/* * Copyright (C) 2005 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "hw-IPCThreadState" #include <hwbinder/IPCThreadState.h> #include <binderthreadstate/IPCThreadStateBase.h> #include <hwbinder/Binder.h> #include <hwbinder/BpHwBinder.h> #include <hwbinder/TextOutput.h> #include <hwbinder/binder_kernel.h> #include <android-base/macros.h> #include <utils/CallStack.h> #include <utils/Log.h> #include <utils/SystemClock.h> #include <utils/threads.h> #include <private/binder/binder_module.h> #include <hwbinder/Static.h> #include <errno.h> #include <inttypes.h> #include <pthread.h> #include <sched.h> #include <signal.h> #include <stdio.h> #include <sys/ioctl.h> #include <sys/resource.h> #include <unistd.h> #if LOG_NDEBUG #define IF_LOG_TRANSACTIONS() if (false) #define IF_LOG_COMMANDS() if (false) #define LOG_REMOTEREFS(...) #define IF_LOG_REMOTEREFS() if (false) #define LOG_THREADPOOL(...) #define LOG_ONEWAY(...) #else #define IF_LOG_TRANSACTIONS() IF_ALOG(LOG_VERBOSE, "transact") #define IF_LOG_COMMANDS() IF_ALOG(LOG_VERBOSE, "ipc") #define LOG_REMOTEREFS(...) ALOG(LOG_DEBUG, "remoterefs", __VA_ARGS__) #define IF_LOG_REMOTEREFS() IF_ALOG(LOG_DEBUG, "remoterefs") #define LOG_THREADPOOL(...) ALOG(LOG_DEBUG, "threadpool", __VA_ARGS__) #define LOG_ONEWAY(...) ALOG(LOG_DEBUG, "ipc", __VA_ARGS__) #endif // --------------------------------------------------------------------------- namespace android { namespace hardware { // Static const and functions will be optimized out if not used, // when LOG_NDEBUG and references in IF_LOG_COMMANDS() are optimized out. static const char *kReturnStrings[] = { "BR_ERROR", "BR_OK", "BR_TRANSACTION", "BR_REPLY", "BR_ACQUIRE_RESULT", "BR_DEAD_REPLY", "BR_TRANSACTION_COMPLETE", "BR_INCREFS", "BR_ACQUIRE", "BR_RELEASE", "BR_DECREFS", "BR_ATTEMPT_ACQUIRE", "BR_NOOP", "BR_SPAWN_LOOPER", "BR_FINISHED", "BR_DEAD_BINDER", "BR_CLEAR_DEATH_NOTIFICATION_DONE", "BR_FAILED_REPLY", "BR_TRANSACTION_SEC_CTX", }; static const char *kCommandStrings[] = { "BC_TRANSACTION", "BC_REPLY", "BC_ACQUIRE_RESULT", "BC_FREE_BUFFER", "BC_INCREFS", "BC_ACQUIRE", "BC_RELEASE", "BC_DECREFS", "BC_INCREFS_DONE", "BC_ACQUIRE_DONE", "BC_ATTEMPT_ACQUIRE", "BC_REGISTER_LOOPER", "BC_ENTER_LOOPER", "BC_EXIT_LOOPER", "BC_REQUEST_DEATH_NOTIFICATION", "BC_CLEAR_DEATH_NOTIFICATION", "BC_DEAD_BINDER_DONE" }; static const char* getReturnString(size_t idx) { if (idx < sizeof(kReturnStrings) / sizeof(kReturnStrings[0])) return kReturnStrings[idx]; else return "unknown"; } static const void* printBinderTransactionData(TextOutput& out, const void* data) { const binder_transaction_data* btd = (const binder_transaction_data*)data; if (btd->target.handle < 1024) { /* want to print descriptors in decimal; guess based on value */ out << "target.desc=" << btd->target.handle; } else { out << "target.ptr=" << btd->target.ptr; } out << " (cookie " << btd->cookie << ")" << endl << "code=" << TypeCode(btd->code) << ", flags=" << (void*)(long)btd->flags << endl << "data=" << btd->data.ptr.buffer << " (" << (void*)btd->data_size << " bytes)" << endl << "offsets=" << btd->data.ptr.offsets << " (" << (void*)btd->offsets_size << " bytes)"; return btd+1; } static const void* printReturnCommand(TextOutput& out, const void* _cmd) { static const size_t N = sizeof(kReturnStrings)/sizeof(kReturnStrings[0]); const int32_t* cmd = (const int32_t*)_cmd; uint32_t code = (uint32_t)*cmd++; size_t cmdIndex = code & 0xff; if (code == BR_ERROR) { out << "BR_ERROR: " << (void*)(long)(*cmd++) << endl; return cmd; } else if (cmdIndex >= N) { out << "Unknown reply: " << code << endl; return cmd; } out << kReturnStrings[cmdIndex]; switch (code) { case BR_TRANSACTION: case BR_REPLY: { out << ": " << indent; cmd = (const int32_t *)printBinderTransactionData(out, cmd); out << dedent; } break; case