/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG SYSDEPS #include "sysdeps.h" #include <winsock2.h> /* winsock.h *must* be included before windows.h. */ #include <windows.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <memory> #include <mutex> #include <string> #include <string_view> #include <unordered_map> #include <vector> #include <cutils/sockets.h> #include <android-base/errors.h> #include <android-base/file.h> #include <android-base/logging.h> #include <android-base/macros.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <android-base/utf8.h> #include "adb.h" #include "adb_utils.h" #include "sysdeps/uio.h" /* forward declarations */ typedef const struct FHClassRec_* FHClass; typedef struct FHRec_* FH; typedef struct FHClassRec_ { void (*_fh_init)(FH); int (*_fh_close)(FH); int64_t (*_fh_lseek)(FH, int64_t, int); int (*_fh_read)(FH, void*, int); int (*_fh_write)(FH, const void*, int); int (*_fh_writev)(FH, const adb_iovec*, int); } FHClassRec; static void _fh_file_init(FH); static int _fh_file_close(FH); static int64_t _fh_file_lseek(FH, int64_t, int); static int _fh_file_read(FH, void*, int); static int _fh_file_write(FH, const void*, int); static int _fh_file_writev(FH, const adb_iovec*, int); static const FHClassRec _fh_file_class = { _fh_file_init, _fh_file_close, _fh_file_lseek, _fh_file_read, _fh_file_write, _fh_file_writev, }; static void _fh_socket_init(FH); static int _fh_socket_close(FH); static int64_t _fh_socket_lseek(FH, int64_t, int); static int _fh_socket_read(FH, void*, int); static int _fh_socket_write(FH, const void*, int); static int _fh_socket_writev(FH, const adb_iovec*, int); static const FHClassRec _fh_socket_class = { _fh_socket_init, _fh_socket_close, _fh_socket_lseek, _fh_socket_read, _fh_socket_write, _fh_socket_writev, }; #if defined(assert) #undef assert #endif void handle_deleter::operator()(HANDLE h) { // CreateFile() is documented to return INVALID_HANDLE_FILE on error, // implying that NULL is a valid handle, but this is probably impossible. // Other APIs like CreateEvent() are documented to return NULL on error, // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we // only need to check for INVALID_HANDLE_VALUE. if (h != INVALID_HANDLE_VALUE) { if (!CloseHandle(h)) { D("CloseHandle(%p) failed: %s", h, android::base::SystemErrorCodeToString(GetLastError()).c_str()); } } } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** common file descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ typedef struct FHRec_ { FHClass clazz; int used; int eof; union { HANDLE handle; SOCKET socket; } u; char name[32]; } FHRec; #define fh_handle u.handle #define fh_socket u.socket #define WIN32_FH_BASE 2048 #define WIN32_MAX_FHS 2048 static std::mutex& _win32_lock = *new std::mutex(); static FHRec _win32_fhs[ WIN32_MAX_FHS ]; static int _win32_fh_next; // where to start search for free FHRec static FH _fh_from_int( int fd, const char* func ) { FH f; fd -= WIN32_FH_BASE; if (fd < 0 || fd >= WIN32_MAX_FHS) { D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func ); errno = EBADF; return nullptr; } f = &_win32_fhs[fd]; if (f->used == 0) { D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, func ); errno = EBADF; return nullptr; } return f; } static int _fh_to_int( FH f ) { if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) return (int)(f - _win32_fhs) + WIN32_FH_BASE; return -1; } static FH _fh_alloc( FHClass clazz ) { FH f = nullptr; std::lock_guard<std::mutex> lock(_win32_lock); for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) { if (_win32_fhs[i].clazz == nullptr) { f = &_win32_fhs[i]; _win32_fh_next = i + 1; f->clazz = clazz; f->used = 1; f->eof = 0; f->name[0] = '\0'; clazz->_fh_init(f); return f; } } D("_fh_alloc: no more free file descriptors"); errno = EMFILE; // Too many open files return nullptr; } static int _fh_close( FH f ) { // Use lock so that closing only happens once and so that _fh_alloc can't // allocate a FH that we're in the middle of closing. std::lock_guard<std::mutex> lock(_win32_lock); int offset = f - _win32_fhs; if (_win32_fh_next > offset) { _win32_fh_next = offset; } if (f->used) { f->clazz->_fh_close( f ); f->name[0] = '\0'; f->eof = 0; f->used = 0; f->clazz = nullptr; } return 0; } // Deleter for unique_fh. class fh_deleter { public: void operator()(struct FHRec_* fh) { // We're called from a destructor and destructors should not overwrite // errno because callers may do: // errno = EBLAH; // return -1; // calls destructor, which should not overwrite errno const int saved_errno = errno; _fh_close(fh); errno = saved_errno; } }; // Like std::unique_ptr, but calls _fh_close() instead of operator delete(). typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh; /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** file-based descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ static void _fh_file_init(FH f) { f->fh_handle = INVALID_HANDLE_VALUE; } static int _fh_file_close(FH f) { CloseHandle(f->fh_handle); f->fh_handle = INVALID_HANDLE_VALUE; return 0; } static int _fh_file_read(FH f, void* buf, int len) { DWORD read_bytes; if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) { D("adb_read: could not read %d bytes from %s", len, f->name); errno = EIO; return -1; } else if (read_bytes < (DWORD)len) { f->eof = 1; } return read_bytes; } static int _fh_file_write(FH f, const void* buf, int len) { DWORD wrote_bytes; if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) { D("adb_file_write: could not write %d bytes from %s", len, f->name); errno = EIO; return -1; } else if (wrote_bytes < (DWORD)len) { f->eof = 1; } return wrote_bytes; } static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) { if (iovcnt <= 0) { errno = EINVAL; return -1; } DWORD wrote_bytes = 0; for (int i = 0; i < iovcnt; ++i) { ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len); if (rc == -1) { return wrote_bytes > 0 ? wrote_bytes : -1; } else if (rc == 0) { return wrote_bytes; } wrote_bytes += rc; if (static_cast<size_t>(rc) < iov[i].iov_len) { return wrote_bytes; } } return wrote_bytes; } static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) { DWORD method; switch (origin) { case SEEK_SET: method = FILE_BEGIN; break; case SEEK_CUR: method = FILE_CURRENT; break; case SEEK_END: method = FILE_END; break; default: errno = EINVAL; return -1; } LARGE_INTEGER li = {.QuadPart = pos}; if (!SetFilePointerEx(f->fh_handle, li, &li, method)) { errno = EIO; return -1; } f->eof = 0; return li.QuadPart; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** file-based descriptor handling *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ int adb_open(const char* path, int options) { FH f; DWORD desiredAccess = 0; DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; // CreateFileW is inherently O_CLOEXEC by default. options &= ~O_CLOEXEC; switch (options) { case O_RDONLY: desiredAccess = GENERIC_READ; break; case O_WRONLY: desiredAccess = GENERIC_WRITE; break; case O_RDWR: desiredAccess = GENERIC_READ | GENERIC_WRITE; break; default: D("adb_open: invalid options (0x%0x)", options); errno = EINVAL; return -1; } f = _fh_alloc(&_fh_file_class); if (!f) { return -1; } std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return -1; } f->fh_handle = CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr); if (f->fh_handle == INVALID_HANDLE_VALUE) { const DWORD err = GetLastError(); _fh_close(f); D("adb_open: could not open '%s': ", path); switch (err) { case ERROR_FILE_NOT_FOUND: D("file not found"); errno = ENOENT; return -1; case ERROR_PATH_NOT_FOUND: D("path not found"); errno = ENOTDIR; return -1; default: D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); errno = ENOENT; return -1; } } snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path); D("adb_open: '%s' => fd %d", path, _fh_to_int(f)); return _fh_to_int(f); } /* ignore mode on Win32 */ int adb_creat(const char* path, int mode) { FH f; f = _fh_alloc(&_fh_file_class); if (!f) { return -1; } std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return -1; } f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr); if (f->fh_handle == INVALID_HANDLE_VALUE) { const DWORD err = GetLastError(); _fh_close(f); D("adb_creat: could not open '%s': ", path); switch (err) { case ERROR_FILE_NOT_FOUND: D("file not found"); errno = ENOENT; return -1; case ERROR_PATH_NOT_FOUND: D("path not found"); errno = ENOTDIR; return -1; default: D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); errno = ENOENT; return -1; } } snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path); D("adb_creat: '%s' => fd %d", path, _fh_to_int(f)); return _fh_to_int(f); } int adb_read(int fd, void* buf, int len) { FH f = _fh_from_int(fd, __func__); if (f == nullptr) { errno = EBADF; return -1; } return f->clazz->_fh_read(f, buf, len); } int adb_write(int fd, const void* buf, int len) { FH f = _fh_from_int(fd, __func__); if (f == nullptr) { errno = EBADF; return -1; } return f->clazz->_fh_write(f, buf, len); } ssize_t adb_writev(int fd, const adb_iovec* iov, int iovcnt) { FH f = _fh_from_int(fd, __func__); if (f == nullptr) { errno = EBADF; return -1; } return f->clazz->_fh_writev(f, iov, iovcnt); } int64_t adb_lseek(int fd, int64_t pos, int where) { FH f = _fh_from_int(fd, __func__); if (!f) { errno = EBADF; return -1; } return f->clazz->_fh_lseek(f, pos, where); } int adb_close(int fd) { FH f = _fh_from_int(fd, __func__); if (!f) { errno = EBADF; return -1; } D("adb_close: %s", f->name); _fh_close(f); return 0; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** socket-based file descriptors *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ #undef setsockopt static void _socket_set_errno( const DWORD err ) { // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a // lot of POSIX and socket error codes, some of the resulting error codes // are mapped to strings by adb_strerror(). switch ( err ) { case 0: errno = 0; break; // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use. // case WSAEINTR: errno = EINTR; break; case WSAEFAULT: errno = EFAULT; break; case WSAEINVAL: errno = EINVAL; break; case WSAEMFILE: errno = EMFILE; break; // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and // callers check specifically for EAGAIN. case WSAEWOULDBLOCK: errno = EAGAIN; break; case WSAENOTSOCK: errno = ENOTSOCK; break; case WSAENOPROTOOPT: errno = ENOPROTOOPT; break; case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break; case WSAENETDOWN: errno = ENETDOWN; break; case WSAENETRESET: errno = ENETRESET; break; // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems // to use EPIPE for these situations and there are some callers that look // for EPIPE. case WSAECONNABORTED: errno = EPIPE; break; case WSAECONNRESET: errno = ECONNRESET; break; case WSAENOBUFS: errno = ENOBUFS; break; case WSAENOTCONN: errno = ENOTCONN; break; // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future // considerations: Reportedly send() can return zero on timeout, and POSIX // code may expect EAGAIN instead of ETIMEDOUT on timeout. // case WSAETIMEDOUT: errno = ETIMEDOUT; break; case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break; default: errno = EINVAL; D( "_socket_set_errno: mapping Windows error code %lu to errno %d", err, errno ); } } extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) { // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves. int skipped = 0; std::vector<WSAPOLLFD> sockets; std::vector<adb_pollfd*> original; for (size_t i = 0; i < nfds; ++i) { FH fh = _fh_from_int(fds[i].fd, __func__); if (!fh || !fh->used || fh->clazz != &_fh_socket_class) { D("adb_poll received bad FD %d", fds[i].fd); fds[i].revents = POLLNVAL; ++skipped; } else { WSAPOLLFD wsapollfd = { .fd = fh->u.socket, .events = static_cast<short>(fds[i].events) }; sockets.push_back(wsapollfd); original.push_back(&fds[i]); } } if (sockets.empty()) { return skipped; } // If we have any invalid FDs in our FD set, make sure to return immediately. if (skipped > 0) { timeout = 0; } int result = WSAPoll(sockets.data(), sockets.size(), timeout); if (result == SOCKET_ERROR) { _socket_set_errno(WSAGetLastError()); return -1; } // Map the results back onto the original set. for (size_t i = 0; i < sockets.size(); ++i) { original[i]->revents = sockets[i].revents; } // WSAPoll appears to return the number of unique FDs with available events, instead of how many // of the pollfd elements have a non-zero revents field, which is what it and poll are specified // to do. Ignore its result and calculate the proper return value. result = 0; for (size_t i = 0; i < nfds; ++i) { if (fds[i].revents != 0) { ++result; } } return result; } static void _fh_socket_init(FH f) { f->fh_socket = INVALID_SOCKET; } static int _fh_socket_close(FH f) { if (f->fh_socket != INVALID_SOCKET) { /* gently tell any peer that we're closing the socket */ if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { // If the socket is not connected, this returns an error. We want to // minimize logging spam, so don't log these errors for now. #if 0 D("socket shutdown failed: %s", android::base::SystemErrorCodeToString(WSAGetLastError()).c_str()); #endif } if (closesocket(f->fh_socket) == SOCKET_ERROR) { // Don't set errno here, since adb_close will ignore it. const DWORD err = WSAGetLastError(); D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str()); } f->fh_socket = INVALID_SOCKET; } return 0; } static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) { errno = EPIPE; return -1; } static int _fh_socket_read(FH f, void* buf, int len) { int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace // that to reduce spam and confusion. if (err != WSAEWOULDBLOCK) { D("recv fd %d failed: %s", _fh_to_int(f), android::base::SystemErrorCodeToString(err).c_str()); } _socket_set_errno(err); result = -1; } return result; } static int _fh_socket_write(FH f, const void* buf, int len) { int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace // that to reduce spam and confusion. if (err != WSAEWOULDBLOCK) { D("send fd %d failed: %s", _fh_to_int(f), android::base::SystemErrorCodeToString(err).c_str()); } _socket_set_errno(err); result = -1; } else { // According to https://code.google.com/p/chromium/issues/detail?id=27870 // Winsock Layered Service Providers may cause this. CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but " << result << " bytes reportedly written"; } return result; } // Make sure that adb_iovec is compatible with WSABUF. static_assert(sizeof(adb_iovec) == sizeof(WSABUF), ""); static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), ""); static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), ""); static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), ""); static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), ""); static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) { if (iovcnt <= 0) { errno = EINVAL; return -1; } WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov)); DWORD bytes_written = 0; int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace // that to reduce spam and confusion. if (err != WSAEWOULDBLOCK) { D("send fd %d failed: %s", _fh_to_int(f), android::base::SystemErrorCodeToString(err).c_str()); } _socket_set_errno(err); result = -1; } CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written); return static_cast<int>(bytes_written); } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** replacement for libs/cutils/socket_xxxx.c *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ static void _init_winsock() { static std::once_flag once; std::call_once(once, []() { WSADATA wsaData; int rc = WSAStartup(MAKEWORD(2, 2), &wsaData); if (rc != 0) { LOG(FATAL) << "could not initialize Winsock: " << android::base::SystemErrorCodeToString(rc); } // Note that we do not call atexit() to register WSACleanup to be called // at normal process termination because: // 1) When exit() is called, there are still threads actively using // Winsock because we don't cleanly shutdown all threads, so it // doesn't make sense to call WSACleanup() and may cause problems // with those threads. // 2) A deadlock can occur when exit() holds a C Runtime lock, then it // calls WSACleanup() which tries to unload a DLL, which tries to // grab the LoaderLock. This conflicts with the device_poll_thread // which holds the LoaderLock because AdbWinApi.dll calls // setupapi.dll which tries to load wintrust.dll which tries to load // crypt32.dll which calls atexit() which tries to acquire the C // Runtime lock that the other thread holds. }); } // Map a socket type to an explicit socket protocol instead of using the socket // protocol of 0. Explicit socket protocols are used by most apps and we should // do the same to reduce the chance of exercising uncommon code-paths that might // have problems or that might load different Winsock service providers that // have problems. static int GetSocketProtocolFromSocketType(int type) { switch (type) { case SOCK_STREAM: return IPPROTO_TCP; case SOCK_DGRAM: return IPPROTO_UDP; default: LOG(FATAL) << "Unknown socket type: " << type; return 0; } } int network_loopback_client(int port, int type, std::string* error) { struct sockaddr_in addr; SOCKET s; unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); if (s == INVALID_SOCKET) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot create socket: %s", android::base::SystemErrorCodeToString(err).c_str()); D("%s", error->c_str()); _socket_set_errno(err); return -1; } f->fh_socket = s; if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { // Save err just in case inet_ntoa() or ntohs() changes the last error. const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot connect to %s:%u: %s", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), android::base::SystemErrorCodeToString(err).c_str()); D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); _socket_set_errno(err); return -1; } const int fd = _fh_to_int(f.get()); snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", port); D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); f.release(); return fd; } // interface_address is INADDR_LOOPBACK or INADDR_ANY. static int _network_server(int port, int type, u_long interface_address, std::string* error) { struct sockaddr_in addr; SOCKET s; int n; unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_port = htons(port); addr.sin_addr.s_addr = htonl(interface_address); // TODO: Consider using dual-stack socket that can simultaneously listen on // IPv4 and IPv6. s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); if (s == INVALID_SOCKET) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot create socket: %s", android::base::SystemErrorCodeToString(err).c_str()); D("%s", error->c_str()); _socket_set_errno(err); return -1; } f->fh_socket = s; // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the // same port, so instead use SO_EXCLUSIVEADDRUSE. n = 1; if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s", android::base::SystemErrorCodeToString(err).c_str()); D("%s", error->c_str()); _socket_set_errno(err); return -1; } if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { // Save err just in case inet_ntoa() or ntohs() changes the last