/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fs_mgr.h" #include <ctype.h> #include <dirent.h> #include <errno.h> #include <fcntl.h> #include <inttypes.h> #include <libgen.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mount.h> #include <sys/stat.h> #include <sys/swap.h> #include <sys/types.h> #include <sys/wait.h> #include <time.h> #include <unistd.h> #include <functional> #include <map> #include <memory> #include <string> #include <thread> #include <utility> #include <vector> #include <android-base/file.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <android-base/unique_fd.h> #include <cutils/android_filesystem_config.h> #include <cutils/android_reboot.h> #include <cutils/partition_utils.h> #include <cutils/properties.h> #include <ext4_utils/ext4.h> #include <ext4_utils/ext4_sb.h> #include <ext4_utils/ext4_utils.h> #include <ext4_utils/wipe.h> #include <fs_avb/fs_avb.h> #include <fs_mgr_overlayfs.h> #include <libdm/dm.h> #include <liblp/metadata_format.h> #include <linux/fs.h> #include <linux/loop.h> #include <linux/magic.h> #include <log/log_properties.h> #include <logwrap/logwrap.h> #include "fs_mgr_priv.h" #define KEY_LOC_PROP "ro.crypto.keyfile.userdata" #define KEY_IN_FOOTER "footer" #define E2FSCK_BIN "/system/bin/e2fsck" #define F2FS_FSCK_BIN "/system/bin/fsck.f2fs" #define MKSWAP_BIN "/system/bin/mkswap" #define TUNE2FS_BIN "/system/bin/tune2fs" #define FSCK_LOG_FILE "/dev/fscklogs/log" #define ZRAM_CONF_DEV "/sys/block/zram0/disksize" #define ZRAM_CONF_MCS "/sys/block/zram0/max_comp_streams" #define ZRAM_BACK_DEV "/sys/block/zram0/backing_dev" #define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) using android::base::Basename; using android::base::Realpath; using android::base::StartsWith; using android::base::unique_fd; using android::dm::DeviceMapper; using android::dm::DmDeviceState; // Realistically, this file should be part of the android::fs_mgr namespace; using namespace android::fs_mgr; using namespace std::literals; // record fs stat enum FsStatFlags { FS_STAT_IS_EXT4 = 0x0001, FS_STAT_NEW_IMAGE_VERSION = 0x0002, FS_STAT_E2FSCK_F_ALWAYS = 0x0004, FS_STAT_UNCLEAN_SHUTDOWN = 0x0008, FS_STAT_QUOTA_ENABLED = 0x0010, FS_STAT_RO_MOUNT_FAILED = 0x0040, FS_STAT_RO_UNMOUNT_FAILED = 0x0080, FS_STAT_FULL_MOUNT_FAILED = 0x0100, FS_STAT_E2FSCK_FAILED = 0x0200, FS_STAT_E2FSCK_FS_FIXED = 0x0400, FS_STAT_INVALID_MAGIC = 0x0800, FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000, FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000, FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000, FS_STAT_ENABLE_VERITY_FAILED = 0x80000, }; // TODO: switch to inotify() bool fs_mgr_wait_for_file(const std::string& filename, const std::chrono::milliseconds relative_timeout, FileWaitMode file_wait_mode) { auto start_time = std::chrono::steady_clock::now(); while (true) { int rv = access(filename.c_str(), F_OK); if (file_wait_mode == FileWaitMode::Exists) { if (!rv || errno != ENOENT) return true; } else if (file_wait_mode == FileWaitMode::DoesNotExist) { if (rv && errno == ENOENT) return true; } std::this_thread::sleep_for(50ms); auto now = std::chrono::steady_clock::now(); auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time); if (time_elapsed > relative_timeout) return false; } } static void log_fs_stat(const std::string& blk_device, int fs_stat) { if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4 std::string msg = android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat); android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC | O_APPEND | O_CREAT, 0664))); if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) { LWARNING << __FUNCTION__ << "() cannot log " << msg; } } static bool is_extfs(const std::string& fs_type) { return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2"; } static bool is_f2fs(const std::string& fs_type) { return fs_type == "f2fs"; } static std::string realpath(const std::string& blk_device) { std::string real_path; if (!Realpath(blk_device, &real_path)) { real_path = blk_device; } return real_path; } static bool should_force_check(int fs_stat) { return fs_stat & (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED | FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED | FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED | FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED); } static void check_fs(const std::string& blk_device, const std::string& fs_type, const std::string& target, int* fs_stat) { int status; int ret; long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID; auto tmpmnt_opts = "errors=remount-ro"s; const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()}; const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()}; if (*fs_stat & FS_STAT_INVALID_MAGIC) { // will fail, so do not try return; } /* Check for the types of filesystems we know how to check */ if (is_extfs(fs_type)) { /* * First try to mount and unmount the filesystem. We do this because * the kernel is more efficient than e2fsck in running the journal and * processing orphaned inodes, and on at least one device with a * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes * to do what the kernel does in about a second. * * After mounting and unmounting the filesystem, run e2fsck, and if an * error is recorded in the filesystem superblock, e2fsck will do a full * check. Otherwise, it does nothing. If the kernel cannot mount the * filesytsem due to an error, e2fsck is still run to do a full check * fix the filesystem. */ if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) { // already tried if full mount failed errno = 0; if (fs_type == "ext4") { // This option is only valid with ext4 tmpmnt_opts += ",nomblk_io_submit"; } ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags, tmpmnt_opts.c_str()); PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type << ")=" << ret; if (!ret) { bool umounted = false; int retry_count = 5; while (retry_count-- > 0) { umounted = umount(target.c_str()) == 0; if (umounted) { LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded"; break; } PERROR << __FUNCTION__ << "(): umount(" << target << ") failed"; if (retry_count) sleep(1); } if (!umounted) { // boot may fail but continue and leave it to later stage for now. PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out"; *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED; } } else { *fs_stat |= FS_STAT_RO_MOUNT_FAILED; } } /* * Some system images do not have e2fsck for licensing reasons * (e.g. recent SDK system images). Detect these and skip the check. */ if (access(E2FSCK_BIN, X_OK)) { LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device) << " (executable not in system image)"; } else { LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device); if (should_force_check(*fs_stat)) { ret = android_fork_execvp_ext( ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status, true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); } else { ret = android_fork_execvp_ext( ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), NULL, 0); } if (ret < 0) { /* No need to check for error in fork, we can't really handle it now */ LERROR << "Failed trying to run " << E2FSCK_BIN; *fs_stat |= FS_STAT_E2FSCK_FAILED; } else if (status != 0) { LINFO << "e2fsck returned status 0x" << std::hex << status; *fs_stat |= FS_STAT_E2FSCK_FS_FIXED; } } } else if (is_f2fs(fs_type)) { const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", blk_device.c_str()}; LINFO << "Running " << F2FS_FSCK_BIN << " -a " << realpath(blk_device); ret = android_fork_execvp_ext(ARRAY_SIZE(f2fs_fsck_argv), const_cast<char **>(f2fs_fsck_argv), &status, true, LOG_KLOG | LOG_FILE, true, const_cast<char *>(FSCK_LOG_FILE), NULL, 0); if (ret < 0) { /* No need to check for error in fork, we can't really handle it now */ LERROR << "Failed trying to run " << F2FS_FSCK_BIN; } } return; } static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) { return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) | le32_to_cpu(es->s_blocks_count_lo); } static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) { return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) | le32_to_cpu(es->s_r_blocks_count_lo); } static bool is_ext4_superblock_valid(const struct ext4_super_block* es) { if (es->s_magic != EXT4_SUPER_MAGIC) return false; if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false; if (EXT4_INODES_PER_GROUP(es) == 0) return false; return true; } // Read the primary superblock from an ext4 filesystem. On failure return // false. If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC. static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb, int* fs_stat) { android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) { PERROR << "Failed to open '" << blk_device << "'"; return false; } if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) { PERROR << "Can't read '" << blk_device << "' superblock"; return false; } if (!is_ext4_superblock_valid(sb)) { LINFO << "Invalid ext4 superblock on '" << blk_device << "'"; // not a valid fs, tune2fs, fsck, and mount will all fail. *fs_stat |= FS_STAT_INVALID_MAGIC; return false; } *fs_stat |= FS_STAT_IS_EXT4; LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device; if (sb->s_max_mnt_count == 0xffff) { // -1 (int16) in ext2, but uint16 in ext4 *fs_stat |= FS_STAT_NEW_IMAGE_VERSION; } return true; } // exported silent version of the above that just answer the question is_ext4 bool fs_mgr_is_ext4(const std::string& blk_device) { android::base::ErrnoRestorer restore; android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) return false; ext4_super_block sb; if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false; if (!is_ext4_superblock_valid(&sb)) return false; return true; } // Some system images do not have tune2fs for licensing reasons. // Detect these and skip running it. static bool tune2fs_available(void) { return access(TUNE2FS_BIN, X_OK) == 0; } static bool run_tune2fs(const char* argv[], int argc) { int ret; ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true, LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0); return ret == 0; } // Enable/disable quota support on the filesystem if needed. static void tune_quota(const std::string& blk_device, const FstabEntry& entry, const struct ext4_super_block* sb, int* fs_stat) { bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0; bool want_quota = entry.fs_mgr_flags.quota; if (has_quota == want_quota) { return; } if (!tune2fs_available()) { LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device << " because " TUNE2FS_BIN " is missing"; return; } const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()}; if (want_quota) { LINFO << "Enabling quotas on " << blk_device; argv[1] = "-Oquota"; argv[2] = "-Qusrquota,grpquota"; *fs_stat |= FS_STAT_QUOTA_ENABLED; } else { LINFO << "Disabling quotas on " << blk_device; argv[1] = "-O^quota"; argv[2] = "-Q^usrquota,^grpquota"; } if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device; *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED; } } // Set the number of reserved filesystem blocks if needed. static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry, const struct ext4_super_block* sb, int* fs_stat) { if (entry.reserved_size == 0) { return; } // The size to reserve is given in the fstab, but we won't reserve more // than 2% of the filesystem. const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02; uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb); if (reserved_blocks > max_reserved_blocks) { LWARNING << "Reserved blocks " << reserved_blocks << " is too large; " << "capping to " << max_reserved_blocks; reserved_blocks = max_reserved_blocks; } if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) { return; } if (!tune2fs_available()) { LERROR << "Unable to set the number of reserved blocks on " << blk_device << " because " TUNE2FS_BIN " is missing"; return; } LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks; auto reserved_blocks_str = std::to_string(reserved_blocks); auto reserved_gid_str = std::to_string(AID_RESERVED_DISK); const char* argv[] = { TUNE2FS_BIN, "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(), blk_device.c_str()}; if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on " << blk_device; *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED; } } // Enable