BR_ACQUIRE_RESULT: { const int32_t res = *cmd++; out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)"); } break; case BR_INCREFS: case BR_ACQUIRE: case BR_RELEASE: case BR_DECREFS: { const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)(long)b << " (cookie " << (void*)(long)c << ")"; } break; case BR_ATTEMPT_ACQUIRE: { const int32_t p = *cmd++; const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)(long)b << " (cookie " << (void*)(long)c << "), pri=" << p; } break; case BR_DEAD_BINDER: case BR_CLEAR_DEATH_NOTIFICATION_DONE: { const int32_t c = *cmd++; out << ": death cookie " << (void*)(long)c; } break; default: // no details to show for: BR_OK, BR_DEAD_REPLY, // BR_TRANSACTION_COMPLETE, BR_FINISHED break; } out << endl; return cmd; } static const void* printCommand(TextOutput& out, const void* _cmd) { static const size_t N = sizeof(kCommandStrings)/sizeof(kCommandStrings[0]); const int32_t* cmd = (const int32_t*)_cmd; uint32_t code = (uint32_t)*cmd++; size_t cmdIndex = code & 0xff; if (cmdIndex >= N) { out << "Unknown command: " << code << endl; return cmd; } out << kCommandStrings[cmdIndex]; switch (code) { case BC_TRANSACTION: case BC_REPLY: { out << ": " << indent; cmd = (const int32_t *)printBinderTransactionData(out, cmd); out << dedent; } break; case BC_ACQUIRE_RESULT: { const int32_t res = *cmd++; out << ": " << res << (res ? " (SUCCESS)" : " (FAILURE)"); } break; case BC_FREE_BUFFER: { const int32_t buf = *cmd++; out << ": buffer=" << (void*)(long)buf; } break; case BC_INCREFS: case BC_ACQUIRE: case BC_RELEASE: case BC_DECREFS: { const int32_t d = *cmd++; out << ": desc=" << d; } break; case BC_INCREFS_DONE: case BC_ACQUIRE_DONE: { const int32_t b = *cmd++; const int32_t c = *cmd++; out << ": target=" << (void*)(long)b << " (cookie " << (void*)(long)c << ")"; } break; case BC_ATTEMPT_ACQUIRE: { const int32_t p = *cmd++; const int32_t d = *cmd++; out << ": desc=" << d << ", pri=" << p; } break; case BC_REQUEST_DEATH_NOTIFICATION: case BC_CLEAR_DEATH_NOTIFICATION: { const int32_t h = *cmd++; const int32_t c = *cmd++; out << ": handle=" << h << " (death cookie " << (void*)(long)c << ")"; } break; case BC_DEAD_BINDER_DONE: { const int32_t c = *cmd++; out << ": death cookie " << (void*)(long)c; } break; default: // no details to show for: BC_REGISTER_LOOPER, BC_ENTER_LOOPER, // BC_EXIT_LOOPER break; } out << endl; return cmd; } static pthread_mutex_t gTLSMutex = PTHREAD_MUTEX_INITIALIZER; static bool gHaveTLS = false; static pthread_key_t gTLS = 0; static bool gShutdown = false; IPCThreadState* IPCThreadState::self() { if (gHaveTLS) { restart: const pthread_key_t k = gTLS; IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k); if (st) return st; return new IPCThreadState; } if (gShutdown) { ALOGW("Calling IPCThreadState::self() during shutdown is dangerous, expect a crash.\n"); return nullptr; } pthread_mutex_lock(&gTLSMutex); if (!gHaveTLS) { int key_create_value = pthread_key_create(&gTLS, threadDestructor); if (key_create_value != 0) { pthread_mutex_unlock(&gTLSMutex); ALOGW("IPCThreadState::self() unable to create TLS key, expect a crash: %s\n", strerror(key_create_value)); return nullptr; } gHaveTLS = true; } pthread_mutex_unlock(&gTLSMutex); goto restart; } IPCThreadState* IPCThreadState::selfOrNull() { if (gHaveTLS) { const pthread_key_t k = gTLS; IPCThreadState* st = (IPCThreadState*)pthread_getspecific(k); return st; } return nullptr; } void IPCThreadState::shutdown() { gShutdown = true; if (gHaveTLS) { // XXX Need to wait for all thread pool threads to exit! IPCThreadState* st = (IPCThreadState*)pthread_getspecific(gTLS); if (st) { delete st; pthread_setspecific(gTLS, nullptr); } pthread_key_delete(gTLS); gHaveTLS = false; } } // TODO(b/66905301): remove symbol void IPCThreadState::disableBackgroundScheduling(bool /* disable */) {} sp<ProcessState> IPCThreadState::process() { return mProcess; } status_t IPCThreadState::clearLastError() { const status_t err = mLastError; mLastError = NO_ERROR; return err; } pid_t IPCThreadState::getCallingPid() const { return mCallingPid; } const char* IPCThreadState::getCallingSid() const { return mCallingSid; } uid_t IPCThreadState::getCallingUid() const { return mCallingUid; } int64_t IPCThreadState::clearCallingIdentity() { // ignore mCallingSid for legacy reasons int64_t token = ((int64_t)mCallingUid<<32) | mCallingPid; clearCaller(); return token; } void IPCThreadState::setStrictModePolicy(int32_t policy) { mStrictModePolicy = policy; } int32_t IPCThreadState::getStrictModePolicy() const { return mStrictModePolicy; } void IPCThreadState::setLastTransactionBinderFlags(int32_t flags) { mLastTransactionBinderFlags = flags; } int32_t IPCThreadState::getLastTransactionBinderFlags() const { return mLastTransactionBinderFlags; } void IPCThreadState::restoreCallingIdentity(int64_t token) { mCallingUid = (int)(token>>32); mCallingSid = nullptr; // not enough data to restore mCallingPid = (int)token; } void IPCThreadState::clearCaller() { mCallingPid = getpid(); mCallingSid = nullptr; // expensive to lookup mCallingUid = getuid(); } void IPCThreadState::flushCommands() { if (mProcess->mDriverFD <= 0) return; talkWithDriver(false); // The flush could have caused post-write refcount decrements to have // been executed, which in turn could result in BC_RELEASE/BC_DECREFS // being queued in mOut. So flush again, if we need to. if (mOut.dataSize() > 0) { talkWithDriver(false); } if (mOut.dataSize() > 0) { ALOGW("mOut.dataSize() > 0 after flushCommands()"); } } void IPCThreadState::blockUntilThreadAvailable() { pthread_mutex_lock(&mProcess->mThreadCountLock); while (mProcess->mExecutingThreadsCount >= mProcess->mMaxThreads) { ALOGW("Waiting for thread to be free. mExecutingThreadsCount=%lu mMaxThreads=%lu\n", static_cast<unsigned long>(mProcess->mExecutingThreadsCount), static_cast<unsigned long>(mProcess->mMaxThreads)); pthread_cond_wait(&mProcess->mThreadCountDecrement, &mProcess->mThreadCountLock); } pthread_mutex_unlock(&mProcess->mThreadCountLock); } status_t IPCThreadState::getAndExecuteCommand() { status_t result; int32_t cmd; result = talkWithDriver(); if (result >= NO_ERROR) { size_t IN = mIn.dataAvail(); if (IN < sizeof(int32_t)) return result; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing top-level Command: " << getReturnString(cmd) << endl; } pthread_mutex_lock(&mProcess->mThreadCountLock); mProcess->mExecutingThreadsCount++; if (mProcess->mExecutingThreadsCount >= mProcess->mMaxThreads && mProcess->mMaxThreads > 1 && mProcess->mStarvationStartTimeMs == 0) { mProcess->mStarvationStartTimeMs = uptimeMillis(); } pthread_mutex_unlock(&mProcess->mThreadCountLock); result = executeCommand(cmd); pthread_mutex_lock(&mProcess->mThreadCountLock); mProcess->mExecutingThreadsCount--; if (mProcess->mExecutingThreadsCount < mProcess->mMaxThreads && mProcess->mStarvationStartTimeMs != 0) { int64_t starvationTimeMs = uptimeMillis() - mProcess->mStarvationStartTimeMs; if (starvationTimeMs > 100) { // If there is only a single-threaded client, nobody would be blocked // on this, and it's not really starvation. (see b/37647467) ALOGW("All binder threads in pool (%zu threads) busy for %" PRId64 " ms%s", mProcess->mMaxThreads, starvationTimeMs, mProcess->mMaxThreads > 1 ? "" : " (may be a false alarm)"); } mProcess->mStarvationStartTimeMs = 0; } pthread_cond_broadcast(&mProcess->mThreadCountDecrement); pthread_mutex_unlock(&mProcess->mThreadCountLock); } if (UNLIKELY(!mPostCommandTasks.empty())) { // make a copy in case the post transaction task makes a binder // call and that other process calls back into us