/* * Copyright 2014 Google, Inc * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "libprocessgroup" #include <assert.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <chrono> #include <map> #include <memory> #include <mutex> #include <set> #include <string> #include <thread> #include <android-base/file.h> #include <android-base/logging.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <cutils/android_filesystem_config.h> #include <processgroup/processgroup.h> #include <task_profiles.h> using android::base::GetBoolProperty; using android::base::StartsWith; using android::base::StringPrintf; using android::base::WriteStringToFile; using namespace std::chrono_literals; #define PROCESSGROUP_CGROUP_PROCS_FILE "/cgroup.procs" bool CgroupGetControllerPath(const std::string& cgroup_name, std::string* path) { auto controller = CgroupMap::GetInstance().FindController(cgroup_name); if (!controller.HasValue()) { return false; } if (path) { *path = controller.path(); } return true; } bool CgroupGetAttributePath(const std::string& attr_name, std::string* path) { const TaskProfiles& tp = TaskProfiles::GetInstance(); const ProfileAttribute* attr = tp.GetAttribute(attr_name); if (attr == nullptr) { return false; } if (path) { *path = StringPrintf("%s/%s", attr->controller()->path(), attr->file_name().c_str()); } return true; } bool CgroupGetAttributePathForTask(const std::string& attr_name, int tid, std::string* path) { const TaskProfiles& tp = TaskProfiles::GetInstance(); const ProfileAttribute* attr = tp.GetAttribute(attr_name); if (attr == nullptr) { return false; } if (!attr->GetPathForTask(tid, path)) { PLOG(ERROR) << "Failed to find cgroup for tid " << tid; return false; } return true; } bool UsePerAppMemcg() { bool low_ram_device = GetBoolProperty("ro.config.low_ram", false); return GetBoolProperty("ro.config.per_app_memcg", low_ram_device); } static bool isMemoryCgroupSupported() { static bool memcg_supported = CgroupMap::GetInstance().FindController("memory").IsUsable(); return memcg_supported; } bool SetProcessProfiles(uid_t uid, pid_t pid, const std::vector<std::string>& profiles, bool use_fd_cache) { const TaskProfiles& tp = TaskProfiles::GetInstance(); for (const auto& name : profiles) { TaskProfile* profile = tp.GetProfile(name); if (profile != nullptr) { if (use_fd_cache) { profile->EnableResourceCaching(); } if (!profile->ExecuteForProcess(uid, pid)) { PLOG(WARNING) << "Failed to apply " << name << " process profile"; } } else { PLOG(WARNING) << "Failed to find " << name << "process profile"; } } return true; } bool SetTaskProfiles(int tid, const std::vector<std::string>& profiles, bool use_fd_cache) { const TaskProfiles& tp = TaskProfiles::GetInstance(); for (const auto& name : profiles) { TaskProfile* profile = tp.GetProfile(name); if (profile != nullptr) { if (use_fd_cache) { profile->EnableResourceCaching(); } if (!profile->ExecuteForTask(tid)) { PLOG(WARNING) << "Failed to apply " << name << " task profile"; } } else { PLOG(WARNING) << "Failed to find " << name << "task profile"; } } return true; } static std::string ConvertUidToPath(const char* cgroup, uid_t uid) { return StringPrintf("%s/uid_%d", cgroup, uid); } static std::string ConvertUidPidToPath(const char* cgroup, uid_t uid, int pid) { return StringPrintf("%s/uid_%d/pid_%d", cgroup, uid, pid); } static int RemoveProcessGroup(const char* cgroup, uid_t uid, int pid) { int ret; auto uid_pid_path = ConvertUidPidToPath(cgroup, uid, pid); ret = rmdir(uid_pid_path.c_str()); auto uid_path = ConvertUidToPath(cgroup, uid); rmdir(uid_path.c_str()); return ret; } static bool RemoveUidProcessGroups(const std::string& uid_path) { std::unique_ptr<DIR, decltype(&closedir)> uid(opendir(uid_path.c_str()), closedir); bool empty = true; if (uid != NULL) { dirent* dir; while ((dir = readdir(uid.get())) != nullptr) { if (dir->d_type != DT_DIR) { continue; } if (!StartsWith(dir->d_name, "pid_")) { continue; } auto path = StringPrintf("%s/%s", uid_path.c_str(), dir->d_name); LOG(VERBOSE) << "Removing " << path; if (rmdir(path.c_str()) == -1) { if (errno != EBUSY) { PLOG(WARNING) << "Failed to remove " << path; } empty = false; } } } return empty; } void removeAllProcessGroups() { LOG(VERBOSE) << "removeAllProcessGroups()"; std::vector<std::string> cgroups; std::string path; if (CgroupGetControllerPath("cpuacct", &path)) { cgroups.push_back(path); } if (CgroupGetControllerPath("memory", &path)) { cgroups.push_back(path + "/apps"); } for (std::string cgroup_root_path : cgroups) { std::unique_ptr<DIR, decltype(&closedir)> root(opendir(cgroup_root_path.c_str()), closedir); if (root == NULL) { PLOG(ERROR) << "Failed to open " << cgroup_root_path; } else { dirent* dir; while ((dir = readdir(root.get())) != nullptr) { if (dir->d_type != DT_DIR) { continue; } if (!StartsWith(dir->d_name, "uid_")) { continue; } auto path = StringPrintf("%s/%s", cgroup_root_path.c_str(), dir->d_name); if (!RemoveUidProcessGroups(path)) { LOG(VERBOSE) << "Skip removing " << path; continue; } LOG(VERBOSE) << "Removing " << path; if (rmdir(path.c_str()) == -1 && errno != EBUSY) { PLOG(WARNING) << "Failed to remove " << path; } } } } } static bool MkdirAndChown(const std::string& path, mode_t mode, uid_t uid, gid_t gid) { if (mkdir(path.c_str(), mode) == -1 && errno != EEXIST) { return false; } if (chown(path.c_str(), uid, gid) == -1) { int saved_errno = errno; rmdir(path.c_str()); errno = saved_errno; return false; } return true; } // Returns number of processes killed on success // Returns 0 if there are no processes in the process cgroup left to kill // Returns -1 on error static int DoKillProcessGroupOnce(const char* cgroup, uid_t uid, int initialPid, int signal) { auto path = ConvertUidPidToPath(cgroup, uid, initialPid) + PROCESSGROUP_CGROUP_PROCS_FILE; std::unique_ptr<FILE, decltype(&fclose)> fd(fopen(path.c_str(), "re"), fclose); if (!fd) { if (errno == ENOENT) { // This happens when process is already dead return 0; } PLOG(WARNING) << "Failed to open process cgroup uid " << uid << " pid " << initialPid; return -1; } // We separate all of the pids in the cgroup into those pids that are also the leaders of // process groups (stored in the pgids set) and those that are not (stored in the pids set). std::set<pid_t> pgids; pgids.emplace(initialPid); std::set<pid_t> pids; pid_t pid; int processes = 0; while (fscanf(fd.get(), "%d\n", &pid) == 1 && pid >= 0) { processes++; if (pid == 0) { // Should never happen... but if it does, trying to kill this // will boomerang right back and kill us! Let's not let that happen. LOG(WARNING) << "Yikes, we've been told to kill pid 0! How about we don't do that?"; continue; } pid_t pgid = getpgid(pid); if (pgid == -1) PLOG(ERROR) << "getpgid(" << pid << ") failed"; if (pgid == pid) { pgids.emplace(pid); } else { pids.emplace(pid); } } // Erase all pids that will be killed when we kill the process groups. for (auto it = pids.begin(); it != pids.end();) { pid_t pgid = getpgid(*it); if (pgids.count(pgid) == 1) { it = pids.erase(it); } else { ++it; } } // Kill all process groups. for (const auto pgid : pgids) { LOG(VERBOSE) << "Killing process group " << -pgid << " in uid " << uid << " as part of process cgroup " << initialPid; if (kill(-pgid, signal) == -1 && errno != ESRCH) { PLOG(WARNING) << "kill(" << -pgid << ", " << signal << ") failed"; } } // Kill remaining pids. for (const auto pid : pids) { LOG(VERBOSE) << "Killing pid " << pid << " in uid " << uid << " as part of process cgroup " << initialPid; if (kill(pid, signal) == -1 && errno != ESRCH) { PLOG(WARNING) << "kill(" << pid << ", " << signal << ") failed"; } } return feof(fd.get()) ? processes : -1; } static int KillProcessGroup(uid_t