/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdevent.h" #include <gtest/gtest.h> #include <chrono> #include <limits> #include <memory> #include <queue> #include <string> #include <thread> #include <vector> #include "adb_io.h" #include "fdevent_test.h" using namespace std::chrono_literals; class FdHandler { public: FdHandler(int read_fd, int write_fd, bool use_new_callback) : read_fd_(read_fd), write_fd_(write_fd) { if (use_new_callback) { read_fde_ = fdevent_create(read_fd_, FdEventNewCallback, this); write_fde_ = fdevent_create(write_fd_, FdEventNewCallback, this); } else { read_fde_ = fdevent_create(read_fd_, FdEventCallback, this); write_fde_ = fdevent_create(write_fd_, FdEventCallback, this); } fdevent_add(read_fde_, FDE_READ); } ~FdHandler() { fdevent_destroy(read_fde_); fdevent_destroy(write_fde_); } private: static void FdEventCallback(int fd, unsigned events, void* userdata) { FdHandler* handler = reinterpret_cast<FdHandler*>(userdata); ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events; if (events & FDE_READ) { ASSERT_EQ(fd, handler->read_fd_); char c; ASSERT_EQ(1, adb_read(fd, &c, 1)); handler->queue_.push(c); fdevent_add(handler->write_fde_, FDE_WRITE); } if (events & FDE_WRITE) { ASSERT_EQ(fd, handler->write_fd_); ASSERT_FALSE(handler->queue_.empty()); char c = handler->queue_.front(); handler->queue_.pop(); ASSERT_EQ(1, adb_write(fd, &c, 1)); if (handler->queue_.empty()) { fdevent_del(handler->write_fde_, FDE_WRITE); } } } static void FdEventNewCallback(fdevent* fde, unsigned events, void* userdata) { int fd = fde->fd.get(); FdHandler* handler = reinterpret_cast<FdHandler*>(userdata); ASSERT_EQ(0u, (events & ~(FDE_READ | FDE_WRITE))) << "unexpected events: " << events; if (events & FDE_READ) { ASSERT_EQ(fd, handler->read_fd_); char c; ASSERT_EQ(1, adb_read(fd, &c, 1)); handler->queue_.push(c); fdevent_add(handler->write_fde_, FDE_WRITE); } if (events & FDE_WRITE) { ASSERT_EQ(fd, handler->write_fd_); ASSERT_FALSE(handler->queue_.empty()); char c = handler->queue_.front(); handler->queue_.pop(); ASSERT_EQ(1, adb_write(fd, &c, 1)); if (handler->queue_.empty()) { fdevent_del(handler->write_fde_, FDE_WRITE); } } } private: const int read_fd_; const int write_fd_; fdevent* read_fde_; fdevent* write_fde_; std::queue<char> queue_; }; struct ThreadArg { int first_read_fd; int last_write_fd; size_t middle_pipe_count; }; TEST_F(FdeventTest, fdevent_terminate) { PrepareThread(); TerminateThread(); } TEST_F(FdeventTest, smoke) { for (bool use_new_callback : {true, false}) { fdevent_reset(); const size_t PIPE_COUNT = 10; const size_t MESSAGE_LOOP_COUNT = 100; const std::string MESSAGE = "fdevent_test"; int fd_pair1[2]; int fd_pair2[2]; ASSERT_EQ(0, adb_socketpair(fd_pair1)); ASSERT_EQ(0, adb_socketpair(fd_pair2)); ThreadArg thread_arg; thread_arg.first_read_fd = fd_pair1[0]; thread_arg.last_write_fd = fd_pair2[1]; thread_arg.middle_pipe_count = PIPE_COUNT; int writer = fd_pair1[1]; int reader = fd_pair2[0]; PrepareThread(); std::vector<std::unique_ptr<FdHandler>> fd_handlers; fdevent_run_on_main_thread([&thread_arg, &fd_handlers, use_new_callback]() { std::vector<int> read_fds; std::vector<int> write_fds; read_fds.push_back(thread_arg.first_read_fd); for (size_t i = 0; i < thread_arg.middle_pipe_count; ++i) { int fds[2]; ASSERT_EQ(0, adb_socketpair(fds)); read_fds.push_back(fds[0]); write_fds.push_back(fds[1]); } write_fds.push_back(thread_arg.last_write_fd); for (size_t i = 0; i < read_fds.size(); ++i) { fd_handlers.push_back( std::make_unique<FdHandler>(read_fds[i], write_fds[i], use_new_callback)); } }); WaitForFdeventLoop(); for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) { std::string read_buffer = MESSAGE; std::string write_buffer(MESSAGE.size(), 'a'); ASSERT_TRUE(WriteFdExactly(writer, read_buffer.c_str(), read_buffer.size())); ASSERT_TRUE(ReadFdExactly(reader, &write_buffer[0], write_buffer.size())); ASSERT_EQ(read_buffer, write_buffer); } fdevent_run_on_main_thread([&fd_handlers]() { fd_handlers.clear(); }); WaitForFdeventLoop(); TerminateThread(); ASSERT_EQ(0, adb_close(writer)); ASSERT_EQ(0, adb_close(reader)); } } struct InvalidFdArg { fdevent* fde; unsigned expected_events; size_t* happened_event_count; }; static void InvalidFdEventCallback(int, unsigned events, void* userdata) { InvalidFdArg* arg = reinterpret_cast<InvalidFdArg*>(userdata); ASSERT_EQ(arg->expected_events, events); fdevent_destroy(arg->fde); if (++*(arg->happened_event_count) == 2) { fdevent_terminate_loop(); } } static void InvalidFdThreadFunc() { const int INVALID_READ_FD = std::numeric_limits<int>::max() - 1; size_t happened_event_count = 0; InvalidFdArg read_arg; read_arg.expected_events = FDE_READ | FDE_ERROR; read_arg.happened_event_count = &happened_event_count; read_arg.fde = fdevent_create(INVALID_READ_FD, InvalidFdEventCallback, &read_arg); fdevent_add(read_arg.fde, FDE_READ); const int INVALID_WRITE_FD = std::numeric_limits<int>::max(); InvalidFdArg write_arg; write_arg.expected_events = FDE_READ | FDE_ERROR; write_arg.happened_event_count = &happened_event_count; write_arg.fde = fdevent_create(INVALID_WRITE_FD, InvalidFdEventCallback, &write_arg); fdevent_add(write_arg.fde, FDE_WRITE); fdevent_loop(); } TEST_F(FdeventTest, invalid_fd) { std::thread thread(InvalidFdThreadFunc); thread.join(); } TEST_F(FdeventTest, run_on_main_thread) { std::vector<int> vec; PrepareThread(); // Block the main thread for a long time while we queue our callbacks. fdevent_run_on_main_thread([]() { check_main_thread(); std::this_thread::sleep_for(std::chrono::seconds(1)); }); for (int i = 0; i < 1000000; ++i) { fdevent_run_on_main_thread([i, &vec]() { check_main_thread(); vec.push_back(i); }); } TerminateThread(); ASSERT_EQ(1000000u, vec.size()); for (int i = 0; i < 1000000; ++i) { ASSERT_EQ(i, vec[i]); } } static std::function<void()> make_appender(std::vector<int>* vec, int value) { return [vec, value]() { check_main_thread(); if (value == 100) { return; } vec->push_back(value); fdevent_run_on_main_thread(make_appender(vec, value + 1)); }; } TEST_F(FdeventTest, run_on_main_thread_reentrant) { std::vector<int> vec; PrepareThread(); fdevent_run_on_main_thread(make_appender(&vec, 0)); TerminateThread(); ASSERT_EQ(100u, vec.size()); for (int i = 0; i < 100; ++i) { ASSERT_EQ(i, vec[i]); } } TEST_F(FdeventTest, timeout) { fdevent_reset(); PrepareThread(); enum class TimeoutEvent { read, timeout, done, }; struct TimeoutTest { std::vector<std::pair<TimeoutEvent, std::chrono::steady_clock::time_point>> events; fdevent* fde; }; TimeoutTest test; int fds[2]; ASSERT_EQ(0, adb_socketpair(fds)); static constexpr auto delta = 100ms; fdevent_run_on_main_thread([&]() { test.fde = fdevent_create(fds[0], [](fdevent* fde, unsigned events, void* arg) { auto test = static_cast<TimeoutTest*>(arg); auto now = std::chrono::steady_clock::now(); CHECK((events & FDE_READ) ^ (events & FDE_TIMEOUT)); TimeoutEvent event; if ((events & FDE_READ)) { char buf[2]; ssize_t rc = adb_read(fde->fd.get(), buf, sizeof(buf)); if (rc == 0) { event = TimeoutEvent::done; } else if (rc == 1) { event = TimeoutEvent::read; } else { abort(); } } else if ((events & FDE_TIMEOUT)) { event = TimeoutEvent::timeout; } else { abort(); } CHECK_EQ(fde, test->fde); test->events.emplace_back(event, now); if (event == TimeoutEvent::done) { fdevent_destroy(fde); } }, &test); fdevent_add(test.fde, FDE_READ); fdevent_set_timeout(test.fde, delta); }); ASSERT_EQ(1, adb_write(fds[1], "", 1)); // Timeout should happen here std::this_thread::sleep_for(delta); // and another. std::this_thread::sleep_for(delta); // No timeout should happen here. std::this_thread::sleep_for(delta / 2); adb_close(fds[1]); TerminateThread(); ASSERT_EQ(4ULL, test.events.size()); ASSERT_EQ(TimeoutEvent::read, test.events[0].first); ASSERT_EQ(TimeoutEvent::timeout, test.events[1].first); ASSERT_EQ(TimeoutEvent::timeout, test.events[2].first); ASSERT_EQ(TimeoutEvent::done, test.events[3].first); std::vector<int> time_deltas; for (size_t i = 0; i < test.events.size() - 1; ++i) { auto before = test.events[i].second; auto after = test.events[i + 1].second; auto diff = std::chrono::duration_cast<std::chrono::milliseconds>(after - before); time_deltas.push_back(diff.count()); } std::vector<int> expected = { delta.count(), delta.count(), delta.count() / 2, }; std::vector<int> diff; ASSERT_EQ(time_deltas.size(), expected.size()); for (size_t i = 0; i < time_deltas.size(); ++i) { diff.push_back(std::abs(time_deltas[i] - expected[i])); } ASSERT_LT(diff[0], delta.count() * 0.5); ASSERT_LT(diff[1], delta.count() * 0.5); ASSERT_LT(diff[2], delta.count() * 0.5); }