file-based encryption if needed. static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry, const struct ext4_super_block* sb, int* fs_stat) { bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0; bool want_encrypt = entry.fs_mgr_flags.file_encryption; if (has_encrypt || !want_encrypt) { return; } if (!tune2fs_available()) { LERROR << "Unable to enable ext4 encryption on " << blk_device << " because " TUNE2FS_BIN " is missing"; return; } const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device.c_str()}; LINFO << "Enabling ext4 encryption on " << blk_device; if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { LERROR << "Failed to run " TUNE2FS_BIN " to enable " << "ext4 encryption on " << blk_device; *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED; } } // Enable fs-verity if needed. static void tune_verity(const std::string& blk_device, const FstabEntry& entry, const struct ext4_super_block* sb, int* fs_stat) { bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0; bool want_verity = entry.fs_mgr_flags.fs_verity; if (has_verity || !want_verity) { return; } std::string verity_support; if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) { LERROR << "Failed to open " << SYSFS_EXT4_VERITY; return; } if (!(android::base::Trim(verity_support) == "supported")) { LERROR << "Current ext4 verity not supported by kernel"; return; } if (!tune2fs_available()) { LERROR << "Unable to enable ext4 verity on " << blk_device << " because " TUNE2FS_BIN " is missing"; return; } LINFO << "Enabling ext4 verity on " << blk_device; const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()}; if (!run_tune2fs(argv, ARRAY_SIZE(argv))) { LERROR << "Failed to run " TUNE2FS_BIN " to enable " << "ext4 verity on " << blk_device; *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED; } } // Read the primary superblock from an f2fs filesystem. On failure return // false. If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC. #define F2FS_BLKSIZE 4096 #define F2FS_SUPER_OFFSET 1024 static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) { android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); __le32 sb1, sb2; if (fd < 0) { PERROR << "Failed to open '" << blk_device << "'"; return false; } if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) { PERROR << "Can't read '" << blk_device << "' superblock1"; return false; } if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) != sizeof(sb2)) { PERROR << "Can't read '" << blk_device << "' superblock2"; return false; } if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) { LINFO << "Invalid f2fs superblock on '" << blk_device << "'"; *fs_stat |= FS_STAT_INVALID_MAGIC; return false; } return true; } // exported silent version of the above that just answer the question is_f2fs bool fs_mgr_is_f2fs(const std::string& blk_device) { android::base::ErrnoRestorer restore; android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) return false; __le32 sb; if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) { return false; } if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true; if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) != sizeof(sb)) { return false; } return sb == cpu_to_le32(F2FS_SUPER_MAGIC); } // // Prepare the filesystem on the given block device to be mounted. // // If the "check" option was given in the fstab record, or it seems that the // filesystem was uncleanly shut down, we'll run fsck on the filesystem. // // If needed, we'll also enable (or disable) filesystem features as specified by // the fstab record. // static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) { int fs_stat = 0; if (is_extfs(entry.fs_type)) { struct ext4_super_block sb; if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 || (sb.s_state & EXT4_VALID_FS) == 0) { LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; " << "state flags: 0x" << std::hex << sb.s_state << ", " << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat; fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN; } // Note: quotas should be enabled before running fsck. tune_quota(blk_device, entry, &sb, &fs_stat); } else { return fs_stat; } } else if (is_f2fs(entry.fs_type)) { if (!read_f2fs_superblock(blk_device, &fs_stat)) { return fs_stat; } } if (entry.fs_mgr_flags.check || (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) { check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat); } if (is_extfs(entry.fs_type) && (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.fs_verity)) { struct ext4_super_block sb; if (read_ext4_superblock(blk_device, &sb, &fs_stat)) { tune_reserved_size(blk_device, entry, &sb, &fs_stat); tune_encrypt(blk_device, entry, &sb, &fs_stat); tune_verity(blk_device, entry, &sb, &fs_stat); } } return fs_stat; } // Mark the given block device as read-only, using the BLKROSET ioctl. bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) { unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) { return false; } int ON = readonly; return ioctl(fd, BLKROSET, &ON) == 0; } // Orange state means the device is unlocked, see the following link for details. // https://source.android.com/security/verifiedboot/verified-boot#device_state bool fs_mgr_is_device_unlocked() { std::string verified_boot_state; if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) { return verified_boot_state == "orange"; } return false; } // __mount(): wrapper around the mount() system call which also // sets the underlying block device to read-only if the mount is read-only. // See "man 2 mount" for return values. static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) { // We need this because sometimes we have legacy symlinks that are // lingering around and need cleaning up. struct stat info; if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) { unlink(target.c_str()); } mkdir(target.c_str(), 0755); errno = 0; unsigned long mountflags = entry.flags; int ret = 0; int save_errno = 0; do { if (save_errno == EAGAIN) { PINFO << "Retrying mount (source=" << source << ",target=" << target << ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")"; } ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags, entry.fs_options.c_str()); save_errno = errno; } while (ret && save_errno == EAGAIN); const char* target_missing = ""; const char* source_missing = ""; if (save_errno == ENOENT) { if (access(target.c_str(), F_OK)) { target_missing = "(missing)"; } else if (access(source.c_str(), F_OK)) { source_missing = "(missing)"; } errno = save_errno; } PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target << target_missing << ",type=" << entry.fs_type << ")=" << ret; if ((ret == 0) && (mountflags & MS_RDONLY) != 0) { fs_mgr_set_blk_ro(source); } errno = save_errno; return ret; } static bool fs_match(const std::string& in1, const std::string& in2) { if (in1.empty() || in2.empty()) { return false; } auto in1_end = in1.size() - 1; while (in1_end > 0 && in1[in1_end] == '/') { in1_end--; } auto in2_end = in2.size() - 1; while (in2_end > 0 && in2[in2_end] == '/') { in2_end--; } if (in1_end != in2_end) { return false; } for (size_t i = 0; i <= in1_end; ++i) { if (in1[i] != in2[i]) { return false; } } return true; } // Tries to mount any of the consecutive fstab entries that match // the mountpoint of the one given by fstab[start_idx]. // // end_idx: On return, will be the last entry that was looked at. // attempted_idx: On return, will indicate which fstab entry // succeeded. In case of failure, it will be the start_idx. // Sets errno to match the 1st mount failure on failure. static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx, int* attempted_idx) { unsigned long i; int mount_errno = 0; bool mounted = false; // Hunt down an fstab entry for the same mount point that might succeed. for (i = start_idx; // We required that fstab entries for the same mountpoint be consecutive. i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) { // Don't try to mount/encrypt the same mount point again. // Deal with alternate entries for the same point which are required to be all following // each other. if (mounted) { LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as " << fstab[*attempted_idx].fs_type; continue; } int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]); if (fs_stat & FS_STAT_INVALID_MAGIC) { LERROR << __FUNCTION__ << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i << "].fs_type=" << fstab[i].fs_type; mount_errno = EINVAL; // continue bootup for FDE continue; } int retry_count = 2; while (retry_count-- > 0) { if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) { *attempted_idx = i; mounted = true; if (i != start_idx) { LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on " << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type << " instead of " << fstab[start_idx].fs_type; } fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; mount_errno = 0; break; } else { if (retry_count <= 0) break; // run check_fs only once fs_stat |= FS_STAT_FULL_MOUNT_FAILED; // back up the first errno for crypto decisions. if (mount_errno == 0) { mount_errno = errno; } // retry after fsck check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat); } } log_fs_stat(fstab[i].blk_device, fs_stat); } /* Adjust i for the case where it was still withing the recs[] */ if (i < fstab.size()) --i; *end_idx = i; if (!mounted) { *attempted_idx = start_idx; errno = mount_errno; return false; } return true; } static bool TranslateExtLabels(FstabEntry* entry) { if (!StartsWith(entry->blk_device, "LABEL=")) { return true; } std::string label = entry->blk_device.substr(6); if (label.size() > 16) { LERROR << "FS label is longer than allowed by filesystem"; return false; } auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir}; if (!blockdir) { LERROR << "couldn't open /dev/block"; return false; } struct dirent* ent; while ((ent = readdir(blockdir.get()))) { if (ent->d_type != DT_BLK) continue; unique_fd fd(TEMP_FAILURE_RETRY( openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC))); if (fd < 0) { LERROR << "Cannot open block device /dev/block/" << ent->d_name; return false; } ext4_super_block super_block; if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 || TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) != sizeof(super_block)) { // Probably a loopback device or something else without a readable superblock. continue; } if (super_block.s_magic != EXT4_SUPER_MAGIC) { LINFO << "/dev/block/" << ent->d_name << " not ext{234}"; continue; } if (label == super_block.s_volume_name) { std::string new_blk_device = "/dev/block/"s + ent->d_name; LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device; entry->blk_device = new_blk_device; return true; } } return false; } static bool needs_block_encryption(const FstabEntry& entry) { if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable()) return true; if (entry.fs_mgr_flags.force_crypt) return true; if (entry.fs_mgr_flags.crypt) { // Check for existence of convert_fde breadcrumb file. auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde"; if (access(convert_fde_name.c_str(), F_OK) == 0) return true; } if (entry.fs_mgr_flags.force_fde_or_fbe) { // Check for absence of convert_fbe breadcrumb file. auto convert_fbe_name = entry.mount_point + "/convert_fbe"; if (access(convert_fbe_name.c_str(), F_OK) != 0) return true; } return false; } static bool should_use_metadata_encryption(const FstabEntry& entry) { return !entry.key_dir.empty() && (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe); } // Check to see if a mountable volume has encryption requirements static int handle_encryptable(const FstabEntry& entry) { // If this is block encryptable, need to trigger encryption. if (needs_block_encryption(entry)) { if (umount(entry.mount_point.c_str()) == 0) { return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION; } else { PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted"; return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; } } else if (should_use_metadata_encryption(entry)) { if (umount(entry.mount_point.c_str()) == 0) { return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION; } else { PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt"; return FS_MGR_MNTALL_FAIL; } } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) { LINFO << entry.mount_point << " is file encrypted"; return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED; } else if (entry.is_encryptable()) { return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED; } else { return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; } } static bool call_vdc(const std::vector<std::string>& args) { std::vector<char const*> argv; argv.emplace_back("/system/bin/vdc"); for (auto& arg : args) { argv.emplace_back(arg.c_str()); } LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); int ret = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), nullptr, false, true); if (ret != 0) { LOG(ERROR) << "vdc returned error code: " << ret; return false; } LOG(DEBUG) << "vdc finished successfully"; return true; } static bool call_vdc_ret(const std::vector<std::string>& args, int* ret) { std::vector<char const*> argv; argv.emplace_back("/system/bin/vdc"); for (auto& arg : args) { argv.emplace_back(arg.c_str()); } LOG(INFO) << "Calling: " << android::base::Join(argv, ' '); int err = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), ret, false, true); if (err != 0) { LOG(ERROR) << "vdc call failed with error code: " << err; return false; } LOG(DEBUG) << "vdc finished successfully"; *ret = WEXITSTATUS(*ret); return true; } bool fs_mgr_update_logical_partition(FstabEntry* entry) { // Logical partitions are specified with a named partition rather than a // block device, so if the block device is a path, then it has already // been updated. if (entry->blk_device[0] == '/') { return true; } DeviceMapper& dm = DeviceMapper::Instance(); std::string device_name; if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) { return false; } entry->blk_device = device_name; return true; } class CheckpointManager { public: CheckpointManager(int needs_checkpoint = -1) : needs_checkpoint_(needs_checkpoint) {} bool Update(FstabEntry* entry, const std::string& block_device = std::string()) { if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { return true; } if (entry->fs_mgr_flags.checkpoint_blk) { call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device}); } if (needs_checkpoint_ == UNKNOWN && !call_vdc_ret({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) { LERROR << "Failed to find if checkpointing is needed. Assuming no."; needs_checkpoint_ = NO; } if (needs_checkpoint_ != YES) { return true; } if (!UpdateCheckpointPartition(entry, block_device)) { LERROR << "Could not set up checkpoint partition, skipping!"; return false; } return true; } bool Revert(FstabEntry* entry) { if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) { return true; } if (device_map_.find(entry->blk_device) == device_map_.end()) { return true; } std::string bow_device = entry->blk_device; entry->blk_device = device_map_[bow_device]; device_map_.erase(bow_device); DeviceMapper& dm = DeviceMapper::Instance(); if (!dm.DeleteDevice("bow")) { PERROR << "Failed to remove bow device"; } return true; } private: bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) { if (entry->fs_mgr_flags.checkpoint_fs) { if (is_f2fs(entry->fs_type)) { entry->fs_options += ",checkpoint=disable"; } else { LERROR << entry->fs_type << " does not implement checkpoints."; } } else if (entry->fs_mgr_flags.checkpoint_blk) { auto actual_block_device = block_device.empty() ? entry->blk_device : block_device; if (fs_mgr_find_bow_device(actual_block_device).empty()) { unique_fd fd( TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC))); if (fd < 0) { PERROR << "Cannot open device " << entry->blk_device; return false; } uint64_t size = get_block_device_size(fd) / 512; if (!size) { PERROR << "Cannot get device size"; return false; } android::dm::DmTable table; if (!table.AddTarget(std::make_unique<android::dm::DmTargetBow>( 0, size, entry->blk_device))) { LERROR << "Failed to add bow target"; return false; } DeviceMapper& dm = DeviceMapper::Instance(); if (!dm.CreateDevice("bow", table)) { PERROR << "Failed to create bow device"; return false; } std::string name; if (!dm.GetDmDevicePathByName("bow", &name)) { PERROR << "Failed to get bow device name"; return false; } device_map_[name] = entry->blk_device; entry->blk_device = name; } } return true; } enum { UNKNOWN = -1, NO = 0, YES = 1 }; int needs_checkpoint_; std::map<std::string, std::string> device_map_; }; std::string fs_mgr_find_bow_device(const std::string& block_device) { if (block_device.substr(0, 5) != "/dev/") { LOG(ERROR) << "Expected block device, got " << block_device; return std::string(); } std::string sys_dir = std::string("/sys/") + block_device.substr(5); for (;;) { std::string name; if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) { PLOG(ERROR) << block_device << " is not dm device"; return std::string(); } if (name == "bow\n") return sys_dir; std::string slaves = sys_dir + "/slaves"; std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir); if (!directory) { PLOG(ERROR) << "Can't open slave directory " << slaves; return std::string(); } int count = 0; for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) { if (entry->d_type != DT_LNK) continue; if (count == 1) { LOG(ERROR) << "Too many slaves in " << slaves; return std::string(); } ++count; sys_dir = std::string("/sys/block/") + entry->d_name; } if (count != 1) { LOG(ERROR) << "No slave in " << slaves; return std::string(); } } } static bool IsMountPointMounted(const std::string& mount_point) { // Check if this is already mounted. Fstab fstab; if (!ReadFstabFromFile("/proc/mounts", &fstab)) { return false; } return GetEntryForMountPoint(&fstab, mount_point) != nullptr; } // When multiple fstab records share the same mount_point, it will try to mount each // one in turn, and ignore any duplicates after a first successful mount. // Returns -1 on error, and FS_MGR_MNTALL_* otherwise. int fs_mgr_mount_all(Fstab* fstab, int mount_mode) { int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE; int error_count = 0; CheckpointManager checkpoint_manager; AvbUniquePtr avb_handle(nullptr); if (fstab->empty()) { return FS_MGR_MNTALL_FAIL; } for (size_t i = 0; i < fstab->size(); i++) { auto& current_entry = (*fstab)[i]; // If a filesystem should have