C++程序  |  532行  |  17.65 KB

/*
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <debug.h>
#include <gic_common.h>
#include <gicv2.h>
#include <interrupt_props.h>
#include <spinlock.h>
#include "../common/gic_common_private.h"
#include "gicv2_private.h"

static const gicv2_driver_data_t *driver_data;

/*
 * Spinlock to guard registers needing read-modify-write. APIs protected by this
 * spinlock are used either at boot time (when only a single CPU is active), or
 * when the system is fully coherent.
 */
spinlock_t gic_lock;

/*******************************************************************************
 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
 * and set the priority mask register to allow all interrupts to trickle in.
 ******************************************************************************/
void gicv2_cpuif_enable(void)
{
	unsigned int val;

	assert(driver_data);
	assert(driver_data->gicc_base);

	/*
	 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
	 * bypass.
	 */
	val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
	val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;

	/* Program the idle priority in the PMR */
	gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
	gicc_write_ctlr(driver_data->gicc_base, val);
}

/*******************************************************************************
 * Place the cpu interface in a state where it can never make a cpu exit wfi as
 * as result of an asserted interrupt. This is critical for powering down a cpu
 ******************************************************************************/
void gicv2_cpuif_disable(void)
{
	unsigned int val;

	assert(driver_data);
	assert(driver_data->gicc_base);

	/* Disable secure, non-secure interrupts and disable their bypass */
	val = gicc_read_ctlr(driver_data->gicc_base);
	val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
	val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
	val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
	gicc_write_ctlr(driver_data->gicc_base, val);
}

/*******************************************************************************
 * Per cpu gic distributor setup which will be done by all cpus after a cold
 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
 ******************************************************************************/
void gicv2_pcpu_distif_init(void)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

#if !ERROR_DEPRECATED
	if (driver_data->interrupt_props != NULL) {
#endif
		gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
				driver_data->interrupt_props,
				driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(driver_data->g0_interrupt_array);
		gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
				driver_data->g0_interrupt_num,
				driver_data->g0_interrupt_array);
	}
#endif
}

/*******************************************************************************
 * Global gic distributor init which will be done by the primary cpu after a
 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
 * then enables the secure GIC distributor interface.
 ******************************************************************************/
void gicv2_distif_init(void)
{
	unsigned int ctlr;

	assert(driver_data);
	assert(driver_data->gicd_base);

	/* Disable the distributor before going further */
	ctlr = gicd_read_ctlr(driver_data->gicd_base);
	gicd_write_ctlr(driver_data->gicd_base,
			ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));

	/* Set the default attribute of all SPIs */
	gicv2_spis_configure_defaults(driver_data->gicd_base);

#if !ERROR_DEPRECATED
	if (driver_data->interrupt_props != NULL) {
#endif
		gicv2_secure_spis_configure_props(driver_data->gicd_base,
				driver_data->interrupt_props,
				driver_data->interrupt_props_num);
#if !ERROR_DEPRECATED
	} else {
		assert(driver_data->g0_interrupt_array);

		/* Configure the G0 SPIs */
		gicv2_secure_spis_configure(driver_data->gicd_base,
				driver_data->g0_interrupt_num,
				driver_data->g0_interrupt_array);
	}
#endif

	/* Re-enable the secure SPIs now that they have been configured */
	gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
}

/*******************************************************************************
 * Initialize the ARM GICv2 driver with the provided platform inputs
 ******************************************************************************/
void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
{
	unsigned int gic_version;
	assert(plat_driver_data);
	assert(plat_driver_data->gicd_base);
	assert(plat_driver_data->gicc_base);

#if !ERROR_DEPRECATED
	if (plat_driver_data->interrupt_props == NULL) {
		/* Interrupt properties array size must be 0 */
		assert(plat_driver_data->interrupt_props_num == 0);

		/* The platform should provide a list of secure interrupts */
		assert(plat_driver_data->g0_interrupt_array);

		/*
		 * If there are no interrupts of a particular type, then the
		 * number of interrupts of that type should be 0 and vice-versa.
		 */
		assert(plat_driver_data->g0_interrupt_array ?
				plat_driver_data->g0_interrupt_num :
				plat_driver_data->g0_interrupt_num == 0);
	}
#else
	assert(plat_driver_data->interrupt_props != NULL);
	assert(plat_driver_data->interrupt_props_num > 0);
#endif

	/* Ensure that this is a GICv2 system */
	gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
	gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
					& PIDR2_ARCH_REV_MASK;
	assert(gic_version == ARCH_REV_GICV2);

	driver_data = plat_driver_data;

