# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
import its.caps
import its.device
import its.image
import its.objects
import matplotlib
from matplotlib import pylab
NAME = os.path.basename(__file__).split('.')[0]
BAYER_LIST = ['R', 'GR', 'GB', 'B']
DIFF_THRESH = 0.0012 # absolute variance delta threshold
FRAC_THRESH = 0.2 # relative variance delta threshold
NUM_STEPS = 4
STATS_GRID = 49 # center 2.04% of image for calculations
def main():
"""Verify that the DNG raw model parameters are correct."""
# Pass if the difference between expected and computed variances is small,
# defined as being within an absolute variance delta or relative variance
# delta of the expected variance, whichever is larger. This is to allow the
# test to pass in the presence of some randomness (since this test is
# measuring noise of a small patch) and some imperfect scene conditions
# (since ITS doesn't require a perfectly uniformly lit scene).
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
its.caps.skip_unless(its.caps.raw(props) and
its.caps.raw16(props) and
its.caps.manual_sensor(props) and
its.caps.read_3a(props) and
its.caps.per_frame_control(props) and
not its.caps.mono_camera(props))
debug = its.caps.debug_mode()
white_level = float(props['android.sensor.info.whiteLevel'])
cfa_idxs = its.image.get_canonical_cfa_order(props)
aax = props['android.sensor.info.preCorrectionActiveArraySize']['left']
aay = props['android.sensor.info.preCorrectionActiveArraySize']['top']
aaw = props['android.sensor.info.preCorrectionActiveArraySize']['right']-aax
aah = props['android.sensor.info.preCorrectionActiveArraySize']['bottom']-aay
# Expose for the scene with min sensitivity
sens_min, sens_max = props['android.sensor.info.sensitivityRange']
sens_step = (sens_max - sens_min) / NUM_STEPS
s_ae, e_ae, _, _, f_dist = cam.do_3a(get_results=True)
s_e_prod = s_ae * e_ae
sensitivities = range(sens_min, sens_max, sens_step)
var_expected = [[], [], [], []]
var_measured = [[], [], [], []]
x = STATS_GRID/2 # center in H of STATS_GRID
y = STATS_GRID/2 # center in W of STATS_GRID
for sens in sensitivities:
# Capture a raw frame with the desired sensitivity
exp = int(s_e_prod / float(sens))
req = its.objects.manual_capture_request(sens, exp, f_dist)
if debug:
cap = cam.do_capture(req, cam.CAP_RAW)
planes = its.image.convert_capture_to_planes(cap, props)
else:
cap = cam.do_capture(req, {'format': 'rawStats',
'gridWidth': aaw/STATS_GRID,
'gridHeight': aah/STATS_GRID})
mean_img, var_img = its.image.unpack_rawstats_capture(cap)
# Test each raw color channel (R, GR, GB, B)
noise_profile = cap['metadata']['android.sensor.noiseProfile']
assert len(noise_profile) == len(BAYER_LIST)
for i in range(len(BAYER_LIST)):
# Get the noise model parameters for this channel of this shot.
ch = cfa_idxs[i]
s, o = noise_profile[ch]
# Use a very small patch to ensure gross uniformity (i.e. so
# non-uniform lighting or vignetting doesn't affect the variance
# calculation)
black_level = its.image.get_black_level(i, props,
cap['metadata'])
level_range = white_level - black_level
if debug:
plane = ((planes[i] * white_level - black_level) /
level_range)
tile = its.image.get_image_patch(plane, 0.49, 0.49,
0.02, 0.02)
mean_img_ch = tile.mean()
var_measured[i].append(
its.image.compute_image_variances(tile)[0])
else:
mean_img_ch = (mean_img[x, y, ch]-black_level)/level_range
var_measured[i].append(var_img[x, y, ch]/level_range**2)
var_expected[i].append(s * mean_img_ch + o)
for i, ch in enumerate(BAYER_LIST):
pylab.plot(sensitivities, var_expected[i], 'rgkb'[i],
label=ch+' expected')
pylab.plot(sensitivities, var_measured[i], 'rgkb'[i]+'--',
label=ch+' measured')
pylab.xlabel('Sensitivity')
pylab.ylabel('Center patch variance')
pylab.legend(loc=2)
matplotlib.pyplot.savefig('%s_plot.png' % NAME)
# PASS/FAIL check
for i, ch in enumerate(BAYER_LIST):
diffs = [abs(var_measured[i][j] - var_expected[i][j])
for j in range(len(sensitivities))]
print 'Diffs (%s):'%(ch), diffs
for j, diff in enumerate(diffs):
thresh = max(DIFF_THRESH, FRAC_THRESH*var_expected[i][j])
assert diff <= thresh, 'diff: %.5f, thresh: %.4f' % (diff, thresh)
if __name__ == '__main__':
main()