error. const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), android::base::SystemErrorCodeToString(err).c_str()); D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); _socket_set_errno(err); return -1; } if (type == SOCK_STREAM) { if (listen(s, SOMAXCONN) == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf( "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str()); D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); _socket_set_errno(err); return -1; } } const int fd = _fh_to_int(f.get()); snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd, interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "", port); D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); f.release(); return fd; } int network_loopback_server(int port, int type, std::string* error) { return _network_server(port, type, INADDR_LOOPBACK, error); } int network_inaddr_any_server(int port, int type, std::string* error) { return _network_server(port, type, INADDR_ANY, error); } int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) { unique_fh f(_fh_alloc(&_fh_socket_class)); if (!f) { *error = strerror(errno); return -1; } struct addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = type; hints.ai_protocol = GetSocketProtocolFromSocketType(type); char port_str[16]; snprintf(port_str, sizeof(port_str), "%d", port); struct addrinfo* addrinfo_ptr = nullptr; #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03) // TODO: When the Android SDK tools increases the Windows system // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW(). #else // Otherwise, keep using getaddrinfo(), or do runtime API detection // with GetProcAddress("GetAddrInfoW"). #endif if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s", host.c_str(), port_str, android::base::SystemErrorCodeToString(err).c_str()); D("%s", error->c_str()); _socket_set_errno(err); return -1; } std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo); addrinfo_ptr = nullptr; // TODO: Try all the addresses if there's more than one? This just uses // the first. Or, could call WSAConnectByName() (Windows Vista and newer) // which tries all addresses, takes a timeout and more. SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol); if (s == INVALID_SOCKET) { const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot create socket: %s", android::base::SystemErrorCodeToString(err).c_str()); D("%s", error->c_str()); _socket_set_errno(err); return -1; } f->fh_socket = s; // TODO: Implement timeouts for Windows. Seems like the default in theory // (according to http://serverfault.com/a/671453) and in practice is 21 sec. if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) { // TODO: Use WSAAddressToString or inet_ntop on address. const DWORD err = WSAGetLastError(); *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str, android::base::SystemErrorCodeToString(err).c_str()); D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), port_str, error->c_str()); _socket_set_errno(err); return -1; } const int fd = _fh_to_int(f.get()); snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", port); D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp", fd); f.release(); return fd; } int adb_register_socket(SOCKET s) { FH f = _fh_alloc(&_fh_socket_class); f->fh_socket = s; return _fh_to_int(f); } #undef accept int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t* addrlen) { FH serverfh = _fh_from_int(serverfd, __func__); if (!serverfh || serverfh->clazz != &_fh_socket_class) { D("adb_socket_accept: invalid fd %d", serverfd); errno = EBADF; return -1; } unique_fh fh(_fh_alloc(&_fh_socket_class)); if (!fh) { PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket " "descriptor"; return -1; } fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen); if (fh->fh_socket == INVALID_SOCKET) { const DWORD err = WSAGetLastError(); LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd << " failed: " + android::base::SystemErrorCodeToString(err); _socket_set_errno(err); return -1; } const int fd = _fh_to_int(fh.get()); snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name); D("adb_socket_accept on fd %d returns fd %d", serverfd, fd); fh.release(); return fd; } int adb_setsockopt(int fd, int level, int optname, const void* optval, socklen_t optlen) { FH fh = _fh_from_int(fd, __func__); if (!fh || fh->clazz != &_fh_socket_class) { D("adb_setsockopt: invalid fd %d", fd); errno = EBADF; return -1; } // TODO: Once we can assume Windows Vista or later, if the caller is trying // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has // auto-tuning. int result = setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd, level, optname, android::base::SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); result = -1; } return result; } int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) { FH fh = _fh_from_int(fd, __func__); if (!fh || fh->clazz != &_fh_socket_class) { D("adb_getsockname: invalid fd %d", fd); errno = EBADF; return -1; } int result = getsockname(fh->fh_socket, sockaddr, optlen); if (result == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd, android::base::SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); result = -1; } return result; } int adb_socket_get_local_port(int fd) { sockaddr_storage addr_storage; socklen_t addr_len = sizeof(addr_storage); if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) { D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno)); return -1; } if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) { D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family); errno = ECONNABORTED; return -1; } return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port); } int adb_shutdown(int fd, int direction) { FH f = _fh_from_int(fd, __func__); if (!f || f->clazz != &_fh_socket_class) { D("adb_shutdown: invalid fd %d", fd); errno = EBADF; return -1; } D("adb_shutdown: %s", f->name); if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) { const DWORD err = WSAGetLastError(); D("socket shutdown fd %d failed: %s", fd, android::base::SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); return -1; } return 0; } // Emulate socketpair(2) by binding and connecting to a socket. int adb_socketpair(int sv[2]) { int server = -1; int client = -1; int accepted = -1; int local_port = -1; std::string error; server = network_loopback_server(0, SOCK_STREAM, &error); if (server < 0) { D("adb_socketpair: failed to create server: %s", error.c_str()); goto fail; } local_port = adb_socket_get_local_port(server); if (local_port < 0) { D("adb_socketpair: failed to get server port number: %s", error.c_str()); goto fail; } D("adb_socketpair: bound on port %d", local_port); client = network_loopback_client(local_port, SOCK_STREAM, &error); if (client < 0) { D("adb_socketpair: failed to connect client: %s", error.c_str()); goto fail; } accepted = adb_socket_accept(server, nullptr, nullptr); if (accepted < 0) { D("adb_socketpair: failed to accept: %s", strerror(errno)); goto fail; } adb_close(server); sv[0] = client; sv[1] = accepted; return 0; fail: if (server >= 0) { adb_close(server); } if (client >= 0) { adb_close(client); } if (accepted >= 0) { adb_close(accepted); } return -1; } bool set_file_block_mode(int fd, bool block) { FH fh = _fh_from_int(fd, __func__); if (!fh || !fh->used) { errno = EBADF; D("Setting nonblocking on bad file descriptor %d", fd); return false; } if (fh->clazz == &_fh_socket_class) { u_long x = !block; if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) { int error = WSAGetLastError(); _socket_set_errno(error); D("Setting %d nonblocking failed (%d)", fd, error); return false; } return true; } else { errno = ENOTSOCK; D("Setting nonblocking on non-socket %d", fd); return false; } } bool set_tcp_keepalive(int fd, int interval_sec) { FH fh = _fh_from_int(fd, __func__); if (!fh || fh->clazz != &_fh_socket_class) { D("set_tcp_keepalive(%d) failed: invalid fd", fd); errno = EBADF; return false; } tcp_keepalive keepalive; keepalive.onoff = (interval_sec > 0); keepalive.keepalivetime = interval_sec * 1000; keepalive.keepaliveinterval = interval_sec * 1000; DWORD bytes_returned = 0; if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0, &bytes_returned, nullptr, nullptr) != 0) { const DWORD err = WSAGetLastError(); D("set_tcp_keepalive(%d) failed: %s", fd, android::base::SystemErrorCodeToString(err).c_str()); _socket_set_errno(err); return false; } return true; } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** Console Window Terminal Emulation *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ // This reads input from a Win32 console window and translates it into Unix // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal // mode, not Application mode), which itself emulates xterm. Gnome Terminal // is emulated instead of xterm because it is probably more popular than xterm: // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal // supports modern fonts, etc. It seems best to emulate the terminal that most // Android developers use because they'll fix apps (the shell, etc.) to keep // working with that terminal's emulation. // // The point of this emulation is not to be perfect or to solve all issues with // console windows on Windows, but to be better than the original code which // just called read() (which called ReadFile(), which called ReadConsoleA()) // which did not support Ctrl-C, tab completion, shell input line editing // keys, server echo, and more. // // This implementation reconfigures the console with SetConsoleMode(), then // calls ReadConsoleInput() to get raw input which it remaps to Unix // terminal-style sequences which is returned via unix_read() which is used // by the 'adb