.
 * Note: The raw register values correspond to multiple interrupt IDs and
 * the number of interrupt IDs involved depends on the register accessed.
 ******************************************************************************/
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id);
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val);
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val);

/*******************************************************************************
 * Private GICv3 function prototypes for accessing the GIC registers
 * corresponding to a single interrupt ID. These functions use bitwise
 * operations or appropriate register accesses to modify or return
 * the bit-field corresponding the single interrupt ID.
 ******************************************************************************/
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id);
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id);
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id);
unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id);
void gicd_set_igrpmodr(uintptr_t base, unsigned int id);
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id);
void gicr_set_isenabler0(uintptr_t base, unsigned int id);
void gicr_set_icenabler0(uintptr_t base, unsigned int id);
void gicr_set_ispendr0(uintptr_t base, unsigned int id);
void gicr_set_icpendr0(uintptr_t base, unsigned int id);
void gicr_set_igroupr0(uintptr_t base, unsigned int id);
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id);
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id);
void gicr_clr_igroupr0(uintptr_t base, unsigned int id);
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri);

/*******************************************************************************
 * Private GICv3 helper function prototypes
 ******************************************************************************/
void gicv3_spis_configure_defaults(uintptr_t gicd_base);
void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base);
#if !ERROR_DEPRECATED
void gicv3_secure_spis_configure(uintptr_t gicd_base,
				     unsigned int num_ints,
				     const unsigned int *sec_intr_list,
				     unsigned int int_grp);
void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
					unsigned int num_ints,
					const unsigned int *sec_intr_list,
					unsigned int int_grp);
#endif
void gicv3_secure_ppi_sgi_configure_props(uintptr_t gicr_base,
		const interrupt_prop_t *interrupt_props,
		unsigned int interrupt_props_num);
unsigned int gicv3_secure_spis_configure_props(uintptr_t gicd_base,
		const interrupt_prop_t *interrupt_props,
		unsigned int interrupt_props_num);
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
					unsigned int rdistif_num,
					uintptr_t gicr_base,
					mpidr_hash_fn mpidr_to_core_pos);
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base);
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base);

/*******************************************************************************
 * GIC Distributor interface accessors
 ******************************************************************************/
/*
 * Wait for updates to :
 * GICD_CTLR[2:0] - the Group Enables
 * GICD_CTLR[5:4] - the ARE bits
 * GICD_ICENABLERn - the clearing of enable state for SPIs
 */
static inline void gicd_wait_for_pending_write(uintptr_t gicd_base)
{
	while (gicd_read_ctlr(gicd_base) & GICD_CTLR_RWP_BIT)
		;
}

static inline unsigned int gicd_read_pidr2(uintptr_t base)
{
	return mmio_read_32(base + GICD_PIDR2_GICV3);
}

static inline unsigned long long gicd_read_irouter(uintptr_t base, unsigned int id)
{
	assert(id >= MIN_SPI_ID);
	return mmio_read_64(base + GICD_IROUTER + (id << 3));
}

static inline void gicd_write_irouter(uintptr_t base,
				      unsigned int id,
				      unsigned long long affinity)
{
	assert(id >= MIN_SPI_ID);
	mmio_write_64(base + GICD_IROUTER + (id << 3), affinity);
}

static inline void gicd_clr_ctlr(uintptr_t base,
				 unsigned int bitmap,
				 unsigned int rwp)
{
	gicd_write_ctlr(base, gicd_read_ctlr(base) & ~bitmap);
	if (rwp)
		gicd_wait_for_pending_write(base);
}

static inline void gicd_set_ctlr(uintptr_t base,
				 unsigned int bitmap,
				 unsigned int rwp)
{
	gicd_write_ctlr(base, gicd_read_ctlr(base) | bitmap);
	if (rwp)
		gicd_wait_for_pending_write(base);
}

/*******************************************************************************
 * GIC Redistributor interface accessors
 ******************************************************************************/
static inline unsigned long long gicr_read_ctlr(uintptr_t base)
{
	return mmio_read_64(base + GICR_CTLR);
}

static inline void gicr_write_ctlr(uintptr_t base, uint64_t val)
{
	mmio_write_64(base + GICR_CTLR, val);
}

static inline unsigned long long gicr_read_typer(uintptr_t base)
{
	return mmio_read_64(base + GICR_TYPER);
}

static inline unsigned int gicr_read_waker(uintptr_t base)
{
	return mmio_read_32(base + GICR_WAKER);
}

static inline void gicr_write_waker(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_WAKER, val);
}

