/* libs/pixelflinger/codeflinger/MIPSAssembler.cpp ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ /* MIPS assembler and ARM->MIPS assembly translator ** ** The approach is to leave the GGLAssembler and associated files largely ** un-changed, still utilizing all Arm instruction generation. Via the ** ArmToMipsAssembler (subclassed from ArmAssemblerInterface) each Arm ** instruction is translated to one or more Mips instructions as necessary. This ** is clearly less efficient than a direct implementation within the ** GGLAssembler, but is far cleaner, more maintainable, and has yielded very ** significant performance gains on Mips compared to the generic pixel pipeline. ** ** ** GGLAssembler changes ** ** - The register allocator has been modified to re-map Arm registers 0-15 to mips ** registers 2-17. Mips register 0 cannot be used as general-purpose register, ** and register 1 has traditional uses as a short-term temporary. ** ** - Added some early bailouts for OUT_OF_REGISTERS in texturing.cpp and ** GGLAssembler.cpp, since this is not fatal, and can be retried at lower ** optimization level. ** ** ** ARMAssembler and ARMAssemblerInterface changes ** ** Refactored ARM address-mode static functions (imm(), reg_imm(), imm12_pre(), etc.) ** to virtual, so they can be overridden in MIPSAssembler. The implementation of these ** functions on ARM is moved from ARMAssemblerInterface.cpp to ARMAssembler.cpp, and ** is unchanged from the original. (This required duplicating 2 of these as static ** functions in ARMAssemblerInterface.cpp so they could be used as static initializers). */ #define LOG_TAG "MIPSAssembler" #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <cutils/properties.h> #include <log/log.h> #include <private/pixelflinger/ggl_context.h> #include "CodeCache.h" #include "MIPSAssembler.h" #include "mips_disassem.h" #define __unused __attribute__((__unused__)) // Choose MIPS arch variant following gcc flags #if defined(__mips__) && __mips==32 && __mips_isa_rev>=2 #define mips32r2 1 #else #define mips32r2 0 #endif #define NOT_IMPLEMENTED() LOG_ALWAYS_FATAL("Arm instruction %s not yet implemented\n", __func__) // ---------------------------------------------------------------------------- namespace android { // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark ArmToMipsAssembler... #endif ArmToMipsAssembler::ArmToMipsAssembler(const sp<Assembly>& assembly, char *abuf, int linesz, int instr_count) : ARMAssemblerInterface(), mArmDisassemblyBuffer(abuf), mArmLineLength(linesz), mArmInstrCount(instr_count), mInum(0), mAssembly(assembly) { mMips = new MIPSAssembler(assembly, this); mArmPC = (uint32_t **) malloc(ARM_MAX_INSTUCTIONS * sizeof(uint32_t *)); init_conditional_labels(); } ArmToMipsAssembler::~ArmToMipsAssembler() { delete mMips; free((void *) mArmPC); } uint32_t* ArmToMipsAssembler::pc() const { return mMips->pc(); } uint32_t* ArmToMipsAssembler::base() const { return mMips->base(); } void ArmToMipsAssembler::reset() { cond.labelnum = 0; mInum = 0; mMips->reset(); } int ArmToMipsAssembler::getCodegenArch() { return CODEGEN_ARCH_MIPS; } void ArmToMipsAssembler::comment(const char* string) { mMips->comment(string); } void ArmToMipsAssembler::label(const char* theLabel) { mMips->label(theLabel); } void ArmToMipsAssembler::disassemble(const char* name) { mMips->disassemble(name); } void ArmToMipsAssembler::init_conditional_labels() { int i; for (i=0;i<99; ++i) { sprintf(cond.label[i], "cond_%d", i); } } #if 0 #pragma mark - #pragma mark Prolog/Epilog & Generate... #endif void ArmToMipsAssembler::prolog() { mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->ADDIU(R_sp, R_sp, -(5 * 4)); mMips->SW(R_s0, R_sp, 0); mMips->SW(R_s1, R_sp, 4); mMips->SW(R_s2, R_sp, 8); mMips->SW(R_s3, R_sp, 12); mMips->SW(R_s4, R_sp, 16); mMips->MOVE(R_v0, R_a0); // move context * passed in a0 to v0 (arm r0) } void ArmToMipsAssembler::epilog(uint32_t touched __unused) { mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->LW(R_s0, R_sp, 0); mMips->LW(R_s1, R_sp, 4); mMips->LW(R_s2, R_sp, 8); mMips->LW(R_s3, R_sp, 12); mMips->LW(R_s4, R_sp, 16); mMips->ADDIU(R_sp, R_sp, (5 * 4)); mMips->JR(R_ra); } int ArmToMipsAssembler::generate(const char* name) { return mMips->generate(name); } uint32_t* ArmToMipsAssembler::pcForLabel(const char* label) { return mMips->pcForLabel(label); } //---------------------------------------------------------- #if 0 #pragma mark - #pragma mark Addressing modes & shifters... #endif // do not need this for MIPS, but it is in the Interface (virtual) int ArmToMipsAssembler::buildImmediate( uint32_t immediate, uint32_t& rot, uint32_t& imm) { // for MIPS, any 32-bit immediate is OK rot = 0; imm = immediate; return 0; } // shifters... bool ArmToMipsAssembler::isValidImmediate(uint32_t immediate __unused) { // for MIPS, any 32-bit immediate is OK return true; } uint32_t ArmToMipsAssembler::imm(uint32_t immediate) { // ALOGW("immediate value %08x at pc %08x\n", immediate, (int)pc()); amode.value = immediate; return AMODE_IMM; } uint32_t ArmToMipsAssembler::reg_imm(int Rm, int type, uint32_t shift) { amode.reg = Rm; amode.stype = type; amode.value = shift; return AMODE_REG_IMM; } uint32_t ArmToMipsAssembler::reg_rrx(int Rm __unused) { // reg_rrx mode is not used in the GLLAssember code at this time return AMODE_UNSUPPORTED; } uint32_t ArmToMipsAssembler::reg_reg(int