shell' command. // // Code organization: // // * _get_console_handle() and unix_isatty() provide console information. // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. // * unix_read() detects console windows (as opposed to pipes, files, etc.). // * _console_read() is the main code of the emulation. // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr. // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled // with the console mode. Requires GENERIC_READ access to the underlying HANDLE. static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) { // First check isatty(); this is very fast and eliminates most non-console // FDs, but returns 1 for both consoles and character devices like NUL. #pragma push_macro("isatty") #undef isatty if (!isatty(fd)) { return nullptr; } #pragma pop_macro("isatty") // To differentiate between character devices and consoles we need to get // the underlying HANDLE and use GetConsoleMode(), which is what requires // GENERIC_READ permissions. const intptr_t intptr_handle = _get_osfhandle(fd); if (intptr_handle == -1) { return nullptr; } const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle); DWORD temp_mode = 0; if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) { return nullptr; } return handle; } // Returns a console handle if |stream| is a console, otherwise returns nullptr. static HANDLE _get_console_handle(FILE* const stream) { // Save and restore errno to make it easier for callers to prevent from overwriting errno. android::base::ErrnoRestorer er; const int fd = fileno(stream); if (fd < 0) { return nullptr; } return _get_console_handle(fd); } int unix_isatty(int fd) { return _get_console_handle(fd) ? 1 : 0; } // Get the next KEY_EVENT_RECORD that should be processed. static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) { for (;;) { DWORD read_count = 0; memset(input_record, 0, sizeof(*input_record)); if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { D("_get_key_event_record: ReadConsoleInputA() failed: %s\n", android::base::SystemErrorCodeToString(GetLastError()).c_str()); errno = EIO; return false; } if (read_count == 0) { // should be impossible LOG(FATAL) << "ReadConsoleInputA returned 0"; } if (read_count != 1) { // should be impossible LOG(FATAL) << "ReadConsoleInputA did not return one input record"; } // If the console window is resized, emulate SIGWINCH by breaking out // of read() with errno == EINTR. Note that there is no event on // vertical resize because we don't give the console our own custom // screen buffer (with CreateConsoleScreenBuffer() + // SetConsoleActiveScreenBuffer()). Instead, we use the default which // supports scrollback, but doesn't seem to raise an event for vertical // window resize. if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) { errno = EINTR; return false; } if ((input_record->EventType == KEY_EVENT) && (input_record->Event.KeyEvent.bKeyDown)) { if (input_record->Event.KeyEvent.wRepeatCount == 0) { LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count"; } // Got an interesting INPUT_RECORD, so return return true; } } } static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { return (control_key_state & SHIFT_PRESSED) != 0; } static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; } static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; } static __inline__ bool _is_numlock_on(const DWORD control_key_state) { return (control_key_state & NUMLOCK_ON) != 0; } static __inline__ bool _is_capslock_on(const DWORD control_key_state) { return (control_key_state & CAPSLOCK_ON) != 0; } static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { return (control_key_state & ENHANCED_KEY) != 0; } // Constants from MSDN for ToAscii(). static const BYTE TOASCII_KEY_OFF = 0x00; static const BYTE TOASCII_KEY_DOWN = 0x80; static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock // Given a key event, ignore a modifier key and return the character that was // entered without the modifier. Writes to *ch and returns the number of bytes // written. static size_t _get_char_ignoring_modifier(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, const WORD modifier) { // If there is no character from Windows, try ignoring the specified // modifier and look for a character. Note that if AltGr is being used, // there will be a character from Windows. if (key_event->uChar.AsciiChar == '\0') { // Note that we read the control key state from the passed in argument // instead of from key_event since the argument has been normalized. if (((modifier == VK_SHIFT) && _is_shift_pressed(control_key_state)) || ((modifier == VK_CONTROL) && _is_ctrl_pressed(control_key_state)) || ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) { BYTE key_state[256] = {0}; key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_MENU] = _is_alt_pressed(control_key_state) ? TOASCII_KEY_DOWN : TOASCII_KEY_OFF; key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ? TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; // cause this modifier to be ignored key_state[modifier] = TOASCII_KEY_OFF; WORD translated = 0; if (ToAscii(key_event->wVirtualKeyCode, key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { // Ignoring the modifier, we found a character. *ch = (CHAR)translated; return 1; } } } // Just use whatever Windows told us originally. *ch = key_event->uChar.AsciiChar; // If the character from Windows is NULL, return a size of zero. return (*ch == '\0') ? 0 : 1; } // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, // but taking into account the shift key. This is because for a sequence like // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, // we want to find the character ')'. // // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 // because it is the default key-sequence to switch the input language. // This is configurable in the Region and Language control panel. static __inline__ size_t _get_non_control_char(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { return _get_char_ignoring_modifier(ch, key_event, control_key_state, VK_CONTROL); } // Get without Alt. static __inline__ size_t _get_non_alt_char(char* const ch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { return _get_char_ignoring_modifier(ch, key_event, control_key_state, VK_MENU); } // Ignore the control key, find the character from Windows, and apply any // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to // *pch and returns number of bytes written. static size_t _get_control_character(char* const pch, const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { const size_t len = _get_non_control_char(pch, key_event, control_key_state); if ((len == 1) && _is_ctrl_pressed(control_key_state)) { char ch = *pch; switch (ch) { case '2': case '@': case '`': ch = '\0'; break; case '3': case '[': case '{': ch = '\x1b'; break; case '4': case '\\': case '|': ch = '\x1c'; break; case '5': case ']': case '}': ch = '\x1d'; break; case '6': case '^': case '~': ch = '\x1e'; break; case '7': case '-': case '_': ch = '\x1f'; break; case '8': ch = '\x7f'; break; case '/': if (!_is_alt_pressed(control_key_state)) { ch = '\x1f'; } break; case '?': if (!_is_alt_pressed(control_key_state)) { ch = '\x7f'; } break; } *pch = ch; } return len; } static DWORD _normalize_altgr_control_key_state( const KEY_EVENT_RECORD* const key_event) { DWORD control_key_state = key_event->dwControlKeyState; // If we're in an AltGr situation where the AltGr key is down (depending on // the keyboard layout, that might be the physical right alt key which // produces a control_key_state where Right-Alt and Left-Ctrl are down) or // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have // a character (which indicates that there was an AltGr mapping), then act // as if alt and control are not really down for the purposes of modifiers. // This makes it so that if the user with, say, a German keyboard layout // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just // output the key and we don't see the Alt and Ctrl keys. if (_is_ctrl_pressed(control_key_state) && _is_alt_pressed(control_key_state) && (key_event->uChar.AsciiChar != '\0')) { // Try to remove as few bits as possible to improve our chances of // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or // Left-Alt + Right-Ctrl + AltGr. if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { // Remove Right-Alt. control_key_state &= ~RIGHT_ALT_PRESSED; // If uChar is set, a Ctrl key is pressed, and Right-Alt is // pressed, Left-Ctrl is almost always set, except if the user // presses Right-Ctrl, then AltGr (in that specific order) for // whatever reason. At any rate, make sure the bit is not set. control_key_state &= ~LEFT_CTRL_PRESSED; } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { // Remove Left-Alt. control_key_state &= ~LEFT_ALT_PRESSED; // Whichever Ctrl key is down, remove it from the state. We only // remove one key, to improve our chances of detecting the // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { // Remove Left-Ctrl. control_key_state &= ~LEFT_CTRL_PRESSED; } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { // Remove Right-Ctrl. control_key_state &= ~RIGHT_CTRL_PRESSED; } } // Note that this logic isn't 100% perfect because Windows doesn't // allow us to detect all combinations because a physical AltGr key // press shows up as two bits, plus some combinations are ambiguous // about what is actually physically pressed. } return control_key_state; } // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in // dwControlKeyState for the following keypad keys: period, 0-9. If we detect // this scenario, set the SHIFT_PRESSED bit so we can add modifiers // appropriately. static DWORD _normalize_keypad_control_key_state(const WORD vk, const DWORD control_key_state) { if (!