std::vector<std::function<void(void)>> tasks = mPostCommandTasks; mPostCommandTasks.clear(); for (const auto& func : tasks) { func(); } } return result; } // When we've cleared the incoming command queue, process any pending derefs void IPCThreadState::processPendingDerefs() { if (mIn.dataPosition() >= mIn.dataSize()) { /* * The decWeak()/decStrong() calls may cause a destructor to run, * which in turn could have initiated an outgoing transaction, * which in turn could cause us to add to the pending refs * vectors; so instead of simply iterating, loop until they're empty. * * We do this in an outer loop, because calling decStrong() * may result in something being added to mPendingWeakDerefs, * which could be delayed until the next incoming command * from the driver if we don't process it now. */ while (mPendingWeakDerefs.size() > 0 || mPendingStrongDerefs.size() > 0) { while (mPendingWeakDerefs.size() > 0) { RefBase::weakref_type* refs = mPendingWeakDerefs[0]; mPendingWeakDerefs.removeAt(0); refs->decWeak(mProcess.get()); } if (mPendingStrongDerefs.size() > 0) { // We don't use while() here because we don't want to re-order // strong and weak decs at all; if this decStrong() causes both a // decWeak() and a decStrong() to be queued, we want to process // the decWeak() first. BHwBinder* obj = mPendingStrongDerefs[0]; mPendingStrongDerefs.removeAt(0); obj->decStrong(mProcess.get()); } } } } void IPCThreadState::processPostWriteDerefs() { /* * libhwbinder has a flushCommands() in the BpHwBinder destructor, * which makes this function (potentially) reentrant. * New entries shouldn't be added though, so just iterating until empty * should be safe. */ while (mPostWriteWeakDerefs.size() > 0) { RefBase::weakref_type* refs = mPostWriteWeakDerefs[0]; mPostWriteWeakDerefs.removeAt(0); refs->decWeak(mProcess.get()); } while (mPostWriteStrongDerefs.size() > 0) { RefBase* obj = mPostWriteStrongDerefs[0]; mPostWriteStrongDerefs.removeAt(0); obj->decStrong(mProcess.get()); } } void IPCThreadState::joinThreadPool(bool isMain) { LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid()); mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER); status_t result; mIsLooper = true; do { processPendingDerefs(); // now get the next command to be processed, waiting if necessary result = getAndExecuteCommand(); if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) { ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting", mProcess->mDriverFD, result); abort(); } // Let this thread exit the thread pool if it is no longer // needed and it is not the main process thread. if(result == TIMED_OUT && !isMain) { break; } } while (result != -ECONNREFUSED && result != -EBADF); LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%d\n", (void*)pthread_self(), getpid(), result); mOut.writeInt32(BC_EXIT_LOOPER); mIsLooper = false; talkWithDriver(false); } int IPCThreadState::setupPolling(int* fd) { if (mProcess->mDriverFD <= 0) { return -EBADF; } // Tells the kernel to not spawn any additional binder threads, // as that won't work with polling. Also, the caller is responsible // for subsequently calling handlePolledCommands() mProcess->setThreadPoolConfiguration(1, true /* callerWillJoin */); mIsPollingThread = true; mOut.writeInt32(BC_ENTER_LOOPER); *fd = mProcess->mDriverFD; return 0; } status_t IPCThreadState::handlePolledCommands() { status_t result; do { result = getAndExecuteCommand(); } while (mIn.dataPosition() < mIn.dataSize()); processPendingDerefs(); flushCommands(); return result; } void IPCThreadState::stopProcess(bool /*immediate*/) { //ALOGI("**** STOPPING PROCESS"); flushCommands(); int fd = mProcess->mDriverFD; mProcess->mDriverFD = -1; close(fd); //kill(getpid(), SIGKILL); } status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t err; flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION_SG, flags, handle, code, data, nullptr); if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { if (UNLIKELY(mCallRestriction != ProcessState::CallRestriction::NONE)) { if (mCallRestriction == ProcessState::CallRestriction::ERROR_IF_NOT_ONEWAY) { ALOGE("Process making non-oneway call but is restricted."); CallStack::logStack("non-oneway call", CallStack::getCurrent(10).get(), ANDROID_LOG_ERROR); } else /* FATAL_IF_NOT_ONEWAY */ { LOG_ALWAYS_FATAL("Process may not make oneway calls."); } } #if 0 if (code == 4) { // relayout ALOGI(">>>>>> CALLING transaction 4"); } else { ALOGI(">>>>>> CALLING transaction %d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout ALOGI("<<<<<< RETURNING transaction 4"); } else { ALOGI("<<<<<< RETURNING transaction %d", code); } #endif IF_LOG_TRANSACTIONS() { alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(nullptr, nullptr); } return err; } void IPCThreadState::incStrongHandle(int32_t handle, BpHwBinder *proxy) { LOG_REMOTEREFS("IPCThreadState::incStrongHandle(%d)\n", handle); mOut.writeInt32(BC_ACQUIRE); mOut.writeInt32(handle); // Create a temp reference until the driver has handled this command. proxy->incStrong(mProcess.get()); mPostWriteStrongDerefs.push(proxy); } void IPCThreadState::decStrongHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::decStrongHandle(%d)\n", handle); mOut.writeInt32(BC_RELEASE); mOut.writeInt32(handle); } void IPCThreadState::incWeakHandle(int32_t handle, BpHwBinder *proxy) { LOG_REMOTEREFS("IPCThreadState::incWeakHandle(%d)\n", handle); mOut.writeInt32(BC_INCREFS); mOut.writeInt32(handle); // Create a temp reference until the driver has handled this command. proxy->getWeakRefs()->incWeak(mProcess.get()); mPostWriteWeakDerefs.push(proxy->getWeakRefs()); } void IPCThreadState::decWeakHandle(int32_t handle) { LOG_REMOTEREFS("IPCThreadState::decWeakHandle(%d)\n", handle); mOut.writeInt32(BC_DECREFS); mOut.writeInt32(handle); } status_t IPCThreadState::attemptIncStrongHandle(int32_t handle) { #if HAS_BC_ATTEMPT_ACQUIRE LOG_REMOTEREFS("IPCThreadState::attemptIncStrongHandle(%d)\n", handle); mOut.writeInt32(BC_ATTEMPT_ACQUIRE); mOut.writeInt32(0); // xxx was thread priority mOut.writeInt32(handle); status_t result = UNKNOWN_ERROR; waitForResponse(nullptr, &result); #if LOG_REFCOUNTS printf("IPCThreadState::attemptIncStrongHandle(%ld) = %s\n", handle, result == NO_ERROR ? "SUCCESS" : "FAILURE"); #endif return result; #else (void)handle; ALOGE("%s(%d): Not supported\n", __func__, handle); return INVALID_OPERATION; #endif } void IPCThreadState::expungeHandle(int32_t handle, IBinder* binder) { #if LOG_REFCOUNTS printf("IPCThreadState::expungeHandle(%ld)\n", handle); #endif self()->mProcess->expungeHandle(handle, binder); // NOLINT } status_t IPCThreadState::requestDeathNotification(int32_t handle, BpHwBinder* proxy) { mOut.writeInt32(BC_REQUEST_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writePointer((uintptr_t)proxy); return NO_ERROR; } status_t IPCThreadState::clearDeathNotification(int32_t handle, BpHwBinder* proxy) { mOut.writeInt32(BC_CLEAR_DEATH_NOTIFICATION); mOut.writeInt32((int32_t)handle); mOut.writePointer((uintptr_t)proxy); return NO_ERROR; } IPCThreadState::IPCThreadState() : mProcess(ProcessState::self()), mStrictModePolicy(0), mLastTransactionBinderFlags(0), mIsLooper(false), mIsPollingThread(false), mCallRestriction(mProcess->mCallRestriction) { pthread_setspecific(gTLS, this); clearCaller(); mIn.setDataCapacity(256); mOut.setDataCapacity(256); mIPCThreadStateBase = IPCThreadStateBase::self(); } IPCThreadState::~IPCThreadState() { } status_t IPCThreadState::sendReply(const Parcel& reply, uint32_t flags) { status_t err; status_t statusBuffer; err = writeTransactionData(BC_REPLY_SG, flags, -1, 