/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG SOCKETS #include "sysdeps.h" #include <ctype.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <algorithm> #include <chrono> #include <mutex> #include <string> #include <vector> #if !ADB_HOST #include <android-base/properties.h> #include <log/log_properties.h> #endif #include "adb.h" #include "adb_io.h" #include "adb_utils.h" #include "transport.h" #include "types.h" using namespace std::chrono_literals; static std::recursive_mutex& local_socket_list_lock = *new std::recursive_mutex(); static unsigned local_socket_next_id = 1; static auto& local_socket_list = *new std::vector<asocket*>(); /* the the list of currently closing local sockets. ** these have no peer anymore, but still packets to ** write to their fd. */ static auto& local_socket_closing_list = *new std::vector<asocket*>(); // Parse the global list of sockets to find one with id |local_id|. // If |peer_id| is not 0, also check that it is connected to a peer // with id |peer_id|. Returns an asocket handle on success, NULL on failure. asocket* find_local_socket(unsigned local_id, unsigned peer_id) { asocket* result = nullptr; std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); for (asocket* s : local_socket_list) { if (s->id != local_id) { continue; } if (peer_id == 0 || (s->peer && s->peer->id == peer_id)) { result = s; } break; } return result; } void install_local_socket(asocket* s) { std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); s->id = local_socket_next_id++; // Socket ids should never be 0. if (local_socket_next_id == 0) { LOG(FATAL) << "local socket id overflow"; } local_socket_list.push_back(s); } void remove_socket(asocket* s) { std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); for (auto list : { &local_socket_list, &local_socket_closing_list }) { list->erase(std::remove_if(list->begin(), list->end(), [s](asocket* x) { return x == s; }), list->end()); } } void close_all_sockets(atransport* t) { /* this is a little gross, but since s->close() *will* modify ** the list out from under you, your options are limited. */ std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); restart: for (asocket* s : local_socket_list) { if (s->transport == t || (s->peer && s->peer->transport == t)) { s->close(s); goto restart; } } } enum class SocketFlushResult { Destroyed, TryAgain, Completed, }; static SocketFlushResult local_socket_flush_incoming(asocket* s) { if (!s->packet_queue.empty()) { std::vector<adb_iovec> iov = s->packet_queue.iovecs(); ssize_t rc = adb_writev(s->fd, iov.data(), iov.size()); if (rc > 0 && static_cast<size_t>(rc) == s->packet_queue.size()) { s->packet_queue.clear(); } else if (rc > 0) { // TODO: Implement a faster drop_front? s->packet_queue.take_front(rc); fdevent_add(s->fde, FDE_WRITE); return SocketFlushResult::TryAgain; } else if (rc == -1 && errno == EAGAIN) { fdevent_add(s->fde, FDE_WRITE); return SocketFlushResult::TryAgain; } else { // We failed to write, but it's possible that we can still read from the socket. // Give that a try before giving up. s->has_write_error = true; } } // If we sent the last packet of a closing socket, we can now destroy it. if (s->closing) { s->close(s); return SocketFlushResult::Destroyed; } fdevent_del(s->fde, FDE_WRITE); return SocketFlushResult::Completed; } // Returns false if the socket has been closed and destroyed as a side-effect of this function. static bool local_socket_flush_outgoing(asocket* s) { const size_t max_payload = s->get_max_payload(); apacket::payload_type data; data.resize(max_payload); char* x = &data[0]; size_t avail = max_payload; int r = 0; int is_eof = 0; while (avail > 0) { r = adb_read(s->fd, x, avail); D("LS(%d): post adb_read(fd=%d,...) r=%d (errno=%d) avail=%zu", s->id, s->fd, r, r < 0 ? errno : 0, avail); if (r == -1) { if (errno == EAGAIN) { break; } } else if (r > 0) { avail -= r; x += r; continue; } /* r = 0 or unhandled error */ is_eof = 1; break; } D("LS(%d): fd=%d post avail loop. r=%d is_eof=%d forced_eof=%d", s->id, s->fd, r, is_eof, s->fde->force_eof); if (avail != max_payload && s->peer) { data.resize(max_payload - avail); // s->peer->enqueue() may call s->close() and free s, // so save variables for debug printing below. unsigned saved_id = s->id; int saved_fd = s->fd; r = s->peer->enqueue(s->peer, std::move(data)); D("LS(%u): fd=%d post peer->enqueue(). r=%d", saved_id, saved_fd, r); if (r < 0) { // Error return means they closed us as a side-effect and we must // return immediately. // // Note that if we still have buffered packets, the socket will be // placed on the closing socket list. This handler function will be // called again to process FDE_WRITE events. return false; } if (r > 0) { /* if the remote cannot accept further events, ** we disable notification of READs. They'll ** be enabled again when we get a call to ready() */ fdevent_del(s->fde, FDE_READ); } } // Don't allow a forced eof if data is still there. if ((s->fde->force_eof && !r) || is_eof) { D(" closing because is_eof=%d r=%d s->fde.force_eof=%d", is_eof, r, s->fde->force_eof); s->close(s); return false; } return true; } static int local_socket_enqueue(asocket* s, apacket::payload_type data) { D("LS(%d): enqueue %zu", s->id, data.size()); s->packet_queue.append(std::move(data)); switch (local_socket_flush_incoming(s)) { case SocketFlushResult::Destroyed: return -1; case SocketFlushResult::TryAgain: return 1; case SocketFlushResult::Completed: return 0; } return !s->packet_queue.empty(); } static void local_socket_ready(asocket* s) { /* far side is ready for data, pay attention to readable events */ fdevent_add(s->fde, FDE_READ); } struct ClosingSocket { std::chrono::steady_clock::time_point begin; }; // The standard (RFC 1122 - 4.2.2.13) says that if we call close on a // socket while we have pending data, a TCP RST should be sent to the // other end to notify it that we didn't read all of its data. However, // this can result in data that we've successfully written out to be dropped // on the other end. To avoid this, instead of immediately closing a // socket, call shutdown on it instead, and then read from the file // descriptor until we hit EOF or an error before closing. static void deferred_close(unique_fd fd) { // Shutdown the socket in the outgoing direction only, so that // we don't have the same problem on the opposite end. adb_shutdown(fd.get(), SHUT_WR); auto callback = [](fdevent* fde, unsigned event, void* arg) { auto socket_info = static_cast<ClosingSocket*>(arg); if (event & FDE_READ) { ssize_t rc; char buf[BUFSIZ]; while ((rc = adb_read(fde->fd.get(), buf, sizeof(buf))) > 0) { continue; } if (rc == -1 && errno == EAGAIN) { // There's potentially more data to read. auto duration = std::chrono::steady_clock::now() - socket_info->begin; if (duration > 1s) { LOG(WARNING) << "timeout expired while flushing socket, closing"; } else { return; } } } else if (event & FDE_TIMEOUT) { LOG(WARNING) << "timeout expired while flushing socket, closing"; } // Either there was an error, we hit the end of the socket, or our timeout expired. fdevent_destroy(fde); delete socket_info; }; ClosingSocket* socket_info = new ClosingSocket{ .begin = std::chrono::steady_clock::now(), }; fdevent* fde = fdevent_create(fd.release(), callback, socket_info); fdevent_add(fde, FDE_READ); fdevent_set_timeout(fde, 1s); } // be sure to hold the socket list lock when calling this static void local_socket_destroy(asocket* s) { int exit_on_close = s->exit_on_close; D("LS(%d): destroying fde.fd=%d", s->id, s->fd); deferred_close(fdevent_release(s->fde)); remove_socket(s); delete s; if (exit_on_close) { D("local_socket_destroy: exiting"); exit(1); } } static void local_socket_close(asocket* s) { D("entered