Rm __unused, int type __unused, int Rs __unused) { // reg_reg mode is not used in the GLLAssember code at this time return AMODE_UNSUPPORTED; } // addressing modes... // LDR(B)/STR(B)/PLD (immediate and Rm can be negative, which indicate U=0) uint32_t ArmToMipsAssembler::immed12_pre(int32_t immed12, int W) { LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, "LDR(B)/STR(B)/PLD immediate too big (%08x)", immed12); amode.value = immed12; amode.writeback = W; return AMODE_IMM_12_PRE; } uint32_t ArmToMipsAssembler::immed12_post(int32_t immed12) { LOG_ALWAYS_FATAL_IF(abs(immed12) >= 0x800, "LDR(B)/STR(B)/PLD immediate too big (%08x)", immed12); amode.value = immed12; return AMODE_IMM_12_POST; } uint32_t ArmToMipsAssembler::reg_scale_pre(int Rm, int type, uint32_t shift, int W) { LOG_ALWAYS_FATAL_IF(W | type | shift, "reg_scale_pre adv modes not yet implemented"); amode.reg = Rm; // amode.stype = type; // more advanced modes not used in GGLAssembler yet // amode.value = shift; // amode.writeback = W; return AMODE_REG_SCALE_PRE; } uint32_t ArmToMipsAssembler::reg_scale_post(int Rm __unused, int type __unused, uint32_t shift __unused) { LOG_ALWAYS_FATAL("adr mode reg_scale_post not yet implemented\n"); return AMODE_UNSUPPORTED; } // LDRH/LDRSB/LDRSH/STRH (immediate and Rm can be negative, which indicate U=0) uint32_t ArmToMipsAssembler::immed8_pre(int32_t immed8, int W __unused) { // uint32_t offset = abs(immed8); LOG_ALWAYS_FATAL("adr mode immed8_pre not yet implemented\n"); LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", immed8); return AMODE_IMM_8_PRE; } uint32_t ArmToMipsAssembler::immed8_post(int32_t immed8) { // uint32_t offset = abs(immed8); LOG_ALWAYS_FATAL_IF(abs(immed8) >= 0x100, "LDRH/LDRSB/LDRSH/STRH immediate too big (%08x)", immed8); amode.value = immed8; return AMODE_IMM_8_POST; } uint32_t ArmToMipsAssembler::reg_pre(int Rm, int W) { LOG_ALWAYS_FATAL_IF(W, "reg_pre writeback not yet implemented"); amode.reg = Rm; return AMODE_REG_PRE; } uint32_t ArmToMipsAssembler::reg_post(int Rm __unused) { LOG_ALWAYS_FATAL("adr mode reg_post not yet implemented\n"); return AMODE_UNSUPPORTED; } // ---------------------------------------------------------------------------- #if 0 #pragma mark - #pragma mark Data Processing... #endif // check if the operand registers from a previous CMP or S-bit instruction // would be overwritten by this instruction. If so, move the value to a // safe register. // Note that we cannot tell at _this_ instruction time if a future (conditional) // instruction will _also_ use this value (a defect of the simple 1-pass, one- // instruction-at-a-time translation). Therefore we must be conservative and // save the value before it is overwritten. This costs an extra MOVE instr. void ArmToMipsAssembler::protectConditionalOperands(int Rd) { if (Rd == cond.r1) { mMips->MOVE(R_cmp, cond.r1); cond.r1 = R_cmp; } if (cond.type == CMP_COND && Rd == cond.r2) { mMips->MOVE(R_cmp2, cond.r2); cond.r2 = R_cmp2; } } // interprets the addressing mode, and generates the common code // used by the majority of data-processing ops. Many MIPS instructions // have a register-based form and a different immediate form. See // opAND below for an example. (this could be inlined) // // this works with the imm(), reg_imm() methods above, which are directly // called by the GLLAssembler. // note: _signed parameter defaults to false (un-signed) // note: tmpReg parameter defaults to 1, MIPS register AT int ArmToMipsAssembler::dataProcAdrModes(int op, int& source, bool _signed, int tmpReg) { if (op < AMODE_REG) { source = op; return SRC_REG; } else if (op == AMODE_IMM) { if ((!_signed && amode.value > 0xffff) || (_signed && ((int)amode.value < -32768 || (int)amode.value > 32767) )) { mMips->LUI(tmpReg, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(tmpReg, tmpReg, (amode.value & 0x0000ffff)); } source = tmpReg; return SRC_REG; } else { source = amode.value; return SRC_IMM; } } else if (op == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(tmpReg, amode.reg, amode.value); break; case LSR: mMips->SRL(tmpReg, amode.reg, amode.value); break; case ASR: mMips->SRA(tmpReg, amode.reg, amode.value); break; case ROR: if (mips32r2) { mMips->ROTR(tmpReg, amode.reg, amode.value); } else { mMips->RORIsyn(tmpReg, amode.reg, amode.value); } break; } source = tmpReg; return SRC_REG; } else { // adr mode RRX is not used in GGL Assembler at this time // we are screwed, this should be exception, assert-fail or something LOG_ALWAYS_FATAL("adr mode reg_rrx not yet implemented\n"); return SRC_ERROR; } } void ArmToMipsAssembler::dataProcessing(int opcode, int cc, int s, int Rd, int Rn, uint32_t Op2) { int src; // src is modified by dataProcAdrModes() - passed as int& if (cc != AL) { protectConditionalOperands(Rd); // the branch tests register(s) set by prev CMP or instr with 'S' bit set // inverse the condition to jump past this conditional instruction ArmToMipsAssembler::B(cc^1, cond.label[++cond.labelnum]); } else { mArmPC[mInum++] = pc(); // save starting PC for this instr } switch (opcode) { case opAND: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->AND(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ANDI(Rd, Rn, src); } break; case opADD: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->ADDU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ADDIU(Rd, Rn, src); } break; case