/*
* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define LOG_NDEBUG 1
#include <errno.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dlfcn.h>
#include <stdlib.h>
#include <time.h>
#define LOG_TAG "QCOM PowerHAL"
#include <utils/Log.h>
#include <hardware/power.h>
#include <cutils/properties.h>
#include "utils.h"
#include "metadata-defs.h"
#include "hint-data.h"
#include "performance.h"
#include "power-common.h"
#include "power-helper.h"
#define USINSEC 1000000L
#define NSINUS 1000L
#ifndef RPM_STAT
#define RPM_STAT "/d/rpm_stats"
#endif
#ifndef RPM_MASTER_STAT
#define RPM_MASTER_STAT "/d/rpm_master_stats"
#endif
#ifndef WLAN_POWER_STAT
#define WLAN_POWER_STAT "/d/wlan_wcnss/power_stats"
#endif
static const char *rpm_param_names[] = {
"vlow_count",
"accumulated_vlow_time",
"vmin_count",
"accumulated_vmin_time"
};
static const char *rpm_master_param_names[] = {
"xo_accumulated_duration",
"xo_count",
"xo_accumulated_duration",
"xo_count",
"xo_accumulated_duration",
"xo_count",
"xo_accumulated_duration",
"xo_count"
};
static const char *wlan_param_names[] = {
"cumulative_sleep_time_ms",
"cumulative_total_on_time_ms",
"deep_sleep_enter_counter",
"last_deep_sleep_enter_tstamp_ms"
};
static int saved_dcvs_cpu0_slack_max = -1;
static int saved_dcvs_cpu0_slack_min = -1;
static int saved_mpdecision_slack_max = -1;
static int saved_mpdecision_slack_min = -1;
static int saved_interactive_mode = -1;
static int slack_node_rw_failed = 0;
static int display_hint_sent;
int display_boost;
static int sustained_mode_handle = 0;
static int vr_mode_handle = 0;
int sustained_performance_mode = 0;
int vr_mode = 0;
//interaction boost global variables
static struct timespec s_previous_boost_timespec;
static int s_previous_duration;
void power_init(void)
{
ALOGV("QCOM power HAL initing.");
int fd;
char buf[10] = {0};
fd = open("/sys/devices/soc0/soc_id", O_RDONLY);
if (fd >= 0) {
if (read(fd, buf, sizeof(buf) - 1) == -1) {
ALOGW("Unable to read soc_id");
} else {
int soc_id = atoi(buf);
if (soc_id == 194 || (soc_id >= 208 && soc_id <= 218) || soc_id == 178) {
display_boost = 1;
}
}
close(fd);
}
}
int __attribute__ ((weak)) power_hint_override(power_hint_t UNUSED(hint),
void * UNUSED(data))
{
return HINT_NONE;
}
/* Declare function before use */
void interaction(int duration, int num_args, int opt_list[]);
void release_request(int lock_handle);
static long long calc_timespan_us(struct timespec start, struct timespec end) {
long long diff_in_us = 0;
diff_in_us += (end.tv_sec - start.tv_sec) * USINSEC;
diff_in_us += (end.tv_nsec - start.tv_nsec) / NSINUS;
return diff_in_us;
}
void power_hint(power_hint_t hint, void *data)
{
/* Check if this hint has been overridden. */
if (power_hint_override(hint, data) == HINT_HANDLED) {
/* The power_hint has been handled. We can skip the rest. */
return;
}
switch(hint) {
case POWER_HINT_VSYNC:
break;
/* Sustained performance mode:
* All CPUs are capped to ~1.2GHz
* GPU frequency is capped to 315MHz
*/
/* VR+Sustained performance mode:
* All CPUs are locked to ~1.2GHz
* GPU frequency is locked to 315MHz
* GPU BW min_freq is raised to 775MHz
*/
case POWER_HINT_SUSTAINED_PERFORMANCE:
{
int duration = 0;
if (data && sustained_performance_mode == 0) {
int* resources;
if (vr_mode == 0) { // Sustained mode only.