local_socket_close. LS(%d) fd=%d", s->id, s->fd); std::lock_guard<std::recursive_mutex> lock(local_socket_list_lock); if (s->peer) { D("LS(%d): closing peer. peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); /* Note: it's important to call shutdown before disconnecting from * the peer, this ensures that remote sockets can still get the id * of the local socket they're connected to, to send a CLOSE() * protocol event. */ if (s->peer->shutdown) { s->peer->shutdown(s->peer); } s->peer->peer = nullptr; s->peer->close(s->peer); s->peer = nullptr; } /* If we are already closing, or if there are no ** pending packets, destroy immediately */ if (s->closing || s->has_write_error || s->packet_queue.empty()) { int id = s->id; local_socket_destroy(s); D("LS(%d): closed", id); return; } /* otherwise, put on the closing list */ D("LS(%d): closing", s->id); s->closing = 1; fdevent_del(s->fde, FDE_READ); remove_socket(s); D("LS(%d): put on socket_closing_list fd=%d", s->id, s->fd); local_socket_closing_list.push_back(s); CHECK_EQ(FDE_WRITE, s->fde->state & FDE_WRITE); } static void local_socket_event_func(int fd, unsigned ev, void* _s) { asocket* s = reinterpret_cast<asocket*>(_s); D("LS(%d): event_func(fd=%d(==%d), ev=%04x)", s->id, s->fd, fd, ev); /* put the FDE_WRITE processing before the FDE_READ ** in order to simplify the code. */ if (ev & FDE_WRITE) { switch (local_socket_flush_incoming(s)) { case SocketFlushResult::Destroyed: return; case SocketFlushResult::TryAgain: break; case SocketFlushResult::Completed: s->peer->ready(s->peer); break; } } if (ev & FDE_READ) { if (!local_socket_flush_outgoing(s)) { return; } } if (ev & FDE_ERROR) { /* this should be caught be the next read or write ** catching it here means we may skip the last few ** bytes of readable data. */ D("LS(%d): FDE_ERROR (fd=%d)", s->id, s->fd); return; } } asocket* create_local_socket(unique_fd ufd) { int fd = ufd.release(); asocket* s = new asocket(); s->fd = fd; s->enqueue = local_socket_enqueue; s->ready = local_socket_ready; s->shutdown = nullptr; s->close = local_socket_close; install_local_socket(s); s->fde = fdevent_create(fd, local_socket_event_func, s); D("LS(%d): created (fd=%d)", s->id, s->fd); return s; } asocket* create_local_service_socket(std::string_view name, atransport* transport) { #if !ADB_HOST if (asocket* s = daemon_service_to_socket(name); s) { return s; } #endif unique_fd fd = service_to_fd(name, transport); if (fd < 0) { return nullptr; } int fd_value = fd.get(); asocket* s = create_local_socket(std::move(fd)); LOG(VERBOSE) << "LS(" << s->id << "): bound to '" << name << "' via " << fd_value; #if !ADB_HOST if ((name.starts_with("root:") && getuid() != 0 && __android_log_is_debuggable()) || (name.starts_with("unroot:") && getuid() == 0) || name.starts_with("usb:") || name.starts_with("tcpip:")) { D("LS(%d): enabling exit_on_close", s->id); s->exit_on_close = 1; } #endif return s; } static int remote_socket_enqueue(asocket* s, apacket::payload_type data) { D("entered remote_socket_enqueue RS(%d) WRITE fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); apacket* p = get_apacket(); p->msg.command = A_WRTE; p->msg.arg0 = s->peer->id; p->msg.arg1 = s->id; if (data.size() > MAX_PAYLOAD) { put_apacket(p); return -1; } p->payload = std::move(data); p->msg.data_length = p->payload.size(); send_packet(p, s->transport); return 1; } static void remote_socket_ready(asocket* s) { D("entered remote_socket_ready RS(%d) OKAY fd=%d peer.fd=%d", s->id, s->fd, s->peer->fd); apacket* p = get_apacket(); p->msg.command = A_OKAY; p->msg.arg0 = s->peer->id; p->msg.arg1 = s->id; send_packet(p, s->transport); } static void remote_socket_shutdown(asocket* s) { D("entered remote_socket_shutdown RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, s->peer ? s->peer->fd : -1); apacket* p = get_apacket(); p->msg.command = A_CLSE; if (s->peer) { p->msg.arg0 = s->peer->id; } p->msg.arg1 = s->id; send_packet(p, s->transport); } static void remote_socket_close(asocket* s) { if (s->peer) { s->peer->peer = nullptr; D("RS(%d) peer->close()ing peer->id=%d peer->fd=%d", s->id, s->peer->id, s->peer->fd); s->peer->close(s->peer); } D("entered remote_socket_close RS(%d) CLOSE fd=%d peer->fd=%d", s->id, s->fd, s->peer ? s->peer->fd : -1); D("RS(%d): closed", s->id); delete s; } // Create a remote socket to exchange packets with a remote service through transport // |t|. Where |id| is the socket id of the corresponding service on the other // side of the transport (it is allocated by the remote side and _cannot_ be 0). // Returns a new non-NULL asocket handle. asocket* create_remote_socket(unsigned id, atransport* t) { if (id == 0) { LOG(FATAL) << "invalid remote socket id (0)"; } asocket* s = new asocket(); s->id = id; s->enqueue = remote_socket_enqueue; s->ready = remote_socket_ready; s->shutdown = remote_socket_shutdown; s->close = remote_socket_close; s->transport = t; D("RS(%d): created", s->id); return s; } void connect_to_remote(asocket* s, std::string_view destination) { D("Connect_to_remote call RS(%d) fd=%d", s->id, s->fd); apacket* p = get_apacket(); LOG(VERBOSE) << "LS(" << s->id << ": connect(" << destination << ")"; p->msg.command = A_OPEN; p->msg.arg0 = s->id; // adbd used to expect a null-terminated string. // Keep doing so to maintain backward compatibility. p->payload.resize(destination.size() + 1); memcpy(p->payload.data(), destination.data(), destination.size()); p->payload[destination.size()] = '\0'; p->msg.data_length = p->payload.size(); CHECK_LE(p->msg.data_length, s->get_max_payload()); send_packet(p, s->transport); } /* this is used by magic sockets to rig local sockets to send the go-ahead message when they connect */ static void local_socket_ready_notify(asocket* s) { s->ready = local_socket_ready; s->shutdown = nullptr; s->close = local_socket_close; SendOkay(s->fd); s->ready(s); } /* this is used by magic sockets to rig local sockets to send the failure message if they are closed before connected (to avoid closing them without a status message) */ static void local_socket_close_notify(asocket* s) { s->ready = local_socket_ready; s->shutdown = nullptr; s->close = local_socket_close; SendFail(s->fd, "closed"); s->close(s); } static unsigned unhex(const char* s, int len) { unsigned n = 0, c; while (len-- > 0) { switch ((c = *s++)) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': c -= '0'; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': c = c - 'a' + 10; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': c = c - 'A' + 10; break; default: return 0xffffffff; } n = (n << 4) | c; } return n; } #if ADB_HOST namespace internal { // Parses a host service string of the following format: // * [tcp:|udp:]<serial>[:<port>]:<command> // * <prefix>:<serial>:<command> // Where <port> must be a base-10 number and <prefix> may be any of {usb,product,model,device}. bool parse_host_service(std::string_view* out_serial, std::string_view* out_command, std::string_view full_service) { if (full_service.empty()) { return false; } std::string_view serial; std::string_view command = full_service; // Remove |count| bytes from the beginning of command and add them to |serial|. auto consume = [&full_service, &serial, &command](size_t count) { CHECK_LE(count, command.size()); if (!serial.empty()) { CHECK_EQ(serial.data() + serial.size(), command.data()); } serial = full_service.substr(0, serial.size() + count); command.remove_prefix(count); }; // Remove the trailing : from serial, and assign the values to the output parameters. auto finish = [out_serial, out_command, &serial, &command] { if (serial.empty() || command.empty()) { return false; } CHECK_EQ(':', serial.back()); serial.remove_suffix(1); *out_serial = serial; *out_command = command; return true; }; static constexpr