opSUB: // set "signed" to true for adr modes if (dataProcAdrModes(Op2, src, true) == SRC_REG) { mMips->SUBU(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->SUBIU(Rd, Rn, src); } break; case opEOR: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->XOR(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->XORI(Rd, Rn, src); } break; case opORR: if (dataProcAdrModes(Op2, src) == SRC_REG) { mMips->OR(Rd, Rn, src); } else { // adr mode was SRC_IMM mMips->ORI(Rd, Rn, src); } break; case opBIC: if (dataProcAdrModes(Op2, src) == SRC_IMM) { // if we are 16-bit imnmediate, load to AT reg mMips->ORI(R_at, 0, src); src = R_at; } mMips->NOT(R_at, src); mMips->AND(Rd, Rn, R_at); break; case opRSB: if (dataProcAdrModes(Op2, src) == SRC_IMM) { // if we are 16-bit imnmediate, load to AT reg mMips->ORI(R_at, 0, src); src = R_at; } mMips->SUBU(Rd, src, Rn); // subu with the parameters reversed break; case opMOV: if (Op2 < AMODE_REG) { // op2 is reg # in this case mMips->MOVE(Rd, Op2); } else if (Op2 == AMODE_IMM) { if (amode.value > 0xffff) { mMips->LUI(Rd, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); } } else { mMips->ORI(Rd, 0, amode.value); } } else if (Op2 == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; case ROR: if (mips32r2) { mMips->ROTR(Rd, amode.reg, amode.value); } else { mMips->RORIsyn(Rd, amode.reg, amode.value); } break; } } else { // adr mode RRX is not used in GGL Assembler at this time mMips->UNIMPL(); } break; case opMVN: // this is a 1's complement: NOT if (Op2 < AMODE_REG) { // op2 is reg # in this case mMips->NOR(Rd, Op2, 0); // NOT is NOR with 0 break; } else if (Op2 == AMODE_IMM) { if (amode.value > 0xffff) { mMips->LUI(Rd, (amode.value >> 16)); if (amode.value & 0x0000ffff) { mMips->ORI(Rd, Rd, (amode.value & 0x0000ffff)); } } else { mMips->ORI(Rd, 0, amode.value); } } else if (Op2 == AMODE_REG_IMM) { switch (amode.stype) { case LSL: mMips->SLL(Rd, amode.reg, amode.value); break; case LSR: mMips->SRL(Rd, amode.reg, amode.value); break; case ASR: mMips->SRA(Rd, amode.reg, amode.value); break; case ROR: if (mips32r2) { mMips->ROTR(Rd, amode.reg, amode.value); } else { mMips->RORIsyn(Rd, amode.reg, amode.value); } break; } } else { // adr mode RRX is not used in GGL Assembler at this time mMips->UNIMPL(); } mMips->NOR(Rd, Rd, 0); // NOT is NOR with 0 break; case opCMP: // Either operand of a CMP instr could get overwritten by a subsequent // conditional instruction, which is ok, _UNLESS_ there is a _second_ // conditional instruction. Under MIPS, this requires doing the comparison // again (SLT), and the original operands must be available. (and this // pattern of multiple conditional instructions from same CMP _is_ used // in GGL-Assembler) // // For now, if a conditional instr overwrites the operands, we will // move them to dedicated temp regs. This is ugly, and inefficient, // and should be optimized. // // WARNING: making an _Assumption_ that CMP operand regs will NOT be // trashed by intervening NON-conditional instructions. In the general // case this is legal, but it is NOT currently done in GGL-Assembler. cond.type = CMP_COND; cond.r1 = Rn; if (dataProcAdrModes(Op2, src, false, R_cmp2) == SRC_REG) { cond.r2 = src; } else { // adr mode was SRC_IMM mMips->ORI(R_cmp2, R_zero, src); cond.r2 = R_cmp2; } break; case opTST: case opTEQ: case opCMN: case opADC: case opSBC: case opRSC: mMips->UNIMPL(); // currently unused in GGL Assembler code break; } if (cc != AL) { mMips->label(cond.label[cond.labelnum]); } if (s && opcode != opCMP) { cond.type = SBIT_COND; cond.r1 = Rd; } } #if 0 #pragma mark - #pragma mark Multiply... #endif // multiply, accumulate void ArmToMipsAssembler::MLA(int cc __unused, int s, int Rd, int Rm, int Rs, int Rn) { mArmPC[mInum++] = pc(); // save starting PC for this instr mMips->MUL(R_at, Rm, Rs); mMips->ADDU(Rd, R_at, Rn); if (s) { cond.type = SBIT_COND; cond.r1 = Rd; } } void ArmToMipsAssembler::MUL(int cc __unused, int s, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); mMips->MUL(Rd, Rm, Rs); if (s) { cond.type = SBIT_COND; cond.r1 = Rd; } } void ArmToMipsAssembler::UMULL(int cc __unused, int s, int RdLo, int RdHi, int Rm, int Rs) { mArmPC[mInum++] = pc(); mMips->MULT(Rm, Rs); mMips->MFHI(RdHi); mMips->MFLO(RdLo); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); } } void ArmToMipsAssembler::UMUAL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "UMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<21) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on UMULL must be on 64-bit result\n"); } } void ArmToMipsAssembler::SMULL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "SMULL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on SMULL must be on 64-bit result\n"); } } void ArmToMipsAssembler::SMUAL(int cc __unused, int s, int RdLo __unused, int RdHi, int Rm __unused, int Rs __unused) { LOG_FATAL_IF(RdLo==Rm || RdHi==Rm || RdLo==RdHi, "SMUAL(r%u,r%u,r%u,r%u)", RdLo,RdHi,Rm,Rs); // *mPC++ = (cc<<28) | (1<<23) | (1<<22) | (1<<21) | (s<<20) | // (RdHi<<16) | (RdLo<<12) | (Rs<<8) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); if (s) { cond.type = SBIT_COND; cond.r1 = RdHi; // BUG... LOG_ALWAYS_FATAL("Condition on SMUAL must be on 64-bit result\n"); } } #if 0 #pragma mark - #pragma mark Branches... #endif // branches... void ArmToMipsAssembler::B(int cc, const char* label) { mArmPC[mInum++] = pc(); if (cond.type == SBIT_COND) { cond.r2 = R_zero; } switch(cc) { case EQ: mMips->BEQ(cond.r1, cond.r2, label); break; case NE: mMips->BNE(cond.r1, cond.r2, label); break; case HS: mMips->BGEU(cond.r1, cond.r2, label); break; case LO: mMips->BLTU(cond.r1, cond.r2, label); break; case MI: mMips->BLT(cond.r1, cond.r2, label); break; case PL: mMips->BGE(cond.r1, cond.r2, label); break; case HI: mMips->BGTU(cond.r1, cond.r2, label); break; case LS: mMips->BLEU(cond.r1, cond.r2, label); break; case GE: mMips->BGE(cond.r1, cond.r2, label); break; case LT: mMips->BLT(cond.r1, cond.r2, label); break; case GT: mMips->BGT(cond.r1, cond.r2, label); break; case LE: mMips->BLE(cond.r1, cond.r2, label); break; case AL: mMips->B(label); break; case NV: /* B Never - no instruction */ break; case VS: case VC: default: LOG_ALWAYS_FATAL("Unsupported cc: %02x\n", cc); break; } } void ArmToMipsAssembler::BL(int cc __unused, const char* label __unused) { LOG_ALWAYS_FATAL("branch-and-link not supported yet\n"); mArmPC[mInum++] = pc(); } // no use for Branches with integer PC, but they're in the Interface class .... void ArmToMipsAssembler::B(int cc __unused, uint32_t* to_pc __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } void ArmToMipsAssembler::BL(int cc __unused, uint32_t* to_pc __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } void ArmToMipsAssembler::BX(int cc __unused, int Rn __unused) { LOG_ALWAYS_FATAL("branch to absolute PC not supported, use Label\n"); mArmPC[mInum++] = pc(); } #if 0 #pragma mark - #pragma mark Data Transfer... #endif // data transfer... void ArmToMipsAssembler::LDR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert LDR via Arm SP to LW via Mips SP } mMips->LW(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->ADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to STR thru Mips SP } mMips->LW(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->ADDU(R_at, Rn, amode.reg); mMips->LW(Rd, R_at, 0); break; } } void ArmToMipsAssembler::LDRB(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: mMips->LBU(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->ADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->LBU(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->ADDU(R_at, Rn, amode.reg); mMips->LBU(Rd, R_at, 0); break; } } void ArmToMipsAssembler::STR(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: if (Rn == ARMAssemblerInterface::SP) { Rn = R_sp; // convert STR thru Arm SP to SW thru Mips SP } if (amode.writeback) { // OPTIONAL writeback on pre-index mode // If we will writeback, then update the index reg, then store. // This correctly handles stack-push case. mMips->ADDIU(Rn, Rn, amode.value); mMips->SW(Rd, Rn, 0); } else { // No writeback so store offset by value mMips->SW(Rd, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->SW(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); // post index always writes back break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->ADDU(R_at, Rn, amode.reg); mMips->SW(Rd, R_at, 0); break; } } void ArmToMipsAssembler::STRB(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed12_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; amode.writeback = 0; // fall thru to next case .... case AMODE_IMM_12_PRE: mMips->SB(Rd, Rn, amode.value); if (amode.writeback) { // OPTIONAL writeback on pre-index mode mMips->ADDIU(Rn, Rn, amode.value); } break; case AMODE_IMM_12_POST: mMips->SB(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); break; case AMODE_REG_SCALE_PRE: // we only support simple base + index, no advanced modes for this one yet mMips->ADDU(R_at, Rn, amode.reg); mMips->SB(Rd, R_at, 0); break; } } void ArmToMipsAssembler::LDRH(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed8_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; // fall thru to next case .... case AMODE_IMM_8_PRE: // no support yet for writeback mMips->LHU(Rd, Rn, amode.value); break; case AMODE_IMM_8_POST: mMips->LHU(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); break; case AMODE_REG_PRE: // we only support simple base +/- index if (amode.reg >= 0) { mMips->ADDU(R_at, Rn, amode.reg); } else { mMips->SUBU(R_at, Rn, abs(amode.reg)); } mMips->LHU(Rd, R_at, 0); break; } } void ArmToMipsAssembler::LDRSB(int cc __unused, int Rd __unused, int Rn __unused, uint32_t offset __unused) { mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::LDRSH(int cc __unused, int Rd __unused, int Rn __unused, uint32_t offset __unused) { mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::STRH(int cc __unused, int Rd, int Rn, uint32_t offset) { mArmPC[mInum++] = pc(); // work-around for ARM default address mode of immed8_pre(0) if (offset > AMODE_UNSUPPORTED) offset = 0; switch (offset) { case 0: amode.value = 0; // fall thru to next case .... case AMODE_IMM_8_PRE: // no support yet for writeback mMips->SH(Rd, Rn, amode.value); break; case AMODE_IMM_8_POST: mMips->SH(Rd, Rn, 0); mMips->ADDIU(Rn, Rn, amode.value); break; case AMODE_REG_PRE: // we only support simple base +/- index if (amode.reg >= 0) { mMips->ADDU(R_at, Rn, amode.reg); } else { mMips->SUBU(R_at, Rn, abs(amode.reg)); } mMips->SH(Rd, R_at, 0); break; } } #if 0 #pragma mark - #pragma mark Block Data Transfer... #endif // block data transfer... void ArmToMipsAssembler::LDM(int cc __unused, int dir __unused, int Rn __unused, int W __unused, uint32_t reg_list __unused) { // ED FD EA FA IB IA DB DA // const uint8_t P[8] = { 1, 0, 1, 0, 1, 0, 1, 0 }; // const uint8_t U[8] = { 1, 1, 0, 0, 1, 1, 0, 0 }; // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | // (uint32_t(U[dir])<<23) | (1<<20) | (W<<21) | (Rn<<16) | reg_list; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::STM(int cc __unused, int dir __unused, int Rn __unused, int W __unused, uint32_t reg_list __unused) { // FA EA FD ED IB IA DB DA // const uint8_t P[8] = { 0, 1, 0, 1, 1, 0, 1, 0 }; // const uint8_t U[8] = { 0, 0, 1, 1, 1, 1, 0, 0 }; // *mPC++ = (cc<<28) | (4<<25) | (uint32_t(P[dir])<<24) | // (uint32_t(U[dir])<<23) | (0<<20) | (W<<21) | (Rn<<16) | reg_list; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } #if 0 #pragma mark - #pragma mark Special... #endif // special... void ArmToMipsAssembler::SWP(int cc __unused, int Rn __unused, int Rd __unused, int Rm __unused) { // *mPC++ = (cc<<28) | (2<<23) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::SWPB(int cc __unused, int Rn __unused, int Rd __unused, int Rm __unused) { // *mPC++ = (cc<<28) | (2<<23) | (1<<22) | (Rn<<16) | (Rd << 12) | 0x90 | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::SWI(int cc __unused, uint32_t comment __unused) { // *mPC++ = (cc<<28) | (0xF<<24) | comment; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } #if 0 #pragma mark - #pragma mark DSP instructions... #endif // DSP instructions... void ArmToMipsAssembler::PLD(int Rn __unused, uint32_t offset) { LOG_ALWAYS_FATAL_IF(!((offset&(1<<24)) && !(offset&(1<<21))), "PLD only P=1, W=0"); // *mPC++ = 0xF550F000 | (Rn<<16) | offset; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::CLZ(int cc __unused, int Rd, int Rm) { mArmPC[mInum++] = pc(); mMips->CLZ(Rd, Rm); } void ArmToMipsAssembler::QADD(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1000050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::QDADD(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1400050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::QSUB(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1200050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::QDSUB(int cc __unused, int Rd __unused, int Rm __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1600050 | (Rn<<16) | (Rd<<12) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } // 16 x 16 signed multiply (like SMLAxx without the accumulate) void ArmToMipsAssembler::SMUL(int cc __unused, int xy, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); // the 16 bits may be in the top or bottom half of 32-bit source reg, // as defined by the codes BB, BT, TB, TT (compressed param xy) // where x corresponds to Rm and y to Rs // select half-reg for Rm if (xy & xyTB) { // use top 16-bits mMips->SRA(R_at, Rm, 16); } else { // use bottom 16, but sign-extend to 32 if (mips32r2) { mMips->SEH(R_at, Rm); } else { mMips->SLL(R_at, Rm, 16); mMips->SRA(R_at, R_at, 16); } } // select half-reg for Rs if (xy & xyBT) { // use top 16-bits mMips->SRA(R_at2, Rs, 16); } else { // use bottom 16, but sign-extend to 32 if (mips32r2) { mMips->SEH(R_at2, Rs); } else { mMips->SLL(R_at2, Rs, 16); mMips->SRA(R_at2, R_at2, 16); } } mMips->MUL(Rd, R_at, R_at2); } // signed 32b x 16b multiple, save top 32-bits of 48-bit result void ArmToMipsAssembler::SMULW(int cc __unused, int y, int Rd, int Rm, int Rs) { mArmPC[mInum++] = pc(); // the selector yT or yB refers to reg Rs if (y & yT) { // zero the bottom 16-bits, with 2 shifts, it can affect result mMips->SRL(R_at, Rs, 16); mMips->SLL(R_at, R_at, 16); } else { // move low 16-bit half, to high half mMips->SLL(R_at, Rs, 16); } mMips->MULT(Rm, R_at); mMips->MFHI(Rd); } // 16 x 16 signed multiply, accumulate: Rd = Rm{16} * Rs{16} + Rn void ArmToMipsAssembler::SMLA(int cc __unused, int xy, int Rd, int Rm, int Rs, int Rn) { mArmPC[mInum++] = pc(); // the 16 bits may be in the top or bottom half of 32-bit source reg, // as defined by the codes BB, BT, TB, TT (compressed param xy) // where x corresponds to Rm and y to Rs // select half-reg for Rm if (xy & xyTB) { // use top 16-bits mMips->SRA(R_at, Rm, 16); } else { // use bottom 16, but sign-extend to 32 if (mips32r2) { mMips->SEH(R_at, Rm); } else { mMips->SLL(R_at, Rm, 16); mMips->SRA(R_at, R_at, 16); } } // select half-reg for Rs if (xy & xyBT) { // use top 16-bits mMips->SRA(R_at2, Rs, 16); } else { // use bottom 16, but sign-extend to 32 if (mips32r2) { mMips->SEH(R_at2, Rs); } else { mMips->SLL(R_at2, Rs, 16); mMips->SRA(R_at2, R_at2, 16); } } mMips->MUL(R_at, R_at, R_at2); mMips->ADDU(Rd, R_at, Rn); } void ArmToMipsAssembler::SMLAL(int cc __unused, int xy __unused, int RdHi __unused, int RdLo __unused, int Rs __unused, int Rm __unused) { // *mPC++ = (cc<<28) | 0x1400080 | (RdHi<<16) | (RdLo<<12) | (Rs<<8) | (xy<<4) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } void ArmToMipsAssembler::SMLAW(int cc __unused, int y __unused, int Rd __unused, int Rm __unused, int Rs __unused, int Rn __unused) { // *mPC++ = (cc<<28) | 0x1200080 | (Rd<<16) | (Rn<<12) | (Rs<<8) | (y<<4) | Rm; mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } // used by ARMv6 version of GGLAssembler::filter32 void ArmToMipsAssembler::UXTB16(int cc __unused, int Rd, int Rm, int rotate) { mArmPC[mInum++] = pc(); //Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]), //Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. mMips->ROTR(Rm, Rm, rotate * 8); mMips->AND(Rd, Rm, 0x00FF00FF); } void ArmToMipsAssembler::UBFX(int cc __unused, int Rd __unused, int Rn __unused, int lsb __unused, int width __unused) { /* Placeholder for UBFX */ mArmPC[mInum++] = pc(); mMips->NOP2(); NOT_IMPLEMENTED(); } #if 0 #pragma mark - #pragma mark MIPS Assembler... #endif //************************************************************************** //************************************************************************** //************************************************************************** /* mips assembler ** this is a subset of mips32r2, targeted specifically at ARM instruction ** replacement in the pixelflinger/codeflinger code. ** ** To that end, there is no need for floating point, or priviledged ** instructions. This all runs in user space, no float. ** ** The syntax makes no attempt to be as complete as the assember, with ** synthetic instructions, and automatic recognition of immedate operands ** (use the immediate form of the instruction), etc. ** ** We start with mips32r1, and may add r2 and dsp extensions if cpu ** supports. Decision will be made at compile time, based on gcc ** options. (makes sense since android will be built for a a specific ** device) */ MIPSAssembler::MIPSAssembler(const sp<Assembly>& assembly, ArmToMipsAssembler *parent) : mParent(parent), mAssembly(assembly) { mBase = mPC = (uint32_t *)assembly->base(); mDuration = ggl_system_time(); } MIPSAssembler::MIPSAssembler(void* assembly) : mParent(NULL), mAssembly(NULL) { mBase = mPC = (uint32_t *)assembly; } MIPSAssembler::~MIPSAssembler() { } uint32_t* MIPSAssembler::pc() const { return mPC; } uint32_t* MIPSAssembler::base() const { return mBase; } void MIPSAssembler::reset() { mBase = mPC = (uint32_t *)mAssembly->base(); mBranchTargets.clear(); mLabels.clear(); mLabelsInverseMapping.clear(); mComments.clear(); } // convert tabs to spaces, and remove any newline // works with strings of limited size (makes a temp copy) #define TABSTOP 8 void MIPSAssembler::string_detab(char *s) { char *os = s; char temp[100]; char *t = temp; int len = 99; int i = TABSTOP; while (*s && len-- > 0) { if (*s == '\n') { s++; continue; } if (*s == '\t') { s++; for ( ; i>0; i--) {*t++ = ' '; len--; } } else { *t++ = *s++; } if (i <= 0) i = TABSTOP; i--; } *t = '\0'; strcpy(os, temp); } void MIPSAssembler::string_pad(char *s, int padded_len) { int len = strlen(s); s += len; for (int i = padded_len - len; i > 0; --i) { *s++ = ' '; } *s = '\0'; } // ---------------------------------------------------------------------------- void MIPSAssembler::disassemble(const char* name) { char di_buf[140]; if (name) { ALOGW("%s:\n", name); } bool arm_disasm_fmt = (mParent->mArmDisassemblyBuffer == NULL) ? false : true; typedef char dstr[40]; dstr *lines = (dstr *)mParent->mArmDisassemblyBuffer; if (mParent->mArmDisassemblyBuffer != NULL) { for (int i=0; i<mParent->mArmInstrCount; ++i) { string_detab(lines[i]); } } size_t count = pc()-base(); uint32_t* mipsPC = base(); while (count--) { ssize_t label = mLabelsInverseMapping.indexOfKey(mipsPC); if (label >= 0) { ALOGW("%s:\n", mLabelsInverseMapping.valueAt(label)); } ssize_t comment = mComments.indexOfKey(mipsPC); if (comment >= 0) { ALOGW("; %s\n", mComments.valueAt(comment)); } // ALOGW("%08x: %08x ", int(i), int(i[0])); ::mips_disassem(mipsPC, di_buf, arm_disasm_fmt); string_detab(di_buf); string_pad(di_buf, 30); ALOGW("0x%p: %08x %s", mipsPC, uint32_t(*mipsPC), di_buf); mipsPC++; } } void MIPSAssembler::comment(const char* string) { mComments.add(pc(), string); } void MIPSAssembler::label(const char* theLabel) { mLabels.add(theLabel, pc()); mLabelsInverseMapping.add(pc(), theLabel); } void MIPSAssembler::prolog() { // empty - done in ArmToMipsAssembler } void MIPSAssembler::epilog(uint32_t touched __unused) { // empty - done in ArmToMipsAssembler } int MIPSAssembler::generate(const char* name) { // fixup all the branches size_t count = mBranchTargets.size(); while (count--) { const branch_target_t& bt = mBranchTargets[count]; uint32_t* target_pc = mLabels.valueFor(bt.label); LOG_ALWAYS_FATAL_IF(!target_pc, "error resolving branch targets, target_pc is null"); int32_t offset = int32_t(target_pc - (bt.pc+1)); *bt.pc |= offset & 0x00FFFF; } mAssembly->resize( int(pc()-base())*4 ); // the instruction & data caches are flushed by CodeCache const int64_t duration = ggl_system_time() - mDuration; const char * const format = "generated %s (%d ins) at [%p:%p] in %" PRId64 " ns\n"; ALOGI(format, name, int(pc()-base()), base(), pc(), duration); char value[PROPERTY_VALUE_MAX]; value[0] = '\0'; property_get("debug.pf.disasm", value, "0"); if (atoi(value) != 0) { disassemble(name); } return OK; } uint32_t* MIPSAssembler::pcForLabel(const char* label) { return mLabels.valueFor(label); } #if 0 #pragma mark - #pragma mark Arithmetic... #endif void MIPSAssembler::ADDU(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (addu_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); } // MD00086 pdf says this is: ADDIU rt, rs, imm -- they do not use Rd void MIPSAssembler::ADDIU(int Rt, int Rs, int16_t imm) { *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPSAssembler::SUBU(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (subu_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; } void MIPSAssembler::SUBIU(int Rt, int Rs, int16_t imm) // really