0, reply, &statusBuffer); if (err < NO_ERROR) return err; return waitForResponse(nullptr, nullptr); } status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { uint32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = (uint32_t)mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_FAILED_REPLY: err = FAILED_TRANSACTION; goto finish; case BR_ACQUIRE_RESULT: { ALOG_ASSERT(acquireResult != nullptr, "Unexpected brACQUIRE_RESULT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), freeBuffer, this); } else { err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(nullptr, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), this); } } else { freeBuffer(nullptr, reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; } status_t IPCThreadState::talkWithDriver(bool doReceive) { if (mProcess->mDriverFD <= 0) { return -EBADF; } binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (uintptr_t)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (uintptr_t)mIn.data(); } else { bwr.read_size = 0; bwr.read_buffer = 0; } IF_LOG_COMMANDS() { if (outAvail != 0) { alog << "Sending commands to driver: " << indent; const void* cmds = (const void*)bwr.write_buffer; const void* end = ((const uint8_t*)cmds)+bwr.write_size; alog << HexDump(cmds, bwr.write_size) << endl; while (cmds < end) cmds = printCommand(alog, cmds); alog << dedent; } alog << "Size of receive buffer: " << bwr.read_size << ", needRead: " << needRead << ", doReceive: " << doReceive << endl; } // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { IF_LOG_COMMANDS() { alog << "About to read/write, write size = " << mOut.dataSize() << endl; } #if defined(__ANDROID__) if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif if (mProcess->mDriverFD <= 0) { err = -EBADF; } IF_LOG_COMMANDS() { alog << "Finished read/write, write size = " << mOut.dataSize() << endl; } } while (err == -EINTR); IF_LOG_COMMANDS() { alog << "Our err: " << (void*)(intptr_t)err << ", write consumed: " << bwr.write_consumed << " (of " << mOut.dataSize() << "), read consumed: " << bwr.read_consumed << endl; } if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else { mOut.setDataSize(0); processPostWriteDerefs(); } } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } IF_LOG_COMMANDS() { alog << "Remaining data size: " << mOut.dataSize() << endl; alog << "Received commands from driver: " << indent; const void* cmds = mIn.data(); const void* end = mIn.data() + mIn.dataSize(); alog << HexDump(cmds, mIn.dataSize()) << endl; while (cmds < end) cmds = printReturnCommand(alog, cmds); alog << dedent; } return NO_ERROR; } return err; } status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data_sg tr_sg; /* Don't pass uninitialized stack data to a remote process */ tr_sg.transaction_data.target.ptr = 0; tr_sg.transaction_data.target.handle = handle; tr_sg.transaction_data.code = code; tr_sg.transaction_data.flags = binderFlags; tr_sg.transaction_data.cookie = 0; tr_sg.transaction_data.sender_pid = 0; tr_sg.transaction_data.sender_euid = 0; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr_sg.transaction_data.data_size = data.ipcDataSize(); tr_sg.transaction_data.data.ptr.buffer = data.ipcData(); tr_sg.transaction_data.offsets_size = data.ipcObjectsCount()*sizeof(binder_size_t); tr_sg.transaction_data.data.ptr.offsets = data.ipcObjects(); tr_sg.buffers_size = data.ipcBufferSize(); } else if (statusBuffer) { tr_sg.transaction_data.flags |= TF_STATUS_CODE; *statusBuffer = err; tr_sg.transaction_data.data_size = sizeof(status_t); tr_sg.transaction_data.data.ptr.buffer = reinterpret_cast<uintptr_t>(statusBuffer); tr_sg.transaction_data.offsets_size = 0; tr_sg.transaction_data.data.ptr.offsets = 0; tr_sg.buffers_size = 0; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr_sg, sizeof(tr_sg)); return NO_ERROR; } void