_is_numlock_on(control_key_state)) { return control_key_state; } if (!_is_enhanced_key(control_key_state)) { switch (vk) { case VK_INSERT: // 0 case VK_DELETE: // . case VK_END: // 1 case VK_DOWN: // 2 case VK_NEXT: // 3 case VK_LEFT: // 4 case VK_CLEAR: // 5 case VK_RIGHT: // 6 case VK_HOME: // 7 case VK_UP: // 8 case VK_PRIOR: // 9 return control_key_state | SHIFT_PRESSED; } } return control_key_state; } static const char* _get_keypad_sequence(const DWORD control_key_state, const char* const normal, const char* const shifted) { if (_is_shift_pressed(control_key_state)) { // Shift is pressed and NumLock is off return shifted; } else { // Shift is not pressed and NumLock is off, or, // Shift is pressed and NumLock is on, in which case we want the // NumLock and Shift to neutralize each other, thus, we want the normal // sequence. return normal; } // If Shift is not pressed and NumLock is on, a different virtual key code // is returned by Windows, which can be taken care of by a different case // statement in _console_read(). } // Write sequence to buf and return the number of bytes written. static size_t _get_modifier_sequence(char* const buf, const WORD vk, DWORD control_key_state, const char* const normal) { // Copy the base sequence into buf. const size_t len = strlen(normal); memcpy(buf, normal, len); int code = 0; control_key_state = _normalize_keypad_control_key_state(vk, control_key_state); if (_is_shift_pressed(control_key_state)) { code |= 0x1; } if (_is_alt_pressed(control_key_state)) { // any alt key pressed code |= 0x2; } if (_is_ctrl_pressed(control_key_state)) { // any control key pressed code |= 0x4; } // If some modifier was held down, then we need to insert the modifier code if (code != 0) { if (len == 0) { // Should be impossible because caller should pass a string of // non-zero length. return 0; } size_t index = len - 1; const char lastChar = buf[index]; if (lastChar != '~') { buf[index++] = '1'; } buf[index++] = ';'; // modifier separator // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control buf[index++] = '1' + code; buf[index++] = lastChar; // move ~ (or other last char) to the end return index; } return len; } // Write sequence to buf and return the number of bytes written. static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, const DWORD control_key_state, const char* const normal, const char shifted) { if (_is_shift_pressed(control_key_state)) { // Shift is pressed and NumLock is off if (shifted != '\0') { buf[0] = shifted; return sizeof(buf[0]); } else { return 0; } } else { // Shift is not pressed and NumLock is off, or, // Shift is pressed and NumLock is on, in which case we want the // NumLock and Shift to neutralize each other, thus, we want the normal // sequence. return _get_modifier_sequence(buf, vk, control_key_state, normal); } // If Shift is not pressed and NumLock is on, a different virtual key code // is returned by Windows, which can be taken care of by a different case // statement in _console_read(). } // The decimal key on the keypad produces a '.' for U.S. English and a ',' for // Standard German. Figure this out at runtime so we know what to output for // Shift-VK_DELETE. static char _get_decimal_char() { return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); } // Prefix the len bytes in buf with the escape character, and then return the // new buffer length. size_t _escape_prefix(char* const buf, const size_t len) { // If nothing to prefix, don't do anything. We might be called with // len == 0, if alt was held down with a dead key which produced nothing. if (len == 0) { return 0; } memmove(&buf[1], buf, len); buf[0] = '\x1b'; return len + 1; } // Internal buffer to satisfy future _console_read() calls. static auto& g_console_input_buffer = *new std::vector<char>(); // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell). static int _console_read(const HANDLE console, void* buf, size_t len) { for (;;) { // Read of zero bytes should not block waiting for something from the console. if (len == 0) { return 0; } // Flush as much as possible from input buffer. if (!g_console_input_buffer.empty()) { const int bytes_read = std::min(len, g_console_input_buffer.size()); memcpy(buf, g_console_input_buffer.data(), bytes_read); const auto begin = g_console_input_buffer.begin(); g_console_input_buffer.erase(begin, begin + bytes_read); return bytes_read; } // Read from the actual console. This may block until input. INPUT_RECORD input_record; if (!_get_key_event_record(console, &input_record)) { return -1; } KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent; const WORD vk = key_event->wVirtualKeyCode; const CHAR ch = key_event->uChar.AsciiChar; const DWORD control_key_state = _normalize_altgr_control_key_state( key_event); // The following emulation code should write the output sequence to // either seqstr or to seqbuf and seqbuflen. const char* seqstr = nullptr; // NULL terminated C-string // Enough space for max sequence string below, plus modifiers and/or // escape prefix. char seqbuf[16]; size_t seqbuflen = 0; // Space used in seqbuf. #define MATCH(vk, normal) \ case (vk): \ { \ seqstr = (normal); \ } \ break; // Modifier keys should affect the output sequence. #define MATCH_MODIFIER(vk, normal) \ case (vk): \ { \ seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ control_key_state, (normal)); \ } \ break; // The shift key should affect the output sequence. #define MATCH_KEYPAD(vk, normal, shifted) \ case (vk): \ { \ seqstr = _get_keypad_sequence(control_key_state, (normal), \ (shifted)); \ } \ break; // The shift key and other modifier keys should affect the output // sequence. #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ case (vk): \ { \ seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ control_key_state, (normal), (shifted)); \ } \ break; #define ESC "\x1b" #define CSI ESC "[" #define SS3 ESC "O" // Only support normal mode, not application mode. // Enhanced keys: // * 6-pack: insert, delete, home, end, page up, page down // * cursor keys: up, down, right, left // * keypad: divide, enter // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK if (_is_enhanced_key(control_key_state)) { switch (vk) { case VK_RETURN: // Enter key on keypad if (_is_ctrl_pressed(control_key_state)) { seqstr = "\n"; } else { seqstr = "\r"; } break; MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down // gnome-terminal currently sends SS3 "F" and SS3 "H", but that // will be fixed soon to match xterm which sends CSI "F" and // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 MATCH(VK_END, CSI "F"); MATCH(VK_HOME, CSI "H"); MATCH_MODIFIER(VK_LEFT, CSI "D"); MATCH_MODIFIER(VK_UP, CSI "A"); MATCH_MODIFIER(VK_RIGHT, CSI "C"); MATCH_MODIFIER(VK_DOWN, CSI "B"); MATCH_MODIFIER(VK_INSERT, CSI "2~"); MATCH_MODIFIER(VK_DELETE, CSI "3~"); MATCH(VK_DIVIDE, "/"); } } else { // Non-enhanced keys: switch (vk) { case VK_BACK: // backspace if (_is_alt_pressed(control_key_state)) { seqstr = ESC "\x7f"; } else { seqstr = "\x7f"; } break; case VK_TAB: if (_is_shift_pressed(control_key_state)) { seqstr = CSI "Z"; } else { seqstr = "\t"; } break; // Number 5 key in keypad when NumLock is off, or if NumLock is // on and Shift is down. MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); case VK_RETURN: // Enter key on main keyboard if (_is_alt_pressed(control_key_state)) { seqstr = ESC "\n"; } else if (_is_ctrl_pressed(control_key_state)) { seqstr = "\n"; } else { seqstr = "\r"; } break; // VK_ESCAPE: Don't do any special handling. The OS uses many // of the sequences with Escape and many of the remaining // sequences don't produce bKeyDown messages, only !bKeyDown // for whatever reason. case VK_SPACE: if (_is_alt_pressed(control_key_state)) { seqstr = ESC " "; } else if (_is_ctrl_pressed(control_key_state)) { seqbuf[0] = '\0'; // NULL char seqbuflen = 1; } else { seqstr = " "; } break; MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down MATCH_KEYPAD(VK_END, CSI "4~", "1"); MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4'); MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8'); MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2'); MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", _get_decimal_char()); case 0x30: // 0 case 0x31: // 1 case 0x39: // 9 case VK_OEM_1: // ;: case VK_OEM_PLUS: // =+ case VK_OEM_COMMA: // ,< case VK_OEM_PERIOD: // .> case VK_OEM_7: // '" case VK_OEM_102: // depends on keyboard, could be <> or \| case VK_OEM_2: // /? case VK_OEM_3: // `~ case VK_OEM_4: // [{ case VK_OEM_5: // \| case VK_OEM_6: // ]} { seqbuflen = _get_control_character(seqbuf, key_event, control_key_state); if (_is_alt_pressed(control_key_state)) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; case 0x32: // 2 case 0x33: // 3 case 0x34: // 4 case 0x35: // 5 case 0x36: // 6 case 0x37: // 7 case 0x38: // 8 case VK_OEM_MINUS: // -_ { seqbuflen = _get_control_character(seqbuf, key_event, control_key_state); // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then // prefix with escape. if (_is_alt_pressed(control_key_state) && !(_is_ctrl_pressed(control_key_state) && !