been mounted in the first stage, we // ignore it here. With one exception, if the filesystem is // formattable, then it can only be formatted in the second stage, // so we allow it to mount here. if (current_entry.fs_mgr_flags.first_stage_mount && (!current_entry.fs_mgr_flags.formattable || IsMountPointMounted(current_entry.mount_point))) { continue; } // Don't mount entries that are managed by vold or not for the mount mode. if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only || ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) || ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) { continue; } // Skip swap and raw partition entries such as boot, recovery, etc. if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" || current_entry.fs_type == "mtd") { continue; } // Skip mounting the root partition, as it will already have been mounted. if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") { if ((current_entry.flags & MS_RDONLY) != 0) { fs_mgr_set_blk_ro(current_entry.blk_device); } continue; } // Translate LABEL= file system labels into block devices. if (is_extfs(current_entry.fs_type)) { if (!TranslateExtLabels(¤t_entry)) { LERROR << "Could not translate label to block device"; continue; } } if (current_entry.fs_mgr_flags.logical) { if (!fs_mgr_update_logical_partition(¤t_entry)) { LERROR << "Could not set up logical partition, skipping!"; continue; } } if (!checkpoint_manager.Update(¤t_entry)) { continue; } if (current_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(current_entry.blk_device, 20s)) { LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all"; continue; } if (current_entry.fs_mgr_flags.avb) { if (!avb_handle) { avb_handle = AvbHandle::Open(); if (!avb_handle) { LERROR << "Failed to open AvbHandle"; return FS_MGR_MNTALL_FAIL; } } if (avb_handle->SetUpAvbHashtree(¤t_entry, true /* wait_for_verity_dev */) == AvbHashtreeResult::kFail) { LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point << ", skipping!"; // Skips mounting the device. continue; } } else if (!current_entry.avb_keys.empty()) { if (AvbHandle::SetUpStandaloneAvbHashtree(¤t_entry) == AvbHashtreeResult::kFail) { LERROR << "Failed to set up AVB on standalone partition: " << current_entry.mount_point << ", skipping!"; // Skips mounting the device. continue; } } else if ((current_entry.fs_mgr_flags.verify)) { int rc = fs_mgr_setup_verity(¤t_entry, true); if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) { LINFO << "Verity disabled"; } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { LERROR << "Could not set up verified partition, skipping!"; continue; } } int last_idx_inspected; int top_idx = i; int attempted_idx = -1; bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx); auto& attempted_entry = (*fstab)[attempted_idx]; i = last_idx_inspected; int mount_errno = errno; // Handle success and deal with encryptability. if (mret) { int status = handle_encryptable(attempted_entry); if (status == FS_MGR_MNTALL_FAIL) { // Fatal error - no point continuing. return status; } if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) { // Log and continue LERROR << "Only one encryptable/encrypted partition supported"; } encryptable = status; if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) { if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device, attempted_entry.mount_point})) { LERROR << "Encryption failed"; return FS_MGR_MNTALL_FAIL; } } } // Success! Go get the next one. continue; } // Mounting failed, understand why and retry. bool wiped = partition_wiped(current_entry.blk_device.c_str()); bool crypt_footer = false; if (mount_errno != EBUSY && mount_errno != EACCES && current_entry.fs_mgr_flags.formattable && wiped) { // current_entry and attempted_entry point at the same partition, but sometimes // at two different lines in the fstab. Use current_entry for formatting // as that is the preferred one. LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device) << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type << " is formattable. Format it."; checkpoint_manager.Revert(¤t_entry); if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) { unique_fd fd(TEMP_FAILURE_RETRY( open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC))); if (fd >= 0) { LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc; wipe_block_device(fd, get_file_size(fd)); } else { PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open"; } } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) { crypt_footer = true; } if (fs_mgr_do_format(current_entry, crypt_footer) == 0) { // Let's replay the mount actions. i = top_idx - 1; continue; } else { LERROR << __FUNCTION__ << "(): Format failed. " << "Suggest recovery..."; encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; continue; } } // mount(2) returned an error, handle the encryptable/formattable case. if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) { if (wiped) { LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and " << attempted_entry.mount_point << " " << attempted_entry.fs_type << " is encryptable. Suggest recovery..."; encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY; continue; } else { // Need to mount a tmpfs at this mountpoint for now, and set // properties that vold will query later for decrypting LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev " << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point << " type " << attempted_entry.fs_type; if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) { ++error_count; continue; } } encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED; } else if (mount_errno != EBUSY && mount_errno != EACCES && should_use_metadata_encryption(attempted_entry)) { if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device, attempted_entry.mount_point})) { ++error_count; } encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED; continue; } else { // fs_options might be null so we cannot use PERROR << directly. // Use StringPrintf to output "(null)" instead. if (attempted_entry.fs_mgr_flags.no_fail) { PERROR << android::base::StringPrintf( "Ignoring failure to mount an un-encryptable or wiped " "partition on %s