/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "libdm/dm.h" #include <sys/ioctl.h> #include <sys/sysmacros.h> #include <sys/types.h> #include <android-base/logging.h> #include <android-base/macros.h> namespace android { namespace dm { DeviceMapper::DeviceMapper() : fd_(-1) { fd_ = TEMP_FAILURE_RETRY(open("/dev/device-mapper", O_RDWR | O_CLOEXEC)); if (fd_ < 0) { PLOG(ERROR) << "Failed to open device-mapper"; } } DeviceMapper& DeviceMapper::Instance() { static DeviceMapper instance; return instance; } // Creates a new device mapper device bool DeviceMapper::CreateDevice(const std::string& name) { if (name.empty()) { LOG(ERROR) << "Unnamed device mapper device creation is not supported"; return false; } if (name.size() >= DM_NAME_LEN) { LOG(ERROR) << "[" << name << "] is too long to be device mapper name"; return false; } struct dm_ioctl io; InitIo(&io, name); if (ioctl(fd_, DM_DEV_CREATE, &io)) { PLOG(ERROR) << "DM_DEV_CREATE failed for [" << name << "]"; return false; } // Check to make sure the newly created device doesn't already have targets // added or opened by someone CHECK(io.target_count == 0) << "Unexpected targets for newly created [" << name << "] device"; CHECK(io.open_count == 0) << "Unexpected opens for newly created [" << name << "] device"; // Creates a new device mapper device with the name passed in return true; } bool DeviceMapper::DeleteDevice(const std::string& name) { if (name.empty()) { LOG(ERROR) << "Unnamed device mapper device creation is not supported"; return false; } if (name.size() >= DM_NAME_LEN) { LOG(ERROR) << "[" << name << "] is too long to be device mapper name"; return false; } struct dm_ioctl io; InitIo(&io, name); if (ioctl(fd_, DM_DEV_REMOVE, &io)) { PLOG(ERROR) << "DM_DEV_REMOVE failed for [" << name << "]"; return false; } // Check to make sure appropriate uevent is generated so ueventd will // do the right thing and remove the corresponding device node and symlinks. CHECK(io.flags & DM_UEVENT_GENERATED_FLAG) << "Didn't generate uevent for [" << name << "] removal"; return true; } const std::unique_ptr<DmTable> DeviceMapper::table(const std::string& /* name */) const { // TODO(b/110035986): Return the table, as read from the kernel instead return nullptr; } DmDeviceState DeviceMapper::GetState(const std::string& name) const { struct dm_ioctl io; InitIo(&io, name); if (ioctl(fd_, DM_DEV_STATUS, &io) < 0) { return DmDeviceState::INVALID; } if ((io.flags & DM_ACTIVE_PRESENT_FLAG) && !(io.flags & DM_SUSPEND_FLAG)) { return DmDeviceState::ACTIVE; } return DmDeviceState::SUSPENDED; } bool DeviceMapper::CreateDevice(const std::string& name, const DmTable& table) { if (!CreateDevice(name)) { return false; } if (!LoadTableAndActivate(name, table)) { DeleteDevice(name); return false; } return true; } bool DeviceMapper::LoadTableAndActivate(const std::string& name, const DmTable& table) { std::string ioctl_buffer(sizeof(struct dm_ioctl), 0); ioctl_buffer += table.Serialize(); struct dm_ioctl* io = reinterpret_cast<struct dm_ioctl*>(&ioctl_buffer[0]); InitIo(io, name); io->data_size = ioctl_buffer.size(); io->data_start = sizeof(struct dm_ioctl); io->target_count = static_cast<uint32_t>(table.num_targets()); if (table.readonly()) { io->flags |= DM_READONLY_FLAG; } if (ioctl(fd_, DM_TABLE_LOAD, io)) { PLOG(ERROR) << "DM_TABLE_LOAD failed"; return false; } InitIo(io, name); if (ioctl(fd_, DM_DEV_SUSPEND, io)) { PLOG(ERROR) << "DM_TABLE_SUSPEND resume failed"; return false; } return true; } // Reads all the available device mapper targets and their corresponding // versions from the kernel and returns in a vector bool DeviceMapper::GetAvailableTargets(std::vector<DmTargetTypeInfo>* targets) { targets->clear(); // calculate the space needed to read a maximum of kMaxPossibleDmTargets uint32_t payload_size = sizeof(struct dm_target_versions); payload_size += DM_MAX_TYPE_NAME; // device mapper wants every target spec to be aligned at 8-byte boundary payload_size = DM_ALIGN(payload_size); payload_size *= kMaxPossibleDmTargets; uint32_t data_size = sizeof(struct dm_ioctl) + payload_size; auto buffer = std::unique_ptr<void, void (*)(void*)>(calloc(1, data_size), free); if (buffer == nullptr) { LOG(ERROR) << "failed to allocate memory"; return false; } // Sets appropriate data size and data_start to make sure we tell kernel // about the total size of the buffer we are passing and where to start // writing the list of targets. struct dm_ioctl* io = reinterpret_cast<struct dm_ioctl*>(buffer.get()); InitIo(io); io->data_size = data_size; io->data_start = sizeof(*io); if (ioctl(fd_, DM_LIST_VERSIONS, io)) { PLOG(ERROR) << "DM_LIST_VERSIONS failed"; return false; } // If the provided buffer wasn't enough to list all targets, note that // any data beyond sizeof(*io) must not be read in this case if (io->flags & DM_BUFFER_FULL_FLAG) { LOG(INFO) << data_size << " is not enough memory to list all dm targets"; return false; } // if there are no targets registered, return success with empty vector if (io->data_size == sizeof(*io)) { return true; } // Parse each target and list