// Ensure that POWER_HINT_LAUNCH is not in progress.
if (launch_mode == 1) {
release_request(launch_handle);
launch_mode = 0;
}
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40804000, 1209, 0x40804100, 1209,
0x42C24000, 133, 0x42C20000, 315,
0x42C28000, 7759};
sustained_mode_handle = interaction_with_handle(
sustained_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
} else if (vr_mode == 1) { // Sustained + VR mode.
release_request(vr_mode_handle);
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x40800000: cpu0 min freq
// 0x40800100: cpu2 min freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40800000, 1209, 0x40800100, 1209,
0x40804000, 1209, 0x40804100, 1209,
0x42C24000, 315, 0x42C20000, 315,
0x42C28000, 7759};
sustained_mode_handle = interaction_with_handle(
sustained_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
}
sustained_performance_mode = 1;
} else if (sustained_performance_mode == 1) {
release_request(sustained_mode_handle);
if (vr_mode == 1) { // Switch back to VR Mode.
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x40800000: cpu0 min freq
// 0x40800100: cpu2 min freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40804000, 1440, 0x40804100, 1440,
0x40800000, 1440, 0x40800100, 1440,
0x42C20000, 510, 0x42C24000, 510,
0x42C28000, 7759};
vr_mode_handle = interaction_with_handle(
vr_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
}
sustained_performance_mode = 0;
}
}
break;
/* VR mode:
* All CPUs are locked at ~1.4GHz
* GPU frequency is locked to 510MHz
* GPU BW min_freq is raised to 775MHz
*/
case POWER_HINT_VR_MODE:
{
int duration = 0;
if (data && vr_mode == 0) {
if (sustained_performance_mode == 0) { // VR mode only.
// Ensure that POWER_HINT_LAUNCH is not in progress.
if (launch_mode == 1) {
release_request(launch_handle);
launch_mode = 0;
}
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x40800000: cpu0 min freq
// 0x40800100: cpu2 min freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40800000, 1440, 0x40800100, 1440,
0x40804000, 1440, 0x40804100, 1440,
0x42C20000, 510, 0x42C24000, 510,
0x42C28000, 7759};
vr_mode_handle = interaction_with_handle(
vr_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
} else if (sustained_performance_mode == 1) { // Sustained + VR mode.
release_request(sustained_mode_handle);
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x40800000: cpu0 min freq
// 0x40800100: cpu2 min freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40800000, 1209, 0x40800100, 1209,
0x40804000, 1209, 0x40804100, 1209,
0x42C24000, 315, 0x42C20000, 315,
0x42C28000, 7759};
vr_mode_handle = interaction_with_handle(
vr_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
}
vr_mode = 1;
} else if (vr_mode == 1) {
release_request(vr_mode_handle);
if (sustained_performance_mode == 1) { // Switch back to sustained Mode.
// 0x40804000: cpu0 max freq
// 0x40804100: cpu2 max freq
// 0x40800000: cpu0 min freq
// 0x40800100: cpu2 min freq
// 0x42C20000: gpu max freq
// 0x42C24000: gpu min freq
// 0x42C28000: gpu bus min freq
int resources[] = {0x40800000, 0, 0x40800100, 0,
0x40804000, 1209, 0x40804100, 1209,
0x42C24000, 133, 0x42C20000, 315,
0x42C28000, 0};
sustained_mode_handle = interaction_with_handle(
sustained_mode_handle, duration,
sizeof(resources) / sizeof(resources[0]), resources);
}
vr_mode = 0;
}
}
break;
case POWER_HINT_INTERACTION:
{
char governor[80];
if (get_scaling_governor(governor, sizeof(governor)) == -1) {
ALOGE("Can't obtain scaling governor.");
return;
}
if (sustained_performance_mode || vr_mode) {
return;
}
int duration = 1500; // 1.5s by default
if (data) {
int input_duration = *((int*)data) + 750;
if (input_duration > duration) {
duration = (input_duration > 5750) ? 5750 : input_duration;
}
}
struct timespec cur_boost_timespec;
clock_gettime(CLOCK_MONOTONIC, &cur_boost_timespec);
long long elapsed_time = calc_timespan_us(s_previous_boost_timespec, cur_boost_timespec);
// don't hint if previous hint's duration covers this hint's duration
if ((s_previous_duration * 1000) > (elapsed_time + duration * 1000)) {
return;
}
s_previous_boost_timespec = cur_boost_timespec;
s_previous_duration = duration;
// Scheduler is EAS.
if (true || strncmp(governor, SCHED_GOVERNOR, strlen(SCHED_GOVERNOR)) == 0) {
// Setting the value of foreground schedtune boost to 50 and
// scaling_min_freq to 1100MHz.