IPCThreadState::setTheContextObject(sp<BHwBinder> obj) { mContextObject = obj; } bool IPCThreadState::isLooperThread() { return mIsLooper; } bool IPCThreadState::isOnlyBinderThread() { return (mIsLooper && mProcess->mMaxThreads <= 1) || mIsPollingThread; } void IPCThreadState::addPostCommandTask(const std::function<void(void)>& task) { mPostCommandTasks.push_back(task); } status_t IPCThreadState::executeCommand(int32_t cmd) { BHwBinder* obj; RefBase::weakref_type* refs; status_t result = NO_ERROR; switch ((uint32_t)cmd) { case BR_ERROR: result = mIn.readInt32(); break; case BR_OK: break; case BR_ACQUIRE: refs = (RefBase::weakref_type*)mIn.readPointer(); obj = (BHwBinder*)mIn.readPointer(); ALOG_ASSERT(refs->refBase() == obj, "BR_ACQUIRE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); obj->incStrong(mProcess.get()); IF_LOG_REMOTEREFS() { LOG_REMOTEREFS("BR_ACQUIRE from driver on %p", obj); obj->printRefs(); } mOut.writeInt32(BC_ACQUIRE_DONE); mOut.writePointer((uintptr_t)refs); mOut.writePointer((uintptr_t)obj); break; case BR_RELEASE: refs = (RefBase::weakref_type*)mIn.readPointer(); obj = (BHwBinder*)mIn.readPointer(); ALOG_ASSERT(refs->refBase() == obj, "BR_RELEASE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); IF_LOG_REMOTEREFS() { LOG_REMOTEREFS("BR_RELEASE from driver on %p", obj); obj->printRefs(); } mPendingStrongDerefs.push(obj); break; case BR_INCREFS: refs = (RefBase::weakref_type*)mIn.readPointer(); obj = (BHwBinder*)mIn.readPointer(); refs->incWeak(mProcess.get()); mOut.writeInt32(BC_INCREFS_DONE); mOut.writePointer((uintptr_t)refs); mOut.writePointer((uintptr_t)obj); break; case BR_DECREFS: refs = (RefBase::weakref_type*)mIn.readPointer(); obj = (BHwBinder*)mIn.readPointer(); // NOTE: This assertion is not valid, because the object may no // longer exist (thus the (BHwBinder*)cast above resulting in a different // memory address). //ALOG_ASSERT(refs->refBase() == obj, // "BR_DECREFS: object %p does not match cookie %p (expected %p)", // refs, obj, refs->refBase()); mPendingWeakDerefs.push(refs); break; case BR_ATTEMPT_ACQUIRE: refs = (RefBase::weakref_type*)mIn.readPointer(); obj = (BHwBinder*)mIn.readPointer(); { const bool success = refs->attemptIncStrong(mProcess.get()); ALOG_ASSERT(success && refs->refBase() == obj, "BR_ATTEMPT_ACQUIRE: object %p does not match cookie %p (expected %p)", refs, obj, refs->refBase()); mOut.writeInt32(BC_ACQUIRE_RESULT); mOut.writeInt32((int32_t)success); } break; case BR_TRANSACTION_SEC_CTX: case BR_TRANSACTION: { binder_transaction_data_secctx tr_secctx; binder_transaction_data& tr = tr_secctx.transaction_data; if (cmd == BR_TRANSACTION_SEC_CTX) { result = mIn.read(&tr_secctx, sizeof(tr_secctx)); } else { result = mIn.read(&tr, sizeof(tr)); tr_secctx.secctx = 0; } ALOG_ASSERT(result == NO_ERROR, "Not enough command data for brTRANSACTION"); if (result != NO_ERROR) break; // Record the fact that we're in a hwbinder call mIPCThreadStateBase->pushCurrentState( IPCThreadStateBase::CallState::HWBINDER); Parcel buffer; buffer.ipcSetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer), tr.data_size, reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets), tr.offsets_size/sizeof(binder_size_t), freeBuffer, this); const pid_t origPid = mCallingPid; const char* origSid = mCallingSid; const uid_t origUid = mCallingUid; const int32_t origStrictModePolicy = mStrictModePolicy; const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags; mCallingPid = tr.sender_pid; mCallingSid = reinterpret_cast<const char*>(tr_secctx.secctx); mCallingUid = tr.sender_euid; mLastTransactionBinderFlags = tr.flags; // ALOGI(">>>> TRANSACT from pid %d sid %s uid %d\n", mCallingPid, // (mCallingSid ? mCallingSid : "<N/A>"), mCallingUid); Parcel reply; status_t error; bool reply_sent = false; IF_LOG_TRANSACTIONS() { alog << "BR_TRANSACTION thr " << (void*)pthread_self() << " / obj " << tr.target.ptr << " / code " << TypeCode(tr.code) << ": " << indent << buffer << dedent << endl << "Data addr = " << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer) << ", offsets addr=" << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl; } auto reply_callback = [&] (auto &replyParcel) { if (reply_sent) { // Reply was sent earlier, ignore it. ALOGE("Dropping binder reply, it was sent already."); return; } reply_sent = true; if ((tr.flags & TF_ONE_WAY) == 0) { replyParcel.setError(NO_ERROR); sendReply(replyParcel, 0); } else { ALOGE("Not sending reply in one-way transaction"); } }; if (tr.target.ptr) { // We only have a weak reference on the target object, so we must first try to // safely acquire a strong reference before doing anything else with it. if (reinterpret_cast<RefBase::weakref_type*>( tr.target.ptr)->attemptIncStrong(this)) { error = reinterpret_cast<BHwBinder*>(tr.cookie)->transact(tr.code, buffer, &reply, tr.flags, reply_callback); reinterpret_cast<BHwBinder*>(tr.cookie)->decStrong(this); } else { error = UNKNOWN_TRANSACTION; } } else { error = mContextObject->transact(tr.code, buffer, &reply, tr.flags, reply_callback); } mIPCThreadStateBase->popCurrentState(); if ((tr.flags & TF_ONE_WAY) == 0) { if (!reply_sent) { // Should have been a reply but there wasn't, so there // must have been an error instead. reply.setError(error); sendReply(reply, 0); } else { if (error != NO_ERROR) { ALOGE("transact() returned error after sending reply."); } else { // Ok, reply sent and transact didn't return an error. } } } else { // One-way transaction, don't care about return value or reply. } //ALOGI("<<<< TRANSACT from pid %d restore pid %d sid %s uid %d\n", // mCallingPid, origPid, (origSid ? origSid : "<N/A>"), origUid); mCallingPid = origPid; mCallingSid = origSid; mCallingUid = origUid; mStrictModePolicy = origStrictModePolicy; mLastTransactionBinderFlags = origTransactionBinderFlags; IF_LOG_TRANSACTIONS() { alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj " << tr.target.ptr << ": " << indent << reply << dedent << endl; } } break; case BR_DEAD_BINDER: { BpHwBinder *proxy = (BpHwBinder*)mIn.readPointer(); proxy->sendObituary(); mOut.writeInt32(BC_DEAD_BINDER_DONE); mOut.writePointer((uintptr_t)proxy); } break; case BR_CLEAR_DEATH_NOTIFICATION_DONE: { BpHwBinder *proxy = (BpHwBinder*)mIn.readPointer(); proxy->getWeakRefs()->decWeak(proxy); } break; case BR_FINISHED: result = TIMED_OUT; break; case BR_NOOP: break; case BR_SPAWN_LOOPER: mProcess->spawnPooledThread(false); break; default: printf("*** BAD COMMAND %d received from Binder driver\n", cmd); result = UNKNOWN_ERROR; break; } if (result != NO_ERROR) { mLastError = result; } return result; } bool IPCThreadState::isServingCall() const { return mIPCThreadStateBase->getCurrentBinderCallState() == IPCThreadStateBase::CallState::HWBINDER; } void IPCThreadState::threadDestructor(void *st) { IPCThreadState* const self = static_cast<IPCThreadState*>(st); if (self) { self->flushCommands(); #if defined(__ANDROID__) if (self->mProcess->mDriverFD > 0) { ioctl(self->mProcess->mDriverFD, BINDER_THREAD_EXIT, 0); } #endif delete self; } } void IPCThreadState::freeBuffer(Parcel* parcel, const uint8_t* data, size_t /*dataSize*/, const binder_size_t* /*objects*/, size_t /*objectsSize*/, void* /*cookie*/) { //ALOGI("Freeing parcel %p", &parcel); IF_LOG_COMMANDS() { alog << "Writing BC_FREE_BUFFER for " << data << endl; } ALOG_ASSERT(data != nullptr, "Called with NULL data"); if (parcel != nullptr) parcel->closeFileDescriptors(); IPCThreadState* state = self(); state->mOut.writeInt32(BC_FREE_BUFFER); state->mOut.writePointer((uintptr_t)data); } }; // namespace hardware }; // namespace android