# Copyright 2015 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import its.caps
import its.device
import its.image
import its.objects
import matplotlib
from matplotlib import pylab
import numpy
NAME = os.path.basename(__file__).split('.')[0]
NUM_FRAMES = 4 # number of frames for temporal info to settle
NUM_SHADING_MODE_SWITCH_LOOPS = 3
SHADING_MODES = ['OFF', 'FAST', 'HQ']
THRESHOLD_DIFF_RATIO = 0.15
def main():
"""Test that the android.shading.mode param is applied.
Switching shading modes and checks that the lens shading maps are
modified as expected.
"""
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
its.caps.skip_unless(its.caps.per_frame_control(props) and
its.caps.lsc_map(props) and
its.caps.lsc_off(props))
mono_camera = its.caps.mono_camera(props)
# lsc_off devices should always support OFF(0), FAST(1), and HQ(2)
assert(props.has_key('android.shading.availableModes') and
set(props['android.shading.availableModes']) == set([0, 1, 2]))
# Test 1: Switching shading modes several times and verify:
# 1. Lens shading maps with mode OFF are all 1.0
# 2. Lens shading maps with mode FAST are similar after switching
# shading modes.
# 3. Lens shading maps with mode HIGH_QUALITY are similar after
# switching shading modes.
cam.do_3a(mono_camera=mono_camera)
# Use smallest yuv size matching the aspect ratio of largest yuv size to
# reduce some USB bandwidth overhead since we are only looking at output
# metadata in this test.
largest_yuv_fmt = its.objects.get_largest_yuv_format(props)
largest_yuv_size = (largest_yuv_fmt['width'], largest_yuv_fmt['height'])
cap_fmt = its.objects.get_smallest_yuv_format(props, largest_yuv_size)
# Get the reference lens shading maps for OFF, FAST, and HIGH_QUALITY
# in different sessions.
# reference_maps[mode]
num_shading_modes = len(SHADING_MODES)
reference_maps = [[] for mode in range(num_shading_modes)]
num_map_gains = 0
for mode in range(1, num_shading_modes):
req = its.objects.auto_capture_request()
req['android.statistics.lensShadingMapMode'] = 1
req['android.shading.mode'] = mode
cap_res = cam.do_capture([req]*NUM_FRAMES, cap_fmt)[NUM_FRAMES-1]['metadata']
lsc_map = cap_res['android.statistics.lensShadingCorrectionMap']
assert(lsc_map.has_key('width') and
lsc_map.has_key('height') and
lsc_map['width'] is not None and
lsc_map['height'] is not None)
if mode == 1:
num_map_gains = lsc_map['width'] * lsc_map['height'] * 4
reference_maps[0] = [1.0] * num_map_gains
reference_maps[mode] = lsc_map['map']
# Get the lens shading maps while switching modes in one session.
reqs = []
for i in range(NUM_SHADING_MODE_SWITCH_LOOPS):
for mode in range(num_shading_modes):
for _ in range(NUM_FRAMES):
req = its.objects.auto_capture_request()
req['android.statistics.lensShadingMapMode'] = 1
req['android.shading.mode'] = mode
reqs.append(req)
caps = cam.do_capture(reqs, cap_fmt)
# shading_maps[mode][loop]
shading_maps = [[[] for loop in range(NUM_SHADING_MODE_SWITCH_LOOPS)]
for mode in range(num_shading_modes)]
# Get the shading maps out of capture results
for i in range(len(caps)/NUM_FRAMES):
shading_maps[i%num_shading_modes][i/NUM_SHADING_MODE_SWITCH_LOOPS] = \
caps[(i+1)*NUM_FRAMES-1]['metadata']['android.statistics.lensShadingCorrectionMap']['map']
# Draw the maps
for mode in range(num_shading_modes):
for i in range(NUM_SHADING_MODE_SWITCH_LOOPS):
pylab.clf()
pylab.figure(figsize=(5, 5))
pylab.subplot(2, 1, 1)
pylab.plot(range(num_map_gains), shading_maps[mode][i], '-r.',
label='shading', alpha=0.7)
pylab.plot(range(num_map_gains), reference_maps[mode], '-g.',
label='ref', alpha=0.7)
pylab.xlim([0, num_map_gains])
pylab.ylim([0.9, 4.0])
name = '%s_ls_maps_mode_%d_loop_%d' % (NAME, mode, i)
pylab.title(name)
pylab.xlabel('Map gains')
pylab.ylabel('Lens shading maps')
pylab.legend(loc='upper center', numpoints=1, fancybox=True)
pylab.subplot(2, 1, 2)
shading_ref_ratio = numpy.divide(
shading_maps[mode][i], reference_maps[mode])
pylab.plot(range(num_map_gains), shading_ref_ratio, '-b.',
clip_on=False)
pylab.xlim([0, num_map_gains])
pylab.ylim([1.0-THRESHOLD_DIFF_RATIO, 1.0+THRESHOLD_DIFF_RATIO])
pylab.title('Shading/reference Maps Ratio vs Gain')
pylab.xlabel('Map gains')
pylab.ylabel('Shading/ref maps ratio')
pylab.tight_layout()
matplotlib.pyplot.savefig('%s.png' % name)
for mode in range(num_shading_modes):
if mode == 0:
print 'Verifying lens shading maps with mode %s are all 1.0' % (
SHADING_MODES[mode])
else:
print 'Verifying lens shading maps with mode %s are similar' % (
SHADING_MODES[mode])
for i in range(NUM_SHADING_MODE_SWITCH_LOOPS):
e_msg = 'FAIL mode: %s, loop: %d, THRESH: %.2f' % (
SHADING_MODES[mode], i, THRESHOLD_DIFF_RATIO)
assert (numpy.allclose(shading_maps[mode][i],
reference_maps[mode],
rtol=THRESHOLD_DIFF_RATIO)), e_msg
if __name__ == '__main__':
main()