_is_shift_pressed(control_key_state))) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; case 0x41: // a case 0x42: // b case 0x43: // c case 0x44: // d case 0x45: // e case 0x46: // f case 0x47: // g case 0x48: // h case 0x49: // i case 0x4a: // j case 0x4b: // k case 0x4c: // l case 0x4d: // m case 0x4e: // n case 0x4f: // o case 0x50: // p case 0x51: // q case 0x52: // r case 0x53: // s case 0x54: // t case 0x55: // u case 0x56: // v case 0x57: // w case 0x58: // x case 0x59: // y case 0x5a: // z { seqbuflen = _get_non_alt_char(seqbuf, key_event, control_key_state); // If Alt is pressed, then prefix with escape. if (_is_alt_pressed(control_key_state)) { seqbuflen = _escape_prefix(seqbuf, seqbuflen); } } break; // These virtual key codes are generated by the keys on the // keypad *when NumLock is on* and *Shift is up*. MATCH(VK_NUMPAD0, "0"); MATCH(VK_NUMPAD1, "1"); MATCH(VK_NUMPAD2, "2"); MATCH(VK_NUMPAD3, "3"); MATCH(VK_NUMPAD4, "4"); MATCH(VK_NUMPAD5, "5"); MATCH(VK_NUMPAD6, "6"); MATCH(VK_NUMPAD7, "7"); MATCH(VK_NUMPAD8, "8"); MATCH(VK_NUMPAD9, "9"); MATCH(VK_MULTIPLY, "*"); MATCH(VK_ADD, "+"); MATCH(VK_SUBTRACT, "-"); // VK_DECIMAL is generated by the . key on the keypad *when // NumLock is on* and *Shift is up* and the sequence is not // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the // Windows Security screen to come up). case VK_DECIMAL: // U.S. English uses '.', Germany German uses ','. seqbuflen = _get_non_control_char(seqbuf, key_event, control_key_state); break; MATCH_MODIFIER(VK_F1, SS3 "P"); MATCH_MODIFIER(VK_F2, SS3 "Q"); MATCH_MODIFIER(VK_F3, SS3 "R"); MATCH_MODIFIER(VK_F4, SS3 "S"); MATCH_MODIFIER(VK_F5, CSI "15~"); MATCH_MODIFIER(VK_F6, CSI "17~"); MATCH_MODIFIER(VK_F7, CSI "18~"); MATCH_MODIFIER(VK_F8, CSI "19~"); MATCH_MODIFIER(VK_F9, CSI "20~"); MATCH_MODIFIER(VK_F10, CSI "21~"); MATCH_MODIFIER(VK_F11, CSI "23~"); MATCH_MODIFIER(VK_F12, CSI "24~"); MATCH_MODIFIER(VK_F13, CSI "25~"); MATCH_MODIFIER(VK_F14, CSI "26~"); MATCH_MODIFIER(VK_F15, CSI "28~"); MATCH_MODIFIER(VK_F16, CSI "29~"); MATCH_MODIFIER(VK_F17, CSI "31~"); MATCH_MODIFIER(VK_F18, CSI "32~"); MATCH_MODIFIER(VK_F19, CSI "33~"); MATCH_MODIFIER(VK_F20, CSI "34~"); // MATCH_MODIFIER(VK_F21, ???); // MATCH_MODIFIER(VK_F22, ???); // MATCH_MODIFIER(VK_F23, ???); // MATCH_MODIFIER(VK_F24, ???); } } #undef MATCH #undef MATCH_MODIFIER #undef MATCH_KEYPAD #undef MATCH_MODIFIER_KEYPAD #undef ESC #undef CSI #undef SS3 const char* out; size_t outlen; // Check for output in any of: // * seqstr is set (and strlen can be used to determine the length). // * seqbuf and seqbuflen are set // Fallback to ch from Windows. if (seqstr != nullptr) { out = seqstr; outlen = strlen(seqstr); } else if (seqbuflen > 0) { out = seqbuf; outlen = seqbuflen; } else if (ch != '\0') { // Use whatever Windows told us it is. seqbuf[0] = ch; seqbuflen = 1; out = seqbuf; outlen = seqbuflen; } else { // No special handling for the virtual key code and Windows isn't // telling us a character code, then we don't know how to translate // the key press. // // Consume the input and 'continue' to cause us to get a new key // event. D("_console_read: unknown virtual key code: %d, enhanced: %s", vk, _is_enhanced_key(control_key_state) ? "true" : "false"); continue; } // put output wRepeatCount times into g_console_input_buffer while (key_event->wRepeatCount-- > 0) { g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen); } // Loop around and try to flush g_console_input_buffer } } static DWORD _old_console_mode; // previous GetConsoleMode() result static HANDLE _console_handle; // when set, console mode should be restored void stdin_raw_init() { const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode); if (in == nullptr) { return; } // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of // calling the process Ctrl-C routine (configured by // SetConsoleCtrlHandler()). // Disable ENABLE_LINE_INPUT so that input is immediately sent. // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this // flag also seems necessary to have proper line-ending processing. DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT | ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT); // Enable ENABLE_WINDOW_INPUT to get window resizes. new_console_mode |= ENABLE_WINDOW_INPUT; if (!SetConsoleMode(in, new_console_mode)) { // This really should not fail. D("stdin_raw_init: SetConsoleMode() failed: %s", android::base::SystemErrorCodeToString(GetLastError()).c_str()); } // Once this is set, it means that stdin has been configured for // reading from and that the old console mode should be restored later. _console_handle = in; // Note that we don't need to configure C Runtime line-ending // translation because _console_read() does not call the C Runtime to // read from the console. } void stdin_raw_restore() { if (_console_handle != nullptr) { const HANDLE in = _console_handle; _console_handle = nullptr; // clear state if (!SetConsoleMode(in, _old_console_mode)) { // This really should not fail. D("stdin_raw_restore: SetConsoleMode() failed: %s", android::base::SystemErrorCodeToString(GetLastError()).c_str()); } } } // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin. int unix_read_interruptible(int fd, void* buf, size_t len) { if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) { // If it is a request to read from stdin, and stdin_raw_init() has been // called, and it successfully configured the console, then read from // the console using Win32 console APIs and partially emulate a unix // terminal. return _console_read(_console_handle, buf, len); } else { // On older versions of Windows (definitely 7, definitely not 10), // ReadConsole() with a size >= 31367 fails, so if |fd| is a console // we need to limit the read size. if (len > 4096 && unix_isatty(fd)) { len = 4096; } // Just call into C Runtime which can read from pipes/files and which // can do LF/CR translation (which is overridable with _setmode()). // Undefine the macro that is set in sysdeps.h which bans calls to // plain read() in favor of unix_read() or adb_read(). #pragma push_macro("read") #undef read return read(fd, buf, len); #pragma pop_macro("read") } } /**************************************************************************/ /**************************************************************************/ /***** *****/ /***** Unicode support *****/ /***** *****/ /**************************************************************************/ /**************************************************************************/ // This implements support for using files with Unicode filenames and for // outputting Unicode text to a Win32 console window. This is inspired from // http://utf8everywhere.org/. // // Background // ---------- // // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8 // filenames to APIs such as open(). This works because filenames are largely // opaque 'cookies' (perhaps excluding path separators). // // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char // strings, but the strings are in the ANSI codepage and not UTF-8. (The // CreateFile() API is really just a macro that adds the W/A based on whether // the UNICODE preprocessor symbol is defined). // // Options // ------- // // Thus, to write a portable program, there are a few options: // // 1. Write the program with wchar_t filenames (wchar_t path[256];). // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW() // that takes a wchar_t string, converts it to UTF-8 and then calls the real // open() API. // // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those, // potentially touching a lot of code. // // 3. Write the program with a 1-byte char filenames (char path[256];) that are // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS // or C Runtime API. // // The Choice // ---------- // // The code below chooses option 3, the UTF-8 everywhere strategy. It uses // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the // NarrowArgs helper class that is used to convert wmain() args into UTF-8 // args that are passed to main() at the beginning of program startup. We also use // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to // implement wrappers below that call UTF-16 OS and C Runtime APIs. // // Unicode console output // ---------------------- // // The way to output Unicode to a Win32 console window is to call // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font // such as Lucida Console or Consolas, and in the case of East Asian languages // (such as Chinese, Japanese, Korean), the user must go to the Control Panel // and change the "system locale" to Chinese, etc., which allows a Chinese, etc. // font to be used in console windows.) // // The problem is getting the C Runtime to make fprintf and related APIs call // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds // promising, but the various modes have issues: // // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and // UTF-16 do not display properly. // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out // totally wrong. // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter // handler to be called (upon a later I/O call), aborting the process. // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf // to output nothing. // // So the only solution is to write our own adb_fprintf() that converts UTF-8 // to UTF-16 and then calls WriteConsoleW(). // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to // be passed to main(). NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) { narrow_args = new char*[argc + 1]; for (int i = 0; i < argc; ++i) { std::string arg_narrow; if (!android::base::WideToUTF8(argv[i], &arg_narrow)) { PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8"; } narrow_args[i] = strdup(arg_narrow.c_str()); } narrow_args[argc] = nullptr; // terminate } NarrowArgs::~NarrowArgs() { if (narrow_args != nullptr) { for (char** argp = narrow_args; *argp != nullptr; ++argp) { free(*argp); } delete[] narrow_args; narrow_args = nullptr; } } int