	/*
	 * The GIC driver data is initialized by the primary CPU with caches
	 * enabled. When the secondary CPU boots up, it initializes the
	 * GICC/GICR interface with the caches disabled. Hence flush the
	 * driver_data to ensure coherency. This is not required if the
	 * platform has HW_ASSISTED_COHERENCY enabled.
	 */
#if !HW_ASSISTED_COHERENCY
	flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
	flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
#endif
	INFO("ARM GICv2 driver initialized\n");
}

/******************************************************************************
 * This function returns whether FIQ is enabled in the GIC CPU interface.
 *****************************************************************************/
unsigned int gicv2_is_fiq_enabled(void)
{
	unsigned int gicc_ctlr;

	assert(driver_data);
	assert(driver_data->gicc_base);

	gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
	return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
}

/*******************************************************************************
 * This function returns the type of the highest priority pending interrupt at
 * the GIC cpu interface. The return values can be one of the following :
 *   PENDING_G1_INTID   : The interrupt type is non secure Group 1.
 *   0 - 1019           : The interrupt type is secure Group 0.
 *   GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
 *                            sufficient priority to be signaled
 ******************************************************************************/
unsigned int gicv2_get_pending_interrupt_type(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
}

/*******************************************************************************
 * This function returns the id of the highest priority pending interrupt at
 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
 * interrupt pending.
 ******************************************************************************/
unsigned int gicv2_get_pending_interrupt_id(void)
{
	unsigned int id;

	assert(driver_data);
	assert(driver_data->gicc_base);

	id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;

	/*
	 * Find out which non-secure interrupt it is under the assumption that
	 * the GICC_CTLR.AckCtl bit is 0.
	 */
	if (id == PENDING_G1_INTID)
		id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;

	return id;
}

/*******************************************************************************
 * This functions reads the GIC cpu interface Interrupt Acknowledge register
 * to start handling the pending secure 0 interrupt. It returns the
 * contents of the IAR.
 ******************************************************************************/
unsigned int gicv2_acknowledge_interrupt(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_IAR(driver_data->gicc_base);
}

/*******************************************************************************
 * This functions writes the GIC cpu interface End Of Interrupt register with
 * the passed value to finish handling the active secure group 0 interrupt.
 ******************************************************************************/
void gicv2_end_of_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	gicc_write_EOIR(driver_data->gicc_base, id);
}

/*******************************************************************************
 * This function returns the type of the interrupt id depending upon the group
 * this interrupt has been configured under by the interrupt controller i.e.
 * group0 secure or group1 non secure. It returns zero for Group 0 secure and
 * one for Group 1 non secure interrupt.
 ******************************************************************************/
unsigned int gicv2_get_interrupt_group(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	return gicd_get_igroupr(driver_data->gicd_base, id);
}

/*******************************************************************************
 * This function returns the priority of the interrupt the processor is
 * currently servicing.
 ******************************************************************************/
unsigned int gicv2_get_running_priority(void)
{
	assert(driver_data);
	assert(driver_data->gicc_base);

	return gicc_read_rpr(driver_data->gicc_base);
}

/*******************************************************************************
 * This function sets the GICv2 target mask pattern for the current PE. The PE
 * target mask is used to translate linear PE index (returned by platform core
 * position) to a bit mask used when targeting interrupts to a PE, viz. when
 * raising SGIs and routing SPIs.
 ******************************************************************************/
void gicv2_set_pe_target_mask(unsigned int proc_num)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(driver_data->target_masks);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(proc_num < driver_data->target_masks_num);

	/* Return if the target mask is already populated */
	if (driver_data->target_masks[proc_num])
		return;

	/* Read target register corresponding to this CPU */
	driver_data->target_masks[proc_num] =
		gicv2_get_cpuif_id(driver_data->gicd_base);
}

/*******************************************************************************
 * This function returns the active status of the interrupt (either because the
 * state is active, or active and pending).
 ******************************************************************************/
unsigned int gicv2_get_interrupt_active(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	return gicd_get_isactiver(driver_data->gicd_base, id);
}

/*******************************************************************************
 * This function enables the interrupt identified by id.
 ******************************************************************************/
void gicv2_enable_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before enabling interrupt.
	 */
	dsbishst();
	gicd_set_isenabler(driver_data->gicd_base, id);
}

/*******************************************************************************
 * This function disables the interrupt identified by id.
 ******************************************************************************/
void gicv2_disable_interrupt(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/*
	 * Disable interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	gicd_set_icenabler(driver_data->gicd_base, id);
	dsbishst();
}