the name and version // TODO(b/110035986): Templatize this uint32_t next = sizeof(*io); data_size = io->data_size - next; struct dm_target_versions* vers = reinterpret_cast<struct dm_target_versions*>(static_cast<char*>(buffer.get()) + next); while (next && data_size) { targets->emplace_back(vers); if (vers->next == 0) { break; } next += vers->next; data_size -= vers->next; vers = reinterpret_cast<struct dm_target_versions*>(static_cast<char*>(buffer.get()) + next); } return true; } bool DeviceMapper::GetAvailableDevices(std::vector<DmBlockDevice>* devices) { devices->clear(); // calculate the space needed to read a maximum of 256 targets, each with // name with maximum length of 16 bytes uint32_t payload_size = sizeof(struct dm_name_list); // 128-bytes for the name payload_size += DM_NAME_LEN; // dm wants every device spec to be aligned at 8-byte boundary payload_size = DM_ALIGN(payload_size); payload_size *= kMaxPossibleDmDevices; uint32_t data_size = sizeof(struct dm_ioctl) + payload_size; auto buffer = std::unique_ptr<void, void (*)(void*)>(calloc(1, data_size), free); if (buffer == nullptr) { LOG(ERROR) << "failed to allocate memory"; return false; } // Sets appropriate data size and data_start to make sure we tell kernel // about the total size of the buffer we are passing and where to start // writing the list of targets. struct dm_ioctl* io = reinterpret_cast<struct dm_ioctl*>(buffer.get()); InitIo(io); io->data_size = data_size; io->data_start = sizeof(*io); if (ioctl(fd_, DM_LIST_DEVICES, io)) { PLOG(ERROR) << "DM_LIST_DEVICES failed"; return false; } // If the provided buffer wasn't enough to list all devices any data // beyond sizeof(*io) must not be read. if (io->flags & DM_BUFFER_FULL_FLAG) { LOG(INFO) << data_size << " is not enough memory to list all dm devices"; return false; } // if there are no devices created yet, return success with empty vector if (io->data_size == sizeof(*io)) { return true; } // Parse each device and add a new DmBlockDevice to the vector // created from the kernel data. uint32_t next = sizeof(*io); data_size = io->data_size - next; struct dm_name_list* dm_dev = reinterpret_cast<struct dm_name_list*>(static_cast<char*>(buffer.get()) + next); while (next && data_size) { devices->emplace_back((dm_dev)); if (dm_dev->next == 0) { break; } next += dm_dev->next; data_size -= dm_dev->next; dm_dev = reinterpret_cast<struct dm_name_list*>(static_cast<char*>(buffer.get()) + next); } return true; } // Accepts a device mapper device name (like system_a, vendor_b etc) and // returns the path to it's device node (or symlink to the device node) bool DeviceMapper::GetDmDevicePathByName(const std::string& name, std::string* path) { struct dm_ioctl io; InitIo(&io, name); if (ioctl(fd_, DM_DEV_STATUS, &io) < 0) { PLOG(WARNING) << "DM_DEV_STATUS failed for " << name; return false; } uint32_t dev_num = minor(io.dev); *path = "/dev/block/dm-" + std::to_string(dev_num); return true; } bool DeviceMapper::GetTableStatus(const std::string& name, std::vector<TargetInfo>* table) { return GetTable(name, 0, table); } bool DeviceMapper::GetTableInfo(const std::string& name, std::vector<TargetInfo>* table) { return GetTable(name, DM_STATUS_TABLE_FLAG, table); } // private methods of DeviceMapper bool DeviceMapper::GetTable(const std::string& name, uint32_t flags, std::vector<TargetInfo>* table) { std::vector<char> buffer; struct dm_ioctl* io = nullptr; for (buffer.resize(4096);; buffer.resize(buffer.size() * 2)) { io = reinterpret_cast<struct dm_ioctl*>(&buffer[0]); InitIo(io, name); io->data_size = buffer.size(); io->data_start = sizeof(*io); io->flags = flags; if (ioctl(fd_, DM_TABLE_STATUS, io) < 0) { PLOG(ERROR) << "DM_TABLE_STATUS failed for " << name; return false; } if (!(io->flags & DM_BUFFER_FULL_FLAG)) break; } uint32_t cursor = io->data_start; uint32_t data_end = std::min(io->data_size, uint32_t(buffer.size())); for (uint32_t i = 0; i < io->target_count; i++) { if (cursor + sizeof(struct dm_target_spec) > data_end) { break; } // After each dm_target_spec is a status string. spec->next is an // offset from |io->data_start|, and we clamp it to the size of our // buffer. struct dm_target_spec* spec = reinterpret_cast<struct dm_target_spec*>(&buffer[cursor]); uint32_t data_offset = cursor + sizeof(dm_target_spec); uint32_t next_cursor = std::min(io->data_start + spec->next, data_end); std::string data; if (next_cursor > data_offset) { // Note: we use c_str() to eliminate any extra trailing 0s. data = std::string(&buffer[data_offset], next_cursor - data_offset).c_str(); } table->emplace_back(*spec, data); cursor = next_cursor; } return true; } void DeviceMapper::InitIo(struct dm_ioctl* io, const std::string& name) const { CHECK(io != nullptr) << "nullptr passed to dm_ioctl initialization"; memset(io, 0, sizeof(*io)); io->version[0] = DM_VERSION0; io->version[1] = DM_VERSION1; io->version[2] = DM_VERSION2; io->data_size = sizeof(*io); io->data_start = 0; if (!name.empty()) { snprintf(io->name, sizeof(io->name), "%s", name.c_str()); } } } // namespace dm } // namespace android