unix_open(std::string_view path, int options, ...) { std::wstring path_wide; if (!android::base::UTF8ToWide(path.data(), path.size(), &path_wide)) { return -1; } if ((options & O_CREAT) == 0) { return _wopen(path_wide.c_str(), options); } else { int mode; va_list args; va_start(args, options); mode = va_arg(args, int); va_end(args); return _wopen(path_wide.c_str(), options, mode); } } // Version of opendir() that takes a UTF-8 path. DIR* adb_opendir(const char* path) { std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return nullptr; } // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of // the fields, but right now all the callers treat the structure as // opaque. return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str())); } // Version of readdir() that returns UTF-8 paths. struct dirent* adb_readdir(DIR* dir) { _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir); struct _wdirent* const went = _wreaddir(wdir); if (went == nullptr) { return nullptr; } // Convert from UTF-16 to UTF-8. std::string name_utf8; if (!android::base::WideToUTF8(went->d_name, &name_utf8)) { return nullptr; } // Cast the _wdirent* to dirent* and overwrite the d_name field (which has // space for UTF-16 wchar_t's) with UTF-8 char's. struct dirent* ent = reinterpret_cast<struct dirent*>(went); if (name_utf8.length() + 1 > sizeof(went->d_name)) { // Name too big to fit in existing buffer. errno = ENOMEM; return nullptr; } // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name) // because _wdirent contains wchar_t instead of char. So even if name_utf8 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be // bigger than the caller expects because they expect a dirent structure // which has a smaller d_name field. Ignore this since the caller should be // resilient. // Rewrite the UTF-16 d_name field to UTF-8. strcpy(ent->d_name, name_utf8.c_str()); return ent; } // Version of closedir() to go with our version of adb_opendir(). int adb_closedir(DIR* dir) { return _wclosedir(reinterpret_cast<_WDIR*>(dir)); } // Version of unlink() that takes a UTF-8 path. int adb_unlink(const char* path) { std::wstring wpath; if (!android::base::UTF8ToWide(path, &wpath)) { return -1; } int rc = _wunlink(wpath.c_str()); if (rc == -1 && errno == EACCES) { /* unlink returns EACCES when the file is read-only, so we first */ /* try to make it writable, then unlink again... */ rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE); if (rc == 0) rc = _wunlink(wpath.c_str()); } return rc; } // Version of mkdir() that takes a UTF-8 path. int adb_mkdir(const std::string& path, int mode) { std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return -1; } return _wmkdir(path_wide.c_str()); } // Version of utime() that takes a UTF-8 path. int adb_utime(const char* path, struct utimbuf* u) { std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return -1; } static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf), "utimbuf and _utimbuf should be the same size because they both " "contain the same types, namely time_t"); return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u)); } // Version of chmod() that takes a UTF-8 path. int adb_chmod(const char* path, int mode) { std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return -1; } return _wchmod(path_wide.c_str(), mode); } // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte. static inline size_t utf8_codepoint_len(uint8_t ch) { return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1; } namespace internal { // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to // remaining_bytes. size_t ParseCompleteUTF8(const char* const first, const char* const last, std::vector<char>* const remaining_bytes) { // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence. // Current_after points one byte past the current byte to be examined. for (const char* current_after = last; current_after != first; --current_after) { const char* const current = current_after - 1; const char ch = *current; const char kHighBit = 0x80u; const char kTwoHighestBits = 0xC0u; if ((ch & kHighBit) == 0) { // high bit not set // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing // bytes with no leading byte, so return the entire buffer. break; } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence. const size_t bytes_available = last - current; if (bytes_available < utf8_codepoint_len(ch)) { // We don't have all the bytes in the UTF-8 sequence, so return all the bytes // preceding the current incomplete UTF-8 sequence and append the remaining bytes // to remaining_bytes. remaining_bytes->insert(remaining_bytes->end(), current, last); return current - first; } else { // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid // trailing bytes with no lead byte, so return the entire buffer. break; } } else { // Trailing byte, so keep going backwards looking for the lead byte. } } // Return the size of the entire buffer. It is possible that we walked backward past invalid // trailing bytes with no lead byte, in which case we want to return all those invalid bytes // so that they can be processed. return last - first; } } // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences. // Note that we use only one buffer even though stderr and stdout are logically separate streams. // This matches the behavior of Linux. // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error. static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream, HANDLE console) { static std::mutex& console_output_buffer_lock = *new std::mutex(); static auto& console_output_buffer = *new std::vector<char>(); const int saved_errno = errno; std::vector<char> combined_buffer; // Complete UTF-8 sequences that should be immediately written to the console. const char* utf8; size_t utf8_size; { std::lock_guard<std::mutex> lock(console_output_buffer_lock); if (console_output_buffer.empty()) { // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the // common case with plain ASCII), parse buf directly. utf8 = buf; utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer); } else { // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to // combined_buffer (and effectively clear console_output_buffer) and append buf to // combined_buffer, then parse it all together. combined_buffer.swap(console_output_buffer); combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size); utf8 = combined_buffer.data(); utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(), &console_output_buffer); } } std::wstring utf16; // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's // random data, runs dmesg (which might have non-UTF-8), etc. // This could throw std::bad_alloc. (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16); // Note that this does not do \n => \r\n translation because that // doesn't seem necessary for the Windows console. For the Windows // console \r moves to the beginning of the line and \n moves to a new // line. // Flush any stream buffering so that our output is afterwards which // makes sense because our call is afterwards. (void)fflush(stream); // Write UTF-16 to the console. DWORD written = 0; if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) { errno = EIO; return -1; } // Return the size of the original buffer passed in, signifying that we consumed it all, even // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This // matches the Linux behavior. errno = saved_errno; return buf_size; } // Function prototype because attributes cannot be placed on func definitions. static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap) __attribute__((__format__(__printf__, 3, 0))); // Internal function to format a UTF-8 string and write it to a Win32 console. // Returns -1 on error. static int _console_vfprintf(const HANDLE console, FILE* stream, const char *format, va_list ap) { const int saved_errno = errno; std::string output_utf8; // Format the string. // This could throw std::bad_alloc. android::base::StringAppendV(&output_utf8, format, ap); const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream, console); if (result != -1) { errno = saved_errno; } else { // If -1 was returned, errno has been set. } return result; } // Version of vfprintf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_vfprintf(FILE *stream, const char *format, va_list ap) { const HANDLE console = _get_console_handle(stream); // If there is an associated Win32 console, write to it specially, // otherwise defer to the regular C Runtime, passing it UTF-8. if (console != nullptr) { return _console_vfprintf(console, stream, format, ap); } else { // If vfprintf is a macro, undefine it, so we can call the real // C Runtime API. #pragma push_macro("vfprintf") #undef vfprintf return vfprintf(stream, format, ap); #pragma pop_macro("vfprintf") } } // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console. int adb_vprintf(const char *format, va_list ap) { return adb_vfprintf(stdout, format, ap); } // Version of fprintf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fprintf(FILE *stream, const char *format, ...) { va_list ap; va_start(ap, format); const int result = adb_vfprintf(stream, format, ap); va_end(ap); return result; } // Version of printf() that takes UTF-8 and can write Unicode to a // Windows console. int adb_printf(const char *format, ...) { va_list ap; va_start(ap, format); const int result = adb_vfprintf(stdout, format, ap); va_end(ap); return result; } // Version of fputs() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fputs(const char* buf, FILE* stream) { // adb_fprintf returns -1 on error, which is conveniently the same as EOF // which fputs (and hence adb_fputs) should return on error. static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); return adb_fprintf(stream, "%s", buf); } // Version of fputc() that takes UTF-8 and can write Unicode to a // Windows console. int adb_fputc(int ch, FILE* stream) { const int result = adb_fprintf(stream, "%c", ch); if (result == -1) { return EOF; } // For success, fputc returns the char, cast to unsigned char, then to int. return static_cast<unsigned char>(ch); } // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console. int adb_putchar(int ch) { return adb_fputc(ch, stdout); } // Version of puts() that takes UTF-8 and can write Unicode to a Windows console. int adb_puts(const char* buf) { // adb_printf returns -1 on error, which is conveniently the same as EOF // which puts (and hence adb_puts) should return on error. static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); return adb_printf("%s\n", buf); } // Internal function to write UTF-8 to a Win32 console. Returns the number of // items (of length size) written. On error, returns a short item count or 0. static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream, HANDLE console) { const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream, console); if (result == -1) { return 0; } return result / size; } // Version of fwrite() that takes UTF-8 and can write Unicode to a // Windows console. size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { const HANDLE console = _get_console_handle(stream); // If there is an associated Win32 console, write to it specially, // otherwise defer to the regular C Runtime, passing it UTF-8. if (console != nullptr) { return _console_fwrite(ptr, size, nmemb, stream, console); } else { // If fwrite is a macro, undefine it, so we can call the real // C Runtime API. #pragma push_macro("fwrite") #undef fwrite return fwrite(ptr, size, nmemb, stream); #pragma pop_macro("fwrite") } } // Version of fopen() that takes a UTF-8 filename and can access a file with // a Unicode filename. FILE* adb_fopen(const char* path, const char* mode) { std::wstring path_wide; if (!android::base::UTF8ToWide(path, &path_wide)) { return nullptr; } std::wstring mode_wide; if (!android::base::UTF8ToWide(mode, &mode_wide)) { return nullptr; } return _wfopen(path_wide.c_str(), mode_wide.c_str()); } // Return a lowercase version of the argument. Uses C Runtime tolower() on // each byte which is not UTF-8 aware, and theoretically uses the current C // Runtime locale (which in practice is not changed, so this becomes a ASCII // conversion). static std::string ToLower(const std::string& anycase) { // copy string std::string str(anycase); // transform the copy std::transform(str.begin(), str.end(), str.begin(), tolower); return str; } extern "C" int main(int argc, char** argv); // Link with -municode to cause this wmain() to be used as the program // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the // regular main() with UTF-8 args. extern "C" int wmain(int argc, wchar_t **argv) { // Convert args from UTF-16 to UTF-8 and pass that to main(). NarrowArgs narrow_args(argc, argv); return main(argc, narrow_args.data()); } // Shadow UTF-8 environment variable name/value pairs that are created from // _wenviron by _init_env(). Note that this is not currently updated if putenv, setenv, unsetenv are // called. Note that no thread synchronization is done, but we're called early enough in // single-threaded startup that things work ok. static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>(); // Setup shadow UTF-8 environment variables. static void _init_env() { // If some name/value pairs exist, then we've already done the setup below. if (g_environ_utf8.size() != 0) { return; } if (_wenviron == nullptr) { // If _wenviron is null, then -municode probably wasn't used. That // linker flag will cause the entry point to setup _wenviron. It will // also require an implementation of wmain() (which we provide above). LOG(FATAL) << "_wenviron is not set, did you link with -municode?"; } // Read name/value pairs from UTF-16 _wenviron and write new name/value // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense // to use the D() macro here because that tracing only works if the // ADB_TRACE environment variable is setup, but that env var can't be read // until this code completes. for (wchar_t** env = _wenviron; *env != nullptr; ++env) { wchar_t* const equal = wcschr(*env, L'='); if (equal == nullptr) { // Malformed environment variable with no equal sign. Shouldn't // really happen, but we should be resilient to this. continue; } // If we encounter an error converting UTF-16, don't error-out on account of a single env // var because the program might never even read this particular variable. std::string name_utf8; if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) { continue; } // Store lowercase name so that we can do case-insensitive searches. name_utf8 = ToLower(name_utf8); std::string value_utf8; if (!android::base::WideToUTF8(equal + 1, &value_utf8)) { continue; } char* const value_dup = strdup(value_utf8.c_str()); // Don't overwrite a previus env var with the same name. In reality, // the system probably won't let two env vars with the same name exist // in _wenviron. g_environ_utf8.insert({name_utf8, value_dup}); } } // Version of getenv() that takes a UTF-8 environment variable name and // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows. char* adb_getenv(const char* name) { // Case-insensitive search by searching for lowercase name in a map of // lowercase names. const auto it = g_environ_utf8.find(ToLower(std::string(name))); if (it == g_environ_utf8.end()) { return nullptr; } return it->second; } // Version of getcwd() that returns the current working directory in UTF-8. char* adb_getcwd(char* buf, int size) { wchar_t* wbuf = _wgetcwd(nullptr, 0); if (wbuf == nullptr) { return nullptr; } std::string buf_utf8; const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8); free(wbuf); wbuf = nullptr; if (!narrow_result) { return nullptr; } // If size was specified, make sure all the chars will fit. if (size != 0) { if (size < static_cast<int>(buf_utf8.length() + 1)) { errno = ERANGE; return nullptr; } } // If buf was not specified, allocate storage. if (buf == nullptr) { if (size == 0) { size = buf_utf8.length() + 1; } buf = reinterpret_cast<char*>(malloc(size)); if (buf == nullptr) { return nullptr; } } // Destination buffer was allocated with enough space, or we've already // checked an existing buffer size for enough space. strcpy(buf, buf_utf8.c_str()); return buf; } // The SetThreadDescription API was brought in version 1607 of Windows 10. typedef HRESULT(WINAPI* SetThreadDescription)(HANDLE hThread, PCWSTR lpThreadDescription); // Based on PlatformThread::SetName() from // https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc int adb_thread_setname(const std::string& name) { // The SetThreadDescription API works even if no debugger is attached. auto set_thread_description_func = reinterpret_cast<SetThreadDescription>( ::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription")); if (set_thread_description_func) { std::wstring name_wide; if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) { return errno; } set_thread_description_func(::GetCurrentThread(), name_wide.c_str()); } // Don't use the thread naming SEH exception because we're compiled with -fno-exceptions. // https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017 return 0; } #if !defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING) #define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004 #endif #if !defined(DISABLE_NEWLINE_AUTO_RETURN) #define DISABLE_NEWLINE_AUTO_RETURN 0x0008 #endif static void _init_console() { DWORD old_out_console_mode; const HANDLE out = _get_console_handle(STDOUT_FILENO, &old_out_console_mode); if (out == nullptr) { return; } // Try to use ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output console to process virtual // terminal sequences on newer versions of Windows 10 and later. // https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences // On older OSes that don't support the flag, SetConsoleMode() will return an error. // ENABLE_VIRTUAL_TERMINAL_PROCESSING also solves a problem where the last column of the // console cannot be overwritten. // // Note that we don't use DISABLE_NEWLINE_AUTO_RETURN because it doesn't seem to be necessary. // If we use DISABLE_NEWLINE_AUTO_RETURN, _console_write_utf8() would need to be modified to // translate \n to \r\n. if (!SetConsoleMode(out, old_out_console_mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) { return; } // If SetConsoleMode() succeeded, the console supports virtual terminal processing, so we // should set the TERM env var to match so that it will be propagated to adbd on devices. // // Below's direct manipulation of env vars and not g_environ_utf8 assumes that _init_env() has // not yet been called. If this fails, _init_env() should be called after _init_console(). if (g_environ_utf8.size() > 0) { LOG(FATAL) << "environment variables have already been converted to UTF-8"; } #pragma push_macro("getenv") #undef getenv #pragma push_macro("putenv") #undef putenv if (getenv("TERM") == nullptr) { // This is the same TERM value used by Gnome Terminal and the version of ssh included with // Windows. putenv("TERM=xterm-256color"); } #pragma pop_macro("putenv") #pragma pop_macro("getenv") } static bool _init_sysdeps() { // _init_console() depends on _init_env() not being called yet. _init_console(); _init_env(); _init_winsock(); return true; } static bool _sysdeps_init = _init_sysdeps();