/*******************************************************************************
 * This function sets the interrupt priority as supplied for the given interrupt
 * id.
 ******************************************************************************/
void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
}

/*******************************************************************************
 * This function assigns group for the interrupt identified by id. The group can
 * be any of GICV2_INTR_GROUP*
 ******************************************************************************/
void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
{
	assert(driver_data);
	assert(driver_data->gicd_base);
	assert(id <= MAX_SPI_ID);

	/* Serialize read-modify-write to Distributor registers */
	spin_lock(&gic_lock);
	switch (type) {
	case GICV2_INTR_GROUP1:
		gicd_set_igroupr(driver_data->gicd_base, id);
		break;
	case GICV2_INTR_GROUP0:
		gicd_clr_igroupr(driver_data->gicd_base, id);
		break;
	default:
		assert(0);
	}
	spin_unlock(&gic_lock);
}

/*******************************************************************************
 * This function raises the specified SGI to requested targets.
 *
 * The proc_num parameter must be the linear index of the target PE in the
 * system.
 ******************************************************************************/
void gicv2_raise_sgi(int sgi_num, int proc_num)
{
	unsigned int sgir_val, target;

	assert(driver_data);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(driver_data->gicd_base);

	/*
	 * Target masks array must have been supplied, and the core position
	 * should be valid.
	 */
	assert(driver_data->target_masks);
	assert(proc_num < driver_data->target_masks_num);

	/* Don't raise SGI if the mask hasn't been populated */
	target = driver_data->target_masks[proc_num];
	assert(target != 0);

	sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before raising SGI.
	 */
	dsbishst();
	gicd_write_sgir(driver_data->gicd_base, sgir_val);
}

/*******************************************************************************
 * This function sets the interrupt routing for the given SPI interrupt id.
 * The interrupt routing is specified in routing mode. The proc_num parameter is
 * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
 * all PEs.
 ******************************************************************************/
void gicv2_set_spi_routing(unsigned int id, int proc_num)
{
	int target;

	assert(driver_data);
	assert(driver_data->gicd_base);

	assert(id >= MIN_SPI_ID && id <= MAX_SPI_ID);

	/*
	 * Target masks array must have been supplied, and the core position
	 * should be valid.
	 */
	assert(driver_data->target_masks);
	assert(proc_num < GICV2_MAX_TARGET_PE);
	assert(proc_num < driver_data->target_masks_num);

	if (proc_num < 0) {
		/* Target all PEs */
		target = GIC_TARGET_CPU_MASK;
	} else {
		/* Don't route interrupt if the mask hasn't been populated */
		target = driver_data->target_masks[proc_num];
		assert(target != 0);
	}

	gicd_set_itargetsr(driver_data->gicd_base, id, target);
}

/*******************************************************************************
 * This function clears the pending status of an interrupt identified by id.
 ******************************************************************************/
void gicv2_clear_interrupt_pending(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	/* SGIs can't be cleared pending */
	assert(id >= MIN_PPI_ID);

	/*
	 * Clear pending interrupt, and ensure that any shared variable updates
	 * depending on out of band interrupt trigger are observed afterwards.
	 */
	gicd_set_icpendr(driver_data->gicd_base, id);
	dsbishst();
}

/*******************************************************************************
 * This function sets the pending status of an interrupt identified by id.
 ******************************************************************************/
void gicv2_set_interrupt_pending(unsigned int id)
{
	assert(driver_data);
	assert(driver_data->gicd_base);

	/* SGIs can't be cleared pending */
	assert(id >= MIN_PPI_ID);

	/*
	 * Ensure that any shared variable updates depending on out of band
	 * interrupt trigger are observed before setting interrupt pending.
	 */
	dsbishst();
	gicd_set_ispendr(driver_data->gicd_base, id);
}

/*******************************************************************************
 * This function sets the PMR register with the supplied value. Returns the
 * original PMR.
 ******************************************************************************/
unsigned int gicv2_set_pmr(unsigned int mask)
{
	unsigned int old_mask;

	assert(driver_data);
	assert(driver_data->gicc_base);

	old_mask = gicc_read_pmr(driver_data->gicc_base);

	/*
	 * Order memory updates w.r.t. PMR write, and ensure they're visible
	 * before potential out of band interrupt trigger because of PMR update.
	 */
	dmbishst();
	gicc_write_pmr(driver_data->gicc_base, mask);
	dsbishst();

	return old_mask;
}