/*
 * Wait for updates to :
 * GICR_ICENABLER0
 * GICR_CTLR.DPG1S
 * GICR_CTLR.DPG1NS
 * GICR_CTLR.DPG0
 */
static inline void gicr_wait_for_pending_write(uintptr_t gicr_base)
{
	while (gicr_read_ctlr(gicr_base) & GICR_CTLR_RWP_BIT)
		;
}

static inline void gicr_wait_for_upstream_pending_write(uintptr_t gicr_base)
{
	while (gicr_read_ctlr(gicr_base) & GICR_CTLR_UWP_BIT)
		;
}

/* Private implementation of Distributor power control hooks */
void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num);
void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num);

/*******************************************************************************
 * GIC Re-distributor functions for accessing entire registers.
 * Note: The raw register values correspond to multiple interrupt IDs and
 * the number of interrupt IDs involved depends on the register accessed.
 ******************************************************************************/
static inline unsigned int gicr_read_icenabler0(uintptr_t base)
{
	return mmio_read_32(base + GICR_ICENABLER0);
}

static inline void gicr_write_icenabler0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ICENABLER0, val);
}

static inline unsigned int gicr_read_isenabler0(uintptr_t base)
{
	return mmio_read_32(base + GICR_ISENABLER0);
}

static inline void gicr_write_icpendr0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ICPENDR0, val);
}

static inline void gicr_write_isenabler0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ISENABLER0, val);
}

static inline unsigned int gicr_read_igroupr0(uintptr_t base)
{
	return mmio_read_32(base + GICR_IGROUPR0);
}

static inline unsigned int gicr_read_ispendr0(uintptr_t base)
{
	return mmio_read_32(base + GICR_ISPENDR0);
}

static inline void gicr_write_ispendr0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ISPENDR0, val);
}

static inline void gicr_write_igroupr0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_IGROUPR0, val);
}

static inline unsigned int gicr_read_igrpmodr0(uintptr_t base)
{
	return mmio_read_32(base + GICR_IGRPMODR0);
}

static inline void gicr_write_igrpmodr0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_IGRPMODR0, val);
}

static inline unsigned int gicr_read_nsacr(uintptr_t base)
{
	return mmio_read_32(base + GICR_NSACR);
}

static inline void gicr_write_nsacr(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_NSACR, val);
}

static inline unsigned int gicr_read_isactiver0(uintptr_t base)
{
	return mmio_read_32(base + GICR_ISACTIVER0);
}

static inline void gicr_write_isactiver0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ISACTIVER0, val);
}

static inline unsigned int gicr_read_icfgr0(uintptr_t base)
{
	return mmio_read_32(base + GICR_ICFGR0);
}

static inline unsigned int gicr_read_icfgr1(uintptr_t base)
{
	return mmio_read_32(base + GICR_ICFGR1);
}

static inline void gicr_write_icfgr0(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ICFGR0, val);
}

static inline void gicr_write_icfgr1(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_ICFGR1, val);
}

static inline unsigned int gicr_read_propbaser(uintptr_t base)
{
	return mmio_read_32(base + GICR_PROPBASER);
}

static inline void gicr_write_propbaser(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_PROPBASER, val);
}

static inline unsigned int gicr_read_pendbaser(uintptr_t base)
{
	return mmio_read_32(base + GICR_PENDBASER);
}

static inline void gicr_write_pendbaser(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GICR_PENDBASER, val);
}

/*******************************************************************************
 * GIC ITS functions to read and write entire ITS registers.
 ******************************************************************************/
static inline uint32_t gits_read_ctlr(uintptr_t base)
{
	return mmio_read_32(base + GITS_CTLR);
}

static inline void gits_write_ctlr(uintptr_t base, unsigned int val)
{
	mmio_write_32(base + GITS_CTLR, val);
}

static inline uint64_t gits_read_cbaser(uintptr_t base)
{
	return mmio_read_64(base + GITS_CBASER);
}

static inline void gits_write_cbaser(uintptr_t base, uint64_t val)
{
	mmio_write_32(base + GITS_CBASER, val);
}

static inline uint64_t gits_read_cwriter(uintptr_t base)
{
	return mmio_read_64(base + GITS_CWRITER);
}

static inline void gits_write_cwriter(uintptr_t base, uint64_t val)
{
	mmio_write_32(base + GITS_CWRITER, val);
}

static inline uint64_t gits_read_baser(uintptr_t base, unsigned int its_table_id)
{
	assert(its_table_id < 8);
	return mmio_read_64(base + GITS_BASER + (8 * its_table_id));
}

static inline void gits_write_baser(uintptr_t base, unsigned int its_table_id, uint64_t val)
{
	assert(its_table_id < 8);
	mmio_write_64(base + GITS_BASER + (8 * its_table_id), val);
}

/*
 * Wait for Quiescent bit when GIC ITS is disabled
 */
static inline void gits_wait_for_quiescent_bit(uintptr_t gits_base)
{
	assert(!(gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT));
	while ((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) == 0)
		;
}


#endif /* __GICV3_PRIVATE_H__ */