uid, int initialPid, int signal, int retries) { std::string cpuacct_path; std::string memory_path; CgroupGetControllerPath("cpuacct", &cpuacct_path); CgroupGetControllerPath("memory", &memory_path); memory_path += "/apps"; const char* cgroup = (!access(ConvertUidPidToPath(cpuacct_path.c_str(), uid, initialPid).c_str(), F_OK)) ? cpuacct_path.c_str() : memory_path.c_str(); std::chrono::steady_clock::time_point start = std::chrono::steady_clock::now(); int retry = retries; int processes; while ((processes = DoKillProcessGroupOnce(cgroup, uid, initialPid, signal)) > 0) { LOG(VERBOSE) << "Killed " << processes << " processes for processgroup " << initialPid; if (retry > 0) { std::this_thread::sleep_for(5ms); --retry; } else { break; } } if (processes < 0) { PLOG(ERROR) << "Error encountered killing process cgroup uid " << uid << " pid " << initialPid; return -1; } std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count(); // We only calculate the number of 'processes' when killing the processes. // In the retries == 0 case, we only kill the processes once and therefore // will not have waited then recalculated how many processes are remaining // after the first signals have been sent. // Logging anything regarding the number of 'processes' here does not make sense. if (processes == 0) { if (retries > 0) { LOG(INFO) << "Successfully killed process cgroup uid " << uid << " pid " << initialPid << " in " << static_cast<int>(ms) << "ms"; } return RemoveProcessGroup(cgroup, uid, initialPid); } else { if (retries > 0) { LOG(ERROR) << "Failed to kill process cgroup uid " << uid << " pid " << initialPid << " in " << static_cast<int>(ms) << "ms, " << processes << " processes remain"; } return -1; } } int killProcessGroup(uid_t uid, int initialPid, int signal) { return KillProcessGroup(uid, initialPid, signal, 40 /*retries*/); } int killProcessGroupOnce(uid_t uid, int initialPid, int signal) { return KillProcessGroup(uid, initialPid, signal, 0 /*retries*/); } int createProcessGroup(uid_t uid, int initialPid, bool memControl) { std::string cgroup; if (isMemoryCgroupSupported() && (memControl || UsePerAppMemcg())) { CgroupGetControllerPath("memory", &cgroup); cgroup += "/apps"; } else { CgroupGetControllerPath("cpuacct", &cgroup); } auto uid_path = ConvertUidToPath(cgroup.c_str(), uid); if (!MkdirAndChown(uid_path, 0750, AID_SYSTEM, AID_SYSTEM)) { PLOG(ERROR) << "Failed to make and chown " << uid_path; return -errno; } auto uid_pid_path = ConvertUidPidToPath(cgroup.c_str(), uid, initialPid); if (!MkdirAndChown(uid_pid_path, 0750, AID_SYSTEM, AID_SYSTEM)) { PLOG(ERROR) << "Failed to make and chown " << uid_pid_path; return -errno; } auto uid_pid_procs_file = uid_pid_path + PROCESSGROUP_CGROUP_PROCS_FILE; int ret = 0; if (!WriteStringToFile(std::to_string(initialPid), uid_pid_procs_file)) { ret = -errno; PLOG(ERROR) << "Failed to write '" << initialPid << "' to " << uid_pid_procs_file; } return ret; } static bool SetProcessGroupValue(int tid, const std::string& attr_name, int64_t value) { if (!isMemoryCgroupSupported()) { PLOG(ERROR) << "Memcg is not mounted."; return false; } std::string path; if (!CgroupGetAttributePathForTask(attr_name, tid, &path)) { PLOG(ERROR) << "Failed to find attribute '" << attr_name << "'"; return false; } if (!WriteStringToFile(std::to_string(value), path)) { PLOG(ERROR) << "Failed to write '" << value << "' to " << path; return false; } return true; } bool setProcessGroupSwappiness(uid_t, int pid, int swappiness) { return SetProcessGroupValue(pid, "MemSwappiness", swappiness); } bool setProcessGroupSoftLimit(uid_t, int pid, int64_t soft_limit_in_bytes) { return SetProcessGroupValue(pid, "MemSoftLimit", soft_limit_in_bytes); } bool setProcessGroupLimit(uid_t, int pid, int64_t limit_in_bytes) { return SetProcessGroupValue(pid, "MemLimit", limit_in_bytes); }