at %s options: %s", attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), attempted_entry.fs_options.c_str()); } else { PERROR << android::base::StringPrintf( "Failed to mount an un-encryptable or wiped partition " "on %s at %s options: %s", attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(), attempted_entry.fs_options.c_str()); ++error_count; } continue; } } #if ALLOW_ADBD_DISABLE_VERITY == 1 // "userdebug" build fs_mgr_overlayfs_mount_all(fstab); #endif if (error_count) { return FS_MGR_MNTALL_FAIL; } else { return encryptable; } } int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) { AvbUniquePtr avb_handle(nullptr); int ret = FsMgrUmountStatus::SUCCESS; for (auto& current_entry : *fstab) { if (!IsMountPointMounted(current_entry.mount_point)) { continue; } if (umount(current_entry.mount_point.c_str()) == -1) { PERROR << "Failed to umount " << current_entry.mount_point; ret |= FsMgrUmountStatus::ERROR_UMOUNT; continue; } if (current_entry.fs_mgr_flags.logical) { if (!fs_mgr_update_logical_partition(¤t_entry)) { LERROR << "Could not get logical partition blk_device, skipping!"; ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER; continue; } } if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) { if (!AvbHandle::TearDownAvbHashtree(¤t_entry, true /* wait */)) { LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point; ret |= FsMgrUmountStatus::ERROR_VERITY; continue; } } else if ((current_entry.fs_mgr_flags.verify)) { if (!fs_mgr_teardown_verity(¤t_entry, true /* wait */)) { LERROR << "Failed to tear down verified partition on mount point: " << current_entry.mount_point; ret |= FsMgrUmountStatus::ERROR_VERITY; continue; } } } return ret; } // wrapper to __mount() and expects a fully prepared fstab_rec, // unlike fs_mgr_do_mount which does more things with avb / verity etc. int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) { // Run fsck if needed prepare_fs_for_mount(entry.blk_device, entry); int ret = __mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry); if (ret) { ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED; } return ret; } // If tmp_mount_point is non-null, mount the filesystem there. This is for the // tmp mount we do to check the user password // If multiple fstab entries are to be mounted on "n_name", it will try to mount each one // in turn, and stop on 1st success, or no more match. static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name, const std::string& n_blk_device, const char* tmp_mount_point, int needs_checkpoint) { int mount_errors = 0; int first_mount_errno = 0; std::string mount_point; CheckpointManager checkpoint_manager(needs_checkpoint); AvbUniquePtr avb_handle(nullptr); if (!fstab) { return FS_MGR_DOMNT_FAILED; } for (auto& fstab_entry : *fstab) { if (!fs_match(fstab_entry.mount_point, n_name)) { continue; } // We found our match. // If this swap or a raw partition, report an error. if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" || fstab_entry.fs_type == "mtd") { LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on " << n_blk_device; return FS_MGR_DOMNT_FAILED; } if (fstab_entry.fs_mgr_flags.logical) { if (!fs_mgr_update_logical_partition(&fstab_entry)) { LERROR << "Could not set up logical partition, skipping!"; continue; } } if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) { LERROR << "Could not set up checkpoint partition, skipping!"; continue; } // First check the filesystem if requested. if (fstab_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(n_blk_device, 20s)) { LERROR << "Skipping mounting '" << n_blk_device << "'"; continue; } int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry); if (fstab_entry.fs_mgr_flags.avb) { if (!avb_handle) { avb_handle = AvbHandle::Open(); if (!avb_handle) { LERROR << "Failed to open AvbHandle"; return FS_MGR_DOMNT_FAILED; } } if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) == AvbHashtreeResult::kFail) { LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point << ", skipping!"; // Skips mounting the device. continue; } } else if (!fstab_entry.avb_keys.empty()) { if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) { LERROR << "Failed to set up AVB on standalone partition: " << fstab_entry.mount_point << ", skipping!"; // Skips mounting the device. continue; } } else if (fstab_entry.fs_mgr_flags.verify) { int rc = fs_mgr_setup_verity(&fstab_entry, true); if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) { LINFO << "Verity disabled"; } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) { LERROR << "Could not set up verified partition, skipping!"; continue; } } // Now mount it where requested */ if (tmp_mount_point) { mount_point = tmp_mount_point; } else { mount_point = fstab_entry.mount_point; } int retry_count = 2; while (retry_count-- > 0) { if (!__mount(n_blk_device, mount_point, fstab_entry)) { fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED; return FS_MGR_DOMNT_SUCCESS; } else { if (retry_count <= 0) break; // run check_fs only once if (!first_mount_errno) first_mount_errno = errno; mount_errors++; fs_stat |= FS_STAT_FULL_MOUNT_FAILED; // try again after fsck check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat); } } log_fs_stat(fstab_entry.blk_device, fs_stat); } // Reach here means the mount attempt fails. if (mount_errors) { PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point; if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY; } else { // We didn't find a match, say so and return an error. LERROR << "Cannot find mount point " << n_name << " in fstab"; } return FS_MGR_DOMNT_FAILED; } int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) { return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1); } int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point, bool needs_checkpoint) { return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint); } /* * mount a tmpfs filesystem at the given point. * return 0 on success, non-zero on failure. */ int fs_mgr_do_tmpfs_mount(const char *n_name) { int ret; ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC, CRYPTO_TMPFS_OPTIONS); if (ret < 0) { LERROR << "Cannot mount tmpfs filesystem at " << n_name; return -1; } /* Success */ return 0; } static bool InstallZramDevice(const std::string& device) { if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) { PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV; return false; } LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV; return true; } static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) { if (loop.empty() && bdev.empty()) return true; if (bdev.length()) { return InstallZramDevice(bdev); } // Get free loopback unique_fd loop_fd(TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC))); if (loop_fd.get() == -1) { PERROR << "Cannot open loop-control"; return false; } int num = ioctl(loop_fd.get(), LOOP_CTL_GET_FREE); if (num == -1) { PERROR << "Cannot get free loop slot"; return false; } // Prepare target path unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600))); if (target_fd.get() == -1) { PERROR << "Cannot open target path: " << loop; return false; } if (fallocate(target_fd.get(), 0, 0, size) < 0) { PERROR << "Cannot truncate target path: " << loop; return false; } // Connect loopback (device_fd) to target path (target_fd) std::string device = android::base::StringPrintf("/dev/block/loop%d", num); unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC))); if (device_fd.get() == -1) { PERROR << "Cannot open /dev/block/loop" << num; return false; } if (ioctl(device_fd.get(), LOOP_SET_FD, target_fd.get())) { PERROR << "Cannot set loopback to target path"; return false; } // set block size & direct IO if (ioctl(device_fd.get(), LOOP_SET_BLOCK_SIZE, 4096)) { PWARNING << "Cannot set 4KB blocksize to /dev/block/loop" << num; } if (ioctl(device_fd.get(), LOOP_SET_DIRECT_IO, 1)) { PWARNING << "Cannot set direct_io to /dev/block/loop" << num; } return InstallZramDevice(device); } bool fs_mgr_swapon_all(const Fstab& fstab) { bool ret = true; for (const auto& entry : fstab) { // Skip non-swap entries. if (entry.fs_type != "swap") { continue; } if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) { LERROR << "Skipping losetup for '" << entry.blk_device << "'"; } if (entry.zram_size > 0) { // A zram_size was specified, so we need to configure the // device. There is no point in having multiple zram devices // on a system (all the memory comes from the same pool) so // we can assume the device number is 0. if (entry.max_comp_streams >= 0) { auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{ fopen(ZRAM_CONF_MCS, "re"), fclose}; if (zram_mcs_fp == nullptr) { LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS; ret = false; continue; } fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams); } auto zram_fp = std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose}; if (zram_fp == nullptr) { LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV; ret = false; continue; } fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size); } if (entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(entry.blk_device, 20s)) { LERROR << "Skipping mkswap for '" << entry.blk_device << "'"; ret = false; continue; } // Initialize the swap area. const char* mkswap_argv[2] = { MKSWAP_BIN, entry.blk_device.c_str(), }; int err = 0; int status; err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), const_cast<char**>(mkswap_argv), &status, true, LOG_KLOG, false, nullptr, nullptr, 0); if (err) { LERROR << "mkswap failed for " << entry.blk_device; ret = false; continue; } /* If -1, then no priority was specified in fstab, so don't set * SWAP_FLAG_PREFER or encode the priority */ int flags = 0; if (entry.swap_prio >= 0) { flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK; flags |= SWAP_FLAG_PREFER; } else { flags = 0; } err = swapon(entry.blk_device.c_str(), flags); if (err) { LERROR << "swapon failed for " << entry.blk_device; ret = false; } } return ret; } bool fs_mgr_load_verity_state(int* mode) { /* return the default mode, unless any of the verified partitions are in * logging mode, in which case return that */ *mode = VERITY_MODE_DEFAULT; Fstab fstab; if (!ReadDefaultFstab(&fstab)) { LERROR << "Failed to read default fstab"; return false; } for (const auto& entry : fstab) { if (entry.fs_mgr_flags.avb) { *mode = VERITY_MODE_RESTART; // avb only supports restart mode. break; } else if (!entry.fs_mgr_flags.verify) { continue; } int current; if (load_verity_state(entry, ¤t) < 0) { continue; } if (current != VERITY_MODE_DEFAULT) { *mode = current; break; } } return true; } bool fs_mgr_is_verity_enabled(const FstabEntry& entry) { if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) { return false; } DeviceMapper& dm = DeviceMapper::Instance(); std::string mount_point = GetVerityDeviceName(entry); if (dm.GetState(mount_point) == DmDeviceState::INVALID) { return false; } const char* status; std::vector<DeviceMapper::TargetInfo> table; if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) { if (!entry.fs_mgr_flags.verify_at_boot) { return false; } status = "V"; } else { status = table[0].data.c_str(); } if (*status == 'C' || *status == 'V') { return true; } return false; } bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) { if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) { return false; } DeviceMapper& dm = DeviceMapper::Instance(); std::string device = GetVerityDeviceName(entry); std::vector<DeviceMapper::TargetInfo> table; if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) { return false; } for (const auto& target : table) { if (strcmp(target.spec.target_type, "verity") == 0 && target.data.find("check_at_most_once") != std::string::npos) { return true; } } return false; } std::string fs_mgr_get_super_partition_name(int slot) { // Devices upgrading to dynamic partitions are allowed to specify a super // partition name. This includes cuttlefish, which is a non-A/B device. std::string super_partition; if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) { if (fs_mgr_get_slot_suffix().empty()) { return super_partition; } std::string suffix; if (slot == 0) { suffix = "_a"; } else if (slot == 1) { suffix = "_b"; } else if (slot == -1) { suffix = fs_mgr_get_slot_suffix(); } return super_partition + suffix; } return LP_METADATA_DEFAULT_PARTITION_NAME; }