addiu(d, s, -j) { *mPC++ = (addiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | ((-imm) & MSK_16); } void MIPSAssembler::NEGU(int Rd, int Rs) // really subu(d, zero, s) { MIPSAssembler::SUBU(Rd, 0, Rs); } void MIPSAssembler::MUL(int Rd, int Rs, int Rt) { *mPC++ = (spec2_op<<OP_SHF) | (mul_fn<<FUNC_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF) ; } void MIPSAssembler::MULT(int Rs, int Rt) // dest is hi,lo { *mPC++ = (spec_op<<OP_SHF) | (mult_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MULTU(int Rs, int Rt) // dest is hi,lo { *mPC++ = (spec_op<<OP_SHF) | (multu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MADD(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt { *mPC++ = (spec2_op<<OP_SHF) | (madd_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MADDU(int Rs, int Rt) // hi,lo = hi,lo + Rs * Rt { *mPC++ = (spec2_op<<OP_SHF) | (maddu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MSUB(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt { *mPC++ = (spec2_op<<OP_SHF) | (msub_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MSUBU(int Rs, int Rt) // hi,lo = hi,lo - Rs * Rt { *mPC++ = (spec2_op<<OP_SHF) | (msubu_fn<<FUNC_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::SEB(int Rd, int Rt) // sign-extend byte (mips32r2) { *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seb_fn << SA_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); } void MIPSAssembler::SEH(int Rd, int Rt) // sign-extend half-word (mips32r2) { *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (seh_fn << SA_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); } #if 0 #pragma mark - #pragma mark Comparisons... #endif void MIPSAssembler::SLT(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (slt_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::SLTI(int Rt, int Rs, int16_t imm) { *mPC++ = (slti_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPSAssembler::SLTU(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (sltu_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::SLTIU(int Rt, int Rs, int16_t imm) { *mPC++ = (sltiu_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } #if 0 #pragma mark - #pragma mark Logical... #endif void MIPSAssembler::AND(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (and_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::ANDI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate { *mPC++ = (andi_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPSAssembler::OR(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::ORI(int Rt, int Rs, uint16_t imm) { *mPC++ = (ori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPSAssembler::NOR(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (nor_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::NOT(int Rd, int Rs) { MIPSAssembler::NOR(Rd, Rs, 0); // NOT(d,s) = NOR(d,s,zero) } void MIPSAssembler::XOR(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (xor_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::XORI(int Rt, int Rs, uint16_t imm) // todo: support larger immediate { *mPC++ = (xori_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | (imm & MSK_16); } void MIPSAssembler::SLL(int Rd, int Rt, int shft) { *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); } void MIPSAssembler::SLLV(int Rd, int Rt, int Rs) { *mPC++ = (spec_op<<OP_SHF) | (sllv_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::SRL(int Rd, int Rt, int shft) { *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); } void MIPSAssembler::SRLV(int Rd, int Rt, int Rs) { *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::SRA(int Rd, int Rt, int shft) { *mPC++ = (spec_op<<OP_SHF) | (sra_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); } void MIPSAssembler::SRAV(int Rd, int Rt, int Rs) { *mPC++ = (spec_op<<OP_SHF) | (srav_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::ROTR(int Rd, int Rt, int shft) // mips32r2 { // note weird encoding (SRL + 1) *mPC++ = (spec_op<<OP_SHF) | (srl_fn<<FUNC_SHF) | (1<<RS_SHF) | (Rd<<RD_SHF) | (Rt<<RT_SHF) | (shft<<RE_SHF); } void MIPSAssembler::ROTRV(int Rd, int Rt, int Rs) // mips32r2 { // note weird encoding (SRLV + 1) *mPC++ = (spec_op<<OP_SHF) | (srlv_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF) | (1<<RE_SHF); } // uses at2 register (mapped to some appropriate mips reg) void MIPSAssembler::RORsyn(int Rd, int Rt, int Rs) { // synthetic: d = t rotated by s MIPSAssembler::NEGU(R_at2, Rs); MIPSAssembler::SLLV(R_at2, Rt, R_at2); MIPSAssembler::SRLV(Rd, Rt, Rs); MIPSAssembler::OR(Rd, Rd, R_at2); } // immediate version - uses at2 register (mapped to some appropriate mips reg) void MIPSAssembler::RORIsyn(int Rd, int Rt, int rot) { // synthetic: d = t rotated by immed rot // d = s >> rot | s << (32-rot) MIPSAssembler::SLL(R_at2, Rt, 32-rot); MIPSAssembler::SRL(Rd, Rt, rot); MIPSAssembler::OR(Rd, Rd, R_at2); } void MIPSAssembler::CLO(int Rd, int Rs) { // Rt field must have same gpr # as Rd *mPC++ = (spec2_op<<OP_SHF) | (clo_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF); } void MIPSAssembler::CLZ(int Rd, int Rs) { // Rt field must have same gpr # as Rd *mPC++ = (spec2_op<<OP_SHF) | (clz_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rd<<RT_SHF); } void MIPSAssembler::WSBH(int Rd, int Rt) // mips32r2 { *mPC++ = (spec3_op<<OP_SHF) | (bshfl_fn<<FUNC_SHF) | (wsbh_fn << SA_SHF) | (Rt<<RT_SHF) | (Rd<<RD_SHF); } #if 