int resources[] = {0x40800000, 1100, 0x40800100, 1100, 0x42C0C000, 0x32, 0x41800000, 0x33};
interaction(duration, sizeof(resources)/sizeof(resources[0]), resources);
} else { // Scheduler is HMP.
int resources[] = {0x41800000, 0x33, 0x40800000, 1000, 0x40800100, 1000, 0x40C00000, 0x1};
interaction(duration, sizeof(resources)/sizeof(resources[0]), resources);
}
}
break;
default:
break;
}
}
int __attribute__ ((weak)) set_interactive_override(int UNUSED(on))
{
return HINT_NONE;
}
void power_set_interactive(int on)
{
char governor[80];
char tmp_str[NODE_MAX];
struct video_encode_metadata_t video_encode_metadata;
int rc = 0;
if (set_interactive_override(on) == HINT_HANDLED) {
return;
}
ALOGV("Got set_interactive hint");
if (get_scaling_governor(governor, sizeof(governor)) == -1) {
ALOGE("Can't obtain scaling governor.");
return;
}
if (!on) {
/* Display off. */
if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(ONDEMAND_GOVERNOR))) {
int resource_values[] = {DISPLAY_OFF, MS_500, THREAD_MIGRATION_SYNC_OFF};
if (!display_hint_sent) {
perform_hint_action(DISPLAY_STATE_HINT_ID,
resource_values, sizeof(resource_values)/sizeof(resource_values[0]));
display_hint_sent = 1;
}
} else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) {
int resource_values[] = {TR_MS_50, THREAD_MIGRATION_SYNC_OFF};
if (!display_hint_sent) {
perform_hint_action(DISPLAY_STATE_HINT_ID,
resource_values, sizeof(resource_values)/sizeof(resource_values[0]));
display_hint_sent = 1;
}
} else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(MSMDCVS_GOVERNOR))) {
if (saved_interactive_mode == 1){
/* Display turned off. */
if (sysfs_read(DCVS_CPU0_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) {
if (!slack_node_rw_failed) {
ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MAX_NODE);
}
rc = 1;
} else {
saved_dcvs_cpu0_slack_max = atoi(tmp_str);
}
if (sysfs_read(DCVS_CPU0_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) {
if (!slack_node_rw_failed) {
ALOGE("Failed to read from %s", DCVS_CPU0_SLACK_MIN_NODE);
}
rc = 1;
} else {
saved_dcvs_cpu0_slack_min = atoi(tmp_str);
}
if (sysfs_read(MPDECISION_SLACK_MAX_NODE, tmp_str, NODE_MAX - 1)) {
if (!slack_node_rw_failed) {
ALOGE("Failed to read from %s", MPDECISION_SLACK_MAX_NODE);
}
rc = 1;
} else {
saved_mpdecision_slack_max = atoi(tmp_str);
}
if (sysfs_read(MPDECISION_SLACK_MIN_NODE, tmp_str, NODE_MAX - 1)) {
if(!slack_node_rw_failed) {
ALOGE("Failed to read from %s", MPDECISION_SLACK_MIN_NODE);
}
rc = 1;
} else {
saved_mpdecision_slack_min = atoi(tmp_str);
}
/* Write new values. */
if (saved_dcvs_cpu0_slack_max != -1) {
snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_max);
if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) {
if (!slack_node_rw_failed) {
ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE);
}
rc = 1;
}
}
if (saved_dcvs_cpu0_slack_min != -1) {
snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_dcvs_cpu0_slack_min);
if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) {
if(!slack_node_rw_failed) {
ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE);
}
rc = 1;
}
}
if (saved_mpdecision_slack_max != -1) {
snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_max);
if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) {
if(!slack_node_rw_failed) {
ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE);
}
rc = 1;
}
}
if (saved_mpdecision_slack_min != -1) {
snprintf(tmp_str, NODE_MAX, "%d", 10 * saved_mpdecision_slack_min);
if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) {
if(!slack_node_rw_failed) {
ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE);
}
rc = 1;
}
}
}
slack_node_rw_failed = rc;
}
} else {
/* Display on. */
if ((strncmp(governor, ONDEMAND_GOVERNOR, strlen(ONDEMAND_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(ONDEMAND_GOVERNOR))) {
undo_hint_action(DISPLAY_STATE_HINT_ID);
display_hint_sent = 0;
} else if ((strncmp(governor, INTERACTIVE_GOVERNOR, strlen(INTERACTIVE_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(INTERACTIVE_GOVERNOR))) {
undo_hint_action(DISPLAY_STATE_HINT_ID);
display_hint_sent = 0;
} else if ((strncmp(governor, MSMDCVS_GOVERNOR, strlen(MSMDCVS_GOVERNOR)) == 0) &&
(strlen(governor) == strlen(MSMDCVS_GOVERNOR))) {
if (saved_interactive_mode == -1 || saved_interactive_mode == 0) {
/* Display turned on. Restore if possible. */
if (saved_dcvs_cpu0_slack_max != -1) {
snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_max);
if (sysfs_write(DCVS_CPU0_SLACK_MAX_NODE, tmp_str) != 0) {
if (!slack_node_rw_failed) {
ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MAX_NODE);
}
rc = 1;
}
}
if (saved_dcvs_cpu0_slack_min != -1) {
snprintf(tmp_str, NODE_MAX, "%d", saved_dcvs_cpu0_slack_min);
if (sysfs_write(DCVS_CPU0_SLACK_MIN_NODE, tmp_str) != 0) {
if (!slack_node_rw_failed) {
ALOGE("Failed to write to %s", DCVS_CPU0_SLACK_MIN_NODE);
}
rc = 1;
}
}
if (saved_mpdecision_slack_max != -1) {
snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_max);
if (sysfs_write(MPDECISION_SLACK_MAX_NODE, tmp_str) != 0) {
if (!slack_node_rw_failed) {
ALOGE("Failed to write to %s", MPDECISION_SLACK_MAX_NODE);
}
rc = 1;
}
}
if (saved_mpdecision_slack_min != -1) {
snprintf(tmp_str, NODE_MAX, "%d", saved_mpdecision_slack_min);
if (sysfs_write(MPDECISION_SLACK_MIN_NODE, tmp_str) != 0) {
if (!slack_node_rw_failed) {
ALOGE("Failed to write to %s", MPDECISION_SLACK_MIN_NODE);
}
rc = 1;
}
}
}
slack_node_rw_failed = rc;
}
}
saved_interactive_mode = !!on;
}
static int extract_stats(uint64_t *list, char *file, const char**param_names,
unsigned int num_parameters, int isHex) {
FILE *fp;
ssize_t read;
size_t len;
size_t index = 0;
char *line;
int ret;
fp = fopen(file, "r");
if (fp == NULL) {
ret = -errno;
ALOGE("%s: failed to open: %s Error = %s", __func__, file, strerror(errno));
return ret;
}
for (line = NULL, len = 0;
((read = getline(&line, &len, fp) != -1) && (index < num_parameters));
free(line), line = NULL, len = 0) {
uint64_t value;
char* offset;
size_t begin = strspn(line, " \t");
if (strncmp(line + begin, param_names[index], strlen(param_names[index]))) {
continue;
}
offset = memchr(line, ':', len);
if (!offset) {
continue;
}
if (isHex) {
sscanf(offset, ":%" SCNx64, &value);
} else {
sscanf(offset, ":%" SCNu64, &value);
}
list[index] = value;
index++;
}
free(line);
fclose(fp);
return 0;
}
int extract_platform_stats(uint64_t *list) {
int ret;
//Data is located in two files
ret = extract_stats(list, RPM_STAT, rpm_param_names, RPM_PARAM_COUNT, false);
if (ret) {
for (size_t i=0; i < RPM_PARAM_COUNT; i++)
list[i] = 0;
}
ret = extract_stats(list + RPM_PARAM_COUNT, RPM_MASTER_STAT,
rpm_master_param_names, PLATFORM_PARAM_COUNT - RPM_PARAM_COUNT, true);
if (ret) {
for (size_t i=RPM_PARAM_COUNT; i < PLATFORM_PARAM_COUNT; i++)
list[i] = 0;
}
return 0;
}
int extract_wlan_stats(uint64_t *list) {
int ret;
ret = extract_stats(list, WLAN_POWER_STAT, wlan_param_names, WLAN_PARAM_COUNT, false);
if (ret) {
for (size_t i=0; i < WLAN_PARAM_COUNT; i++)
list[i] = 0;
}
return 0;
}