// // Copyright (C) 2017 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_generator/deflate_utils.h" #include <algorithm> #include <string> #include <utility> #include <base/files/file_util.h> #include <base/logging.h> #include <base/strings/string_util.h> #include "update_engine/common/utils.h" #include "update_engine/payload_generator/delta_diff_generator.h" #include "update_engine/payload_generator/extent_ranges.h" #include "update_engine/payload_generator/extent_utils.h" #include "update_engine/payload_generator/squashfs_filesystem.h" #include "update_engine/update_metadata.pb.h" using puffin::BitExtent; using puffin::ByteExtent; using std::string; using std::vector; namespace chromeos_update_engine { namespace deflate_utils { namespace { // The minimum size for a squashfs image to be processed. const uint64_t kMinimumSquashfsImageSize = 1 * 1024 * 1024; // bytes // TODO(*): Optimize this so we don't have to read all extents into memory in // case it is large. bool CopyExtentsToFile(const string& in_path, const vector<Extent> extents, const string& out_path, size_t block_size) { brillo::Blob data(utils::BlocksInExtents(extents) * block_size); TEST_AND_RETURN_FALSE( utils::ReadExtents(in_path, extents, &data, data.size(), block_size)); TEST_AND_RETURN_FALSE( utils::WriteFile(out_path.c_str(), data.data(), data.size())); return true; } bool IsSquashfsImage(const string& part_path, const FilesystemInterface::File& file) { // Only check for files with img postfix. if (base::EndsWith(file.name, ".img", base::CompareCase::SENSITIVE) && utils::BlocksInExtents(file.extents) >= kMinimumSquashfsImageSize / kBlockSize) { brillo::Blob super_block; TEST_AND_RETURN_FALSE( utils::ReadFileChunk(part_path, file.extents[0].start_block() * kBlockSize, 100, &super_block)); return SquashfsFilesystem::IsSquashfsImage(super_block); } return false; } // Realigns subfiles |files| of a splitted file |file| into its correct // positions. This can be used for squashfs, zip, apk, etc. bool RealignSplittedFiles(const FilesystemInterface::File& file, vector<FilesystemInterface::File>* files) { // We have to shift all the Extents in |files|, based on the Extents of the // |file| itself. size_t num_blocks = 0; for (auto& in_file : *files) { // We need to modify so no constant. TEST_AND_RETURN_FALSE( ShiftExtentsOverExtents(file.extents, &in_file.extents)); TEST_AND_RETURN_FALSE( ShiftBitExtentsOverExtents(file.extents, &in_file.deflates)); in_file.name = file.name + "/" + in_file.name; num_blocks += utils::BlocksInExtents(in_file.extents); } // Check that all files in |in_files| cover the entire image. TEST_AND_RETURN_FALSE(utils::BlocksInExtents(file.extents) == num_blocks); return true; } bool IsBitExtentInExtent(const Extent& extent, const BitExtent& bit_extent) { return (bit_extent.offset / 8) >= (extent.start_block() * kBlockSize) && ((bit_extent.offset + bit_extent.length + 7) / 8) <= ((extent.start_block() + extent.num_blocks()) * kBlockSize); } // Returns whether the given file |name| has an extension listed in // |extensions|. bool IsFileExtensions(const string& name, const std::initializer_list<string>& extensions) { return any_of(extensions.begin(), extensions.end(), [&name](const auto& ext) { return base::EndsWith(name, ext, base::CompareCase::INSENSITIVE_ASCII); }); } } // namespace ByteExtent ExpandToByteExtent(const BitExtent& extent) { uint64_t offset = extent.offset / 8; uint64_t length = ((extent.offset + extent.length + 7) / 8) - offset; return {offset, length}; } bool ShiftExtentsOverExtents(const vector<Extent>& base_extents, vector<Extent>* over_extents) { if (utils::BlocksInExtents(base_extents) < utils::BlocksInExtents(*over_extents)) { LOG(ERROR) << "over_extents have more blocks than base_extents! Invalid!"; return false; } for (size_t idx = 0; idx < over_extents->size(); idx++) { auto over_ext = &over_extents->at(idx); auto gap_blocks = base_extents[0].start_block(); auto last_end_block = base_extents[0].start_block(); for (auto base_ext : base_extents) { // We need to modify |base_ext|, so we // use copy. gap_blocks += base_ext.start_block() - last_end_block; last_end_block = base_ext.start_block() + base_ext.num_blocks(); base_ext.set_start_block(base_ext.start_block() - gap_blocks); if (over_ext->start_block() >= base_ext.start_block() && over_ext->start_block() < base_ext.start_block() + base_ext.num_blocks()) { if (over_ext->start_block() + over_ext->num_blocks() <= base_ext.start_block() + base_ext.num_blocks()) { // |over_ext| is inside |base_ext|, increase its start block. over_ext->set_start_block(over_ext->start_block() + gap_blocks); } else { // |over_ext| spills over this |base_ext|, split it into two. auto new_blocks = base_ext.start_block() + base_ext.num_blocks() - over_ext->start_block(); vector<Extent> new_extents = { ExtentForRange(gap_blocks + over_ext->start_block(), new_blocks), ExtentForRange(over_ext->start_block() + new_blocks, over_ext->num_blocks() - new_blocks)}; *over_ext = new_extents[0]; over_extents->insert(std::next(over_extents->begin(), idx + 1), new_extents[1]); } break; // We processed |over_ext|, so break the loop; } } } return true; } bool ShiftBitExtentsOverExtents(const vector<Extent>& base_extents, vector<BitExtent>* over_extents) { if (over_extents->empty()) { return true; } // This check is needed to make sure the number of bytes in |over_extents| // does not exceed |base_extents|. auto last_extent = ExpandToByteExtent(over_extents->back()); TEST_AND_RETURN_FALSE(last_extent.offset + last_extent.length <= utils::BlocksInExtents(base_extents) * kBlockSize); for (auto o_ext = over_extents->begin(); o_ext != over_extents->end();) { size_t gap_blocks = base_extents[0].start_block(); size_t last_end_block = base_extents[0].start_block(); bool o_ext_processed = false; for (auto b_ext : base_extents) { // We need to modify |b_ext|, so we copy. gap_blocks += b_ext.start_block() - last_end_block; last_end_block = b_ext.start_block() + b_ext.num_blocks(); b_ext.set_start_block(b_ext.start_block() - gap_blocks); auto byte_o_ext = ExpandToByteExtent(*o_ext); if (byte_o_ext.offset >= b_ext.start_block() * kBlockSize && byte_o_ext.offset < (b_ext.start_block() + b_ext.num_blocks()) * kBlockSize) { if ((byte_o_ext.offset + byte_o_ext.length) <= (b_ext.start_block() + b_ext.num_blocks()) * kBlockSize) { // |o_ext| is inside |b_ext|, increase its start block. o_ext->offset += gap_blocks * kBlockSize * 8; ++o_ext; } else { // |o_ext| spills over this |b_ext|, remove it. o_ext = over_extents->erase(o_ext); } o_ext_processed = true; break; // We processed o_ext, so break the loop; } } TEST_AND_RETURN_FALSE(o_ext_processed); } return true; } vector<BitExtent> FindDeflates(const vector<Extent>& extents, const vector<BitExtent>& in_deflates) { vector<BitExtent> result; // TODO(ahassani): Replace this with binary_search style search. for (const auto& deflate : in_deflates) { for (const auto& extent : extents) { if (IsBitExtentInExtent(extent, deflate)) { result.push_back(deflate); break; } } } return result; } bool CompactDeflates(const vector<Extent>& extents, const vector<BitExtent>& in_deflates, vector<BitExtent>* out_deflates) { size_t bytes_passed = 0; out_deflates->reserve(in_deflates.size()); for (const auto& extent : extents) { size_t gap_bytes = extent.start_block() * kBlockSize - bytes_passed; for (const auto& deflate : in_deflates) { if (IsBitExtentInExtent(extent, deflate)) { out_deflates->emplace_back(deflate.offset - (gap_bytes * 8), deflate.length); } } bytes_passed += extent.num_blocks() * kBlockSize; } // All given |in_deflates| items should've been inside one of the extents in // |extents|. TEST_AND_RETURN_FALSE(in_deflates.size() == out_deflates->size()); // Make sure all outgoing deflates are ordered and non-overlapping. auto result = std::adjacent_find(out_deflates->begin(), out_deflates->end(), [](const BitExtent& a, const BitExtent& b) { return (a.offset + a.length) > b.offset; }); TEST_AND_RETURN_FALSE(result == out_deflates->end()); return true; } bool FindAndCompactDeflates(const vector<Extent>& extents, const vector<BitExtent>& in_deflates, vector<BitExtent>* out_deflates) { auto found_deflates = FindDeflates(extents, in_deflates); TEST_AND_RETURN_FALSE(CompactDeflates(extents, found_deflates, out_deflates)); return true; } bool PreprocessPartitionFiles(const PartitionConfig& part, vector<FilesystemInterface::File>* result_files, bool extract_deflates) { // Get the file system files. vector<FilesystemInterface::File> tmp_files; part.fs_interface->GetFiles(&tmp_files); result_files->reserve(tmp_files.size()); for (auto& file : tmp_files) { if (IsSquashfsImage(part.path, file)) { // Read the image into a file. base::FilePath path; TEST_AND_RETURN_FALSE(base::CreateTemporaryFile(&path)); ScopedPathUnlinker old_unlinker(path.value()); TEST_AND_RETURN_FALSE( CopyExtentsToFile(part.path, file.extents, path.value(), kBlockSize)); // Test if it is actually a Squashfs file. auto sqfs = SquashfsFilesystem::CreateFromFile(path.value(), extract_deflates); if (sqfs) { // It is an squashfs file. Get its files to replace with itself. vector<FilesystemInterface::File> files; sqfs->GetFiles(&files); // Replace squashfs file with its files only if |files| has at least two // files or if it has some deflates (since it is better to replace it to // take advantage of the deflates.) if (files.size() > 1 || (files.size() == 1 && !files[0].deflates.empty())) { TEST_AND_RETURN_FALSE(RealignSplittedFiles(file, &files)); result_files->insert(result_files->end(), files.begin(), files.end()); continue; } } else { LOG(WARNING) << "We thought file: " << file.name << " was a Squashfs file, but it was not."; } } if (extract_deflates) { // Search for deflates if the file is in zip or gzip format. // .zvoice files may eventually move out of rootfs. If that happens, // remove ".zvoice" (crbug.com/782918). bool is_zip = IsFileExtensions( file.name, {".apk", ".zip", ".jar", ".zvoice", ".apex"}); bool is_gzip = IsFileExtensions(file.name, {".gz", ".gzip", ".tgz"}); if (is_zip || is_gzip) { brillo::Blob data; TEST_AND_RETURN_FALSE(utils::ReadExtents( part.path, file.extents, &data, kBlockSize * utils::BlocksInExtents(file.extents), kBlockSize)); vector<puffin::BitExtent> deflates; if (is_zip) { TEST_AND_RETURN_FALSE( puffin::LocateDeflatesInZipArchive(data, &deflates)); } else if (is_gzip) { TEST_AND_RETURN_FALSE(puffin::LocateDeflatesInGzip(data, &deflates)); } // Shift the deflate's extent to the offset starting from the beginning // of the current partition; and the delta processor will align the // extents in a continuous buffer later. TEST_AND_RETURN_FALSE( ShiftBitExtentsOverExtents(file.extents, &deflates)); file.deflates = std::move(deflates); } } result_files->push_back(file); } return true; } } // namespace deflate_utils } // namespace chromeos_update_engine