std::string_view prefixes[] = {"usb:", "product:", "model:", "device:"}; for (std::string_view prefix : prefixes) { if (command.starts_with(prefix)) { consume(prefix.size()); size_t offset = command.find_first_of(':'); if (offset == std::string::npos) { return false; } consume(offset + 1); return finish(); } } // For fastboot compatibility, ignore protocol prefixes. if (command.starts_with("tcp:") || command.starts_with("udp:")) { consume(4); if (command.empty()) { return false; } } if (command.starts_with("vsock:")) { // vsock serials are vsock:cid:port, which have an extra colon compared to tcp. size_t next_colon = command.find(':'); if (next_colon == std::string::npos) { return false; } consume(next_colon + 1); } bool found_address = false; if (command[0] == '[') { // Read an IPv6 address. `adb connect` creates the serial number from the canonical // network address so it will always have the [] delimiters. size_t ipv6_end = command.find_first_of(']'); if (ipv6_end != std::string::npos) { consume(ipv6_end + 1); if (command.empty()) { // Nothing after the IPv6 address. return false; } else if (command[0] != ':') { // Garbage after the IPv6 address. return false; } consume(1); found_address = true; } } if (!found_address) { // Scan ahead to the next colon. size_t offset = command.find_first_of(':'); if (offset == std::string::npos) { return false; } consume(offset + 1); } // We're either at the beginning of a port, or the command itself. // Look for a port in between colons. size_t next_colon = command.find_first_of(':'); if (next_colon == std::string::npos) { // No colon, we must be at the command. return finish(); } bool port_valid = true; if (command.size() <= next_colon) { return false; } std::string_view port = command.substr(0, next_colon); for (auto digit : port) { if (!isdigit(digit)) { // Port isn't a number. port_valid = false; break; } } if (port_valid) { consume(next_colon + 1); } return finish(); } } // namespace internal #endif // ADB_HOST static int smart_socket_enqueue(asocket* s, apacket::payload_type data) { #if ADB_HOST std::string_view service; std::string_view serial; TransportId transport_id = 0; TransportType type = kTransportAny; #endif D("SS(%d): enqueue %zu", s->id, data.size()); if (s->smart_socket_data.empty()) { // TODO: Make this an IOVector? s->smart_socket_data.assign(data.begin(), data.end()); } else { std::copy(data.begin(), data.end(), std::back_inserter(s->smart_socket_data)); } /* don't bother if we can't decode the length */ if (s->smart_socket_data.size() < 4) { return 0; } uint32_t len = unhex(s->smart_socket_data.data(), 4); if (len == 0 || len > MAX_PAYLOAD) { D("SS(%d): bad size (%u)", s->id, len); goto fail; } D("SS(%d): len is %u", s->id, len); /* can't do anything until we have the full header */ if ((len + 4) > s->smart_socket_data.size()) { D("SS(%d): waiting for %zu more bytes", s->id, len + 4 - s->smart_socket_data.size()); return 0; } s->smart_socket_data[len + 4] = 0; D("SS(%d): '%s'", s->id, (char*)(s->smart_socket_data.data() + 4)); #if ADB_HOST service = std::string_view(s->smart_socket_data).substr(4); if (ConsumePrefix(&service, "host-serial:")) { // serial number should follow "host:" and could be a host:port string. if (!internal::parse_host_service(&serial, &service, service)) { LOG(ERROR) << "SS(" << s->id << "): failed to parse host service: " << service; goto fail; } } else if (ConsumePrefix(&service, "host-transport-id:")) { if (!ParseUint(&transport_id, service, &service)) { LOG(ERROR) << "SS(" << s->id << "): failed to parse host transport id: " << service; return -1; } if (!ConsumePrefix(&service, ":")) { LOG(ERROR) << "SS(" << s->id << "): host-transport-id without command"; return -1; } } else if (ConsumePrefix(&service, "host-usb:")) { type = kTransportUsb; } else if (ConsumePrefix(&service, "host-local:")) { type = kTransportLocal; } else if (ConsumePrefix(&service, "host:")) { type = kTransportAny; } else { service = std::string_view{}; } if (!service.empty()) { asocket* s2; // Some requests are handled immediately -- in that case the handle_host_request() routine // has sent the OKAY or FAIL message and all we have to do is clean up. auto host_request_result = handle_host_request( service, type, serial.empty() ? nullptr : std::string(serial).c_str(), transport_id, s->peer->fd, s); switch (host_request_result) { case HostRequestResult::Handled: LOG(VERBOSE) << "SS(" << s->id << "): handled host service '" << service << "'"; goto fail; case HostRequestResult::SwitchedTransport: D("SS(%d): okay transport", s->id); s->smart_socket_data.clear(); return 0; case HostRequestResult::Unhandled: break; } /* try to find a local service with this name. ** if no such service exists, we'll fail out ** and tear down here. */ // TODO: Convert to string_view. s2 = host_service_to_socket(service, serial, transport_id); if (s2 == nullptr) { LOG(VERBOSE) << "SS(" << s->id << "): couldn't create host service '" << service << "'"; SendFail(s->peer->fd, "unknown host service"); goto fail; } /* we've connected to a local host service, ** so we make our peer back into a regular ** local socket and bind it to the new local ** service socket, acknowledge the successful ** connection, and close this smart socket now ** that its work is done. */ SendOkay(s->peer->fd); s->peer->ready = local_socket_ready; s->peer->shutdown = nullptr; s->peer->close = local_socket_close; s->peer->peer = s2; s2->peer = s->peer; s->peer = nullptr; D("SS(%d): okay", s->id); s->close(s); /* initial state is "ready" */ s2->ready(s2); return 0; } #else /* !ADB_HOST */ if (s->transport == nullptr) { std::string error_msg = "unknown failure"; s->transport = acquire_one_transport(kTransportAny, nullptr, 0, nullptr, &error_msg); if (s->transport == nullptr) { SendFail(s->peer->fd, error_msg); goto fail; } } #endif if (!s->transport) { SendFail(s->peer->fd, "device offline (no transport)"); goto fail; } else if (!ConnectionStateIsOnline(s->transport->GetConnectionState())) { /* if there's no remote we fail the connection ** right here and terminate it */ SendFail(s->peer->fd, "device offline (transport offline)"); goto fail; } /* instrument our peer to pass the success or fail ** message back once it connects or closes, then ** detach from it, request the connection, and ** tear down */ s->peer->ready = local_socket_ready_notify; s->peer->shutdown = nullptr; s->peer->close = local_socket_close_notify; s->peer->peer = nullptr; /* give him our transport and upref it */ s->peer->transport = s->transport; connect_to_remote(s->peer, std::string_view(s->smart_socket_data).substr(4)); s->peer = nullptr; s->close(s); return 1; fail: /* we're going to close our peer as a side-effect, so ** return -1 to signal that state to the local socket ** who is enqueueing against us */ s->close(s); return -1; } static void smart_socket_ready(asocket* s) { D("SS(%d): ready", s->id); } static void smart_socket_close(asocket* s) { D("SS(%d): closed", s->id); if (s->peer) { s->peer->peer = nullptr; s->peer->close(s->peer); s->peer = nullptr; } delete s; } static asocket* create_smart_socket(void) { D("Creating smart socket"); asocket* s = new asocket(); s->enqueue = smart_socket_enqueue; s->ready = smart_socket_ready; s->shutdown = nullptr; s->close = smart_socket_close; D("SS(%d)", s->id); return s; } void connect_to_smartsocket(asocket* s) { D("Connecting to smart socket"); asocket* ss = create_smart_socket(); s->peer = ss; ss->peer = s; s->ready(s); } size_t asocket::get_max_payload() const { size_t max_payload = MAX_PAYLOAD; if (transport) { max_payload = std::min(max_payload, transport->get_max_payload()); } if (peer && peer->transport) { max_payload = std::min(max_payload, peer->transport->get_max_payload()); } return max_payload; }