0 #pragma mark - #pragma mark Load/store... #endif void MIPSAssembler::LW(int Rt, int Rbase, int16_t offset) { *mPC++ = (lw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::SW(int Rt, int Rbase, int16_t offset) { *mPC++ = (sw_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } // lb is sign-extended void MIPSAssembler::LB(int Rt, int Rbase, int16_t offset) { *mPC++ = (lb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::LBU(int Rt, int Rbase, int16_t offset) { *mPC++ = (lbu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::SB(int Rt, int Rbase, int16_t offset) { *mPC++ = (sb_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } // lh is sign-extended void MIPSAssembler::LH(int Rt, int Rbase, int16_t offset) { *mPC++ = (lh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::LHU(int Rt, int Rbase, int16_t offset) { *mPC++ = (lhu_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::SH(int Rt, int Rbase, int16_t offset) { *mPC++ = (sh_op<<OP_SHF) | (Rbase<<RS_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } void MIPSAssembler::LUI(int Rt, int16_t offset) { *mPC++ = (lui_op<<OP_SHF) | (Rt<<RT_SHF) | (offset & MSK_16); } #if 0 #pragma mark - #pragma mark Register move... #endif void MIPSAssembler::MOVE(int Rd, int Rs) { // encoded as "or rd, rs, zero" *mPC++ = (spec_op<<OP_SHF) | (or_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (0<<RT_SHF); } void MIPSAssembler::MOVN(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (movn_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::MOVZ(int Rd, int Rs, int Rt) { *mPC++ = (spec_op<<OP_SHF) | (movz_fn<<FUNC_SHF) | (Rd<<RD_SHF) | (Rs<<RS_SHF) | (Rt<<RT_SHF); } void MIPSAssembler::MFHI(int Rd) { *mPC++ = (spec_op<<OP_SHF) | (mfhi_fn<<FUNC_SHF) | (Rd<<RD_SHF); } void MIPSAssembler::MFLO(int Rd) { *mPC++ = (spec_op<<OP_SHF) | (mflo_fn<<FUNC_SHF) | (Rd<<RD_SHF); } void MIPSAssembler::MTHI(int Rs) { *mPC++ = (spec_op<<OP_SHF) | (mthi_fn<<FUNC_SHF) | (Rs<<RS_SHF); } void MIPSAssembler::MTLO(int Rs) { *mPC++ = (spec_op<<OP_SHF) | (mtlo_fn<<FUNC_SHF) | (Rs<<RS_SHF); } #if 0 #pragma mark - #pragma mark Branch... #endif // temporarily forcing a NOP into branch-delay slot, just to be safe // todo: remove NOP, optimze use of delay slots void MIPSAssembler::B(const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); // encoded as BEQ zero, zero, offset *mPC++ = (beq_op<<OP_SHF) | (0<<RT_SHF) | (0<<RS_SHF) | 0; // offset filled in later MIPSAssembler::NOP(); } void MIPSAssembler::BEQ(int Rs, int Rt, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (beq_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::BNE(int Rs, int Rt, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (bne_op<<OP_SHF) | (Rt<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::BLEZ(int Rs, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (blez_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::BLTZ(int Rs, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (regimm_op<<OP_SHF) | (bltz_fn<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::BGTZ(int Rs, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (bgtz_op<<OP_SHF) | (0<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::BGEZ(int Rs, const char* label) { mBranchTargets.add(branch_target_t(label, mPC)); *mPC++ = (regimm_op<<OP_SHF) | (bgez_fn<<RT_SHF) | (Rs<<RS_SHF) | 0; MIPSAssembler::NOP(); } void MIPSAssembler::JR(int Rs) { *mPC++ = (spec_op<<OP_SHF) | (Rs<<RS_SHF) | (jr_fn << FUNC_SHF); MIPSAssembler::NOP(); } #if 0 #pragma mark - #pragma mark Synthesized Branch... #endif // synthetic variants of branches (using slt & friends) void MIPSAssembler::BEQZ(int Rs, const char* label) { BEQ(Rs, R_zero, label); } void MIPSAssembler::BNEZ(int Rs __unused, const char* label) { BNE(R_at, R_zero, label); } void MIPSAssembler::BGE(int Rs, int Rt, const char* label) { SLT(R_at, Rs, Rt); BEQ(R_at, R_zero, label); } void MIPSAssembler::BGEU(int Rs, int Rt, const char* label) { SLTU(R_at, Rs, Rt); BEQ(R_at, R_zero, label); } void MIPSAssembler::BGT(int Rs, int Rt, const char* label) { SLT(R_at, Rt, Rs); // rev BNE(R_at, R_zero, label); } void MIPSAssembler::BGTU(int Rs, int Rt, const char* label) { SLTU(R_at, Rt, Rs); // rev BNE(R_at, R_zero, label); } void MIPSAssembler::BLE(int Rs, int Rt, const char* label) { SLT(R_at, Rt, Rs); // rev BEQ(R_at, R_zero, label); } void MIPSAssembler::BLEU(int Rs, int Rt, const char* label) { SLTU(R_at, Rt, Rs); // rev BEQ(R_at, R_zero, label); } void MIPSAssembler::BLT(int Rs, int Rt, const char* label) { SLT(R_at, Rs, Rt); BNE(R_at, R_zero, label); } void MIPSAssembler::BLTU(int Rs, int Rt, const char* label) { SLTU(R_at, Rs, Rt); BNE(R_at, R_zero, label); } #if 0 #pragma mark - #pragma mark Misc... #endif void MIPSAssembler::NOP(void) { // encoded as "sll zero, zero, 0", which is all zero *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF); } // using this as special opcode for not-yet-implemented ARM instruction void MIPSAssembler::NOP2(void) { // encoded as "sll zero, zero, 2", still a nop, but a unique code *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (2 << RE_SHF); } // using this as special opcode for purposefully NOT implemented ARM instruction void MIPSAssembler::UNIMPL(void) { // encoded as "sll zero, zero, 3", still a nop, but a unique code *mPC++ = (spec_op<<OP_SHF) | (sll_fn<<FUNC_SHF) | (3 << RE_SHF); } }; // namespace android: