/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define TRACE_TAG USB #include "sysdeps.h" #include <CoreFoundation/CoreFoundation.h> #include <IOKit/IOKitLib.h> #include <IOKit/IOCFPlugIn.h> #include <IOKit/usb/IOUSBLib.h> #include <IOKit/IOMessage.h> #include <mach/mach_port.h> #include <inttypes.h> #include <stdio.h> #include <atomic> #include <chrono> #include <memory> #include <mutex> #include <thread> #include <vector> #include <android-base/logging.h> #include <android-base/stringprintf.h> #include <android-base/thread_annotations.h> #include "adb.h" #include "transport.h" using namespace std::chrono_literals; namespace native { struct usb_handle { UInt8 bulkIn; UInt8 bulkOut; IOUSBInterfaceInterface550** interface; unsigned int zero_mask; size_t max_packet_size; // For garbage collecting disconnected devices. bool mark; std::string devpath; std::atomic<bool> dead; usb_handle() : bulkIn(0), bulkOut(0), interface(nullptr), zero_mask(0), max_packet_size(0), mark(false), dead(false) {} }; static std::atomic<bool> usb_inited_flag; static auto& g_usb_handles_mutex = *new std::mutex(); static auto& g_usb_handles = *new std::vector<std::unique_ptr<usb_handle>>(); static bool IsKnownDevice(const std::string& devpath) { std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex); for (auto& usb : g_usb_handles) { if (usb->devpath == devpath) { // Set mark flag to indicate this device is still alive. usb->mark = true; return true; } } return false; } static void usb_kick_locked(usb_handle* handle); static void KickDisconnectedDevices() { std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex); for (auto& usb : g_usb_handles) { if (!usb->mark) { usb_kick_locked(usb.get()); } else { usb->mark = false; } } } static void AddDevice(std::unique_ptr<usb_handle> handle) { handle->mark = true; std::lock_guard<std::mutex> lock(g_usb_handles_mutex); g_usb_handles.push_back(std::move(handle)); } static void AndroidInterfaceAdded(io_iterator_t iterator); static std::unique_ptr<usb_handle> CheckInterface(IOUSBInterfaceInterface550** iface, UInt16 vendor, UInt16 product); static bool FindUSBDevices() { // Create the matching dictionary to find the Android device's adb interface. CFMutableDictionaryRef matchingDict = IOServiceMatching(kIOUSBInterfaceClassName); if (!matchingDict) { LOG(ERROR) << "couldn't create USB matching dictionary"; return false; } // Create an iterator for all I/O Registry objects that match the dictionary. io_iterator_t iter = 0; kern_return_t kr = IOServiceGetMatchingServices(kIOMasterPortDefault, matchingDict, &iter); if (kr != KERN_SUCCESS) { LOG(ERROR) << "failed to get matching services"; return false; } // Iterate over all matching objects. AndroidInterfaceAdded(iter); IOObjectRelease(iter); return true; } static void AndroidInterfaceAdded(io_iterator_t iterator) { kern_return_t kr; io_service_t usbDevice; io_service_t usbInterface; IOCFPlugInInterface **plugInInterface = NULL; IOUSBInterfaceInterface500 **iface = NULL; IOUSBDeviceInterface500 **dev = NULL; HRESULT result; SInt32 score; uint32_t locationId; UInt8 if_class, subclass, protocol; UInt16 vendor; UInt16 product; UInt8 serialIndex; char serial[256]; std::string devpath; while ((usbInterface = IOIteratorNext(iterator))) { //* Create an intermediate interface plugin kr = IOCreatePlugInInterfaceForService(usbInterface, kIOUSBInterfaceUserClientTypeID, kIOCFPlugInInterfaceID, &plugInInterface, &score); IOObjectRelease(usbInterface); if ((kIOReturnSuccess != kr) || (!plugInInterface)) { LOG(ERROR) << "Unable to create an interface plug-in (" << std::hex << kr << ")"; continue; } //* This gets us the interface object result = (*plugInInterface)->QueryInterface( plugInInterface, CFUUIDGetUUIDBytes(kIOUSBInterfaceInterfaceID500), (LPVOID*)&iface); //* We only needed the plugin to get the interface, so discard it (*plugInInterface)->Release(plugInInterface); if (result || !iface) { LOG(ERROR) << "Couldn't query the interface (" << std::hex << result << ")"; continue; } kr = (*iface)->GetInterfaceClass(iface, &if_class); kr = (*iface)->GetInterfaceSubClass(iface, &subclass); kr = (*iface)->GetInterfaceProtocol(iface, &protocol); if (!is_adb_interface(if_class, subclass, protocol)) { // Ignore non-ADB devices. LOG(DEBUG) << "Ignoring interface with incorrect class/subclass/protocol - " << if_class << ", " << subclass << ", " << protocol; (*iface)->Release(iface); continue; } //* this gets us an ioservice, with which we will find the actual //* device; after getting a plugin, and querying the interface, of //* course. //* Gotta love OS X kr = (*iface)->GetDevice(iface, &usbDevice); if (kIOReturnSuccess != kr || !usbDevice) { LOG(ERROR) << "Couldn't grab device from interface (" << std::hex << kr << ")"; (*iface)->Release(iface); continue; } plugInInterface = NULL; score = 0; //* create an intermediate device plugin kr = IOCreatePlugInInterfaceForService(usbDevice, kIOUSBDeviceUserClientTypeID, kIOCFPlugInInterfaceID, &plugInInterface, &score); //* only needed this to find the plugin (void)IOObjectRelease(usbDevice); if ((kIOReturnSuccess != kr) || (!plugInInterface)) { LOG(ERROR) << "Unable to create a device plug-in (" << std::hex << kr << ")"; (*iface)->Release(iface); continue; } result = (*plugInInterface)->QueryInterface(plugInInterface, CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID500), (LPVOID*)&dev); //* only needed this to query the plugin (*plugInInterface)->Release(plugInInterface); if (result || !dev) { LOG(ERROR) << "Couldn't create a device interface (" << std::hex << result << ")"; (*iface)->Release(iface); continue; } //* Now after all that, we actually have a ref to the device and //* the interface that matched our criteria kr = (*dev)->GetDeviceVendor(dev, &vendor); kr = (*dev)->GetDeviceProduct(dev, &product); kr = (*dev)->GetLocationID(dev, &locationId); if (kr == KERN_SUCCESS) { devpath = android::base::StringPrintf("usb:%" PRIu32 "X", locationId); if (IsKnownDevice(devpath)) { (*dev)->Release(dev); (*iface)->Release(iface); continue; } } kr = (*dev)->USBGetSerialNumberStringIndex(dev, &serialIndex); if (serialIndex > 0) { IOUSBDevRequest req; UInt16 buffer[256]; UInt16 languages[128]; memset(languages, 0, sizeof(languages)); req.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice); req.bRequest = kUSBRqGetDescriptor; req.wValue = (kUSBStringDesc << 8) | 0; req.wIndex = 0; req.pData = languages; req.wLength = sizeof(languages); kr = (*dev)->DeviceRequest(dev, &req); if (kr == kIOReturnSuccess && req.wLenDone > 0) { int langCount = (req.wLenDone - 2) / 2, lang; for (lang = 1; lang <= langCount; lang++) { memset(buffer, 0, sizeof(buffer)); memset(&req, 0, sizeof(req)); req.bmRequestType = USBmakebmRequestType(kUSBIn, kUSBStandard, kUSBDevice); req.bRequest = kUSBRqGetDescriptor; req.wValue = (kUSBStringDesc << 8) | serialIndex; req.wIndex = languages[lang]; req.pData = buffer; req.wLength = sizeof(buffer); kr = (*dev)->DeviceRequest(dev, &req); if (kr == kIOReturnSuccess && req.wLenDone > 0) { int i, count; // skip first word, and copy the rest to the serial string, // changing shorts to bytes. count = (req.wLenDone - 1) / 2; for (i = 0; i < count; i++) serial[i] = buffer[i + 1]; serial[i] = 0; break; } } } } (*dev)->Release(dev); VLOG(USB) << android::base::StringPrintf("Found vid=%04x pid=%04x serial=%s\n", vendor, product, serial); if (devpath.empty()) { devpath = serial; } if (IsKnownDevice(devpath)) { (*iface)->USBInterfaceClose(iface); (*iface)->Release(iface); continue; } std::unique_ptr<usb_handle> handle = CheckInterface((IOUSBInterfaceInterface550**)iface, vendor, product); if (handle == nullptr) { LOG(ERROR) << "Could not find device interface"; (*iface)->Release(iface); continue; } handle->devpath = devpath; usb_handle* handle_p = handle.get(); VLOG(USB) << "Add usb device " << serial; LOG(INFO) << "reported max packet size for " << serial << " is " << handle->max_packet_size; AddDevice(std::move(handle)); register_usb_transport(reinterpret_cast<::usb_handle*>(handle_p), serial, devpath.c_str(), 1); } } // Used to clear both the endpoints before starting. // When adb quits, we might clear the host endpoint but not the device. // So we make sure both sides are clear before starting up. static bool ClearPipeStallBothEnds(IOUSBInterfaceInterface550** interface, UInt8 bulkEp) { IOReturn rc = (*interface)->ClearPipeStallBothEnds(interface, bulkEp); if (rc != kIOReturnSuccess) { LOG(ERROR) << "Could not clear pipe stall both ends: " << std::hex << rc; return false; } return true; } //* TODO: simplify this further since we only register to get ADB interface //* subclass+protocol events static std::unique_ptr<usb_handle> CheckInterface(IOUSBInterfaceInterface550** interface, UInt16 vendor, UInt16 product) { std::unique_ptr<usb_handle> handle; IOReturn kr; UInt8 interfaceNumEndpoints, interfaceClass, interfaceSubClass, interfaceProtocol; UInt8 endpoint; //* Now open the interface. This will cause the pipes associated with //* the endpoints in the interface descriptor to be instantiated kr = (*interface)->USBInterfaceOpen(interface); if (kr != kIOReturnSuccess) { LOG(ERROR) << "Could not open interface: " << std::hex << kr; return NULL; } //* Get the number of endpoints associated with this interface kr = (*interface)->GetNumEndpoints(interface, &interfaceNumEndpoints); if (kr != kIOReturnSuccess) { LOG(ERROR) << "Unable to get number of endpoints: " << std::hex << kr; goto err_get_num_ep; } //* Get interface class, subclass and protocol if ((*interface)->GetInterfaceClass(interface, &interfaceClass) != kIOReturnSuccess || (*interface)->GetInterfaceSubClass(interface, &interfaceSubClass) != kIOReturnSuccess || (*interface)->GetInterfaceProtocol(interface, &interfaceProtocol) != kIOReturnSuccess) { LOG(ERROR) << "Unable to get interface class, subclass and protocol"; goto err_get_interface_class; } //* check to make sure interface class, subclass and protocol match ADB //* avoid opening mass storage endpoints if (!is_adb_interface(interfaceClass, interfaceSubClass, interfaceProtocol)) { goto err_bad_adb_interface; } handle.reset(new usb_handle); if (handle == nullptr) { goto err_bad_adb_interface; } //* Iterate over the endpoints for this interface and find the first //* bulk in/out pipes available. These will be our read/write pipes. for (endpoint = 1; endpoint <= interfaceNumEndpoints; endpoint++) { UInt8 transferType; UInt16 maxPacketSize; UInt8 interval; UInt8 number; UInt8 direction; UInt8 maxBurst; UInt8 mult; UInt16 bytesPerInterval; kr = (*interface) ->GetPipePropertiesV2(interface, endpoint, &direction, &number, &transferType, &maxPacketSize, &interval, &maxBurst, &mult, &bytesPerInterval); if (kr != kIOReturnSuccess) { LOG(ERROR) << "FindDeviceInterface - could not get pipe properties: " << std::hex << kr; goto err_get_pipe_props; } if (kUSBBulk != transferType) continue; if (kUSBIn == direction) { handle->bulkIn = endpoint; if (!ClearPipeStallBothEnds(interface, handle->bulkIn)) goto err_get_pipe_props; } if (kUSBOut == direction) { handle->bulkOut = endpoint; if (!ClearPipeStallBothEnds(interface, handle->bulkOut)) goto err_get_pipe_props; } if (maxBurst != 0) // bMaxBurst is the number of additional packets in the burst. maxPacketSize /= (maxBurst + 1); // mult is only relevant for isochronous endpoints. CHECK_EQ(0, mult); handle->zero_mask = maxPacketSize - 1; handle->max_packet_size = maxPacketSize; } handle->interface = interface; return handle; err_get_pipe_props: err_bad_adb_interface: err_get_interface_class: err_get_num_ep: (*interface)->USBInterfaceClose(interface); return nullptr; } std::mutex& operate_device_lock = *new std::mutex(); static void RunLoopThread() { adb_thread_setname("RunLoop"); VLOG(USB) << "RunLoopThread started"; while (true) { { std::lock_guard<std::mutex> lock_guard(operate_device_lock); FindUSBDevices(); KickDisconnectedDevices(); } // Signal the parent that we are running usb_inited_flag = true; std::this_thread::sleep_for(1s); } VLOG(USB) << "RunLoopThread done"; } void usb_cleanup() NO_THREAD_SAFETY_ANALYSIS { VLOG(USB) << "usb_cleanup"; // Wait until usb operations in RunLoopThread finish, and prevent further operations. operate_device_lock.lock(); close_usb_devices(); } void usb_init() { static bool initialized = false; if (!initialized) { usb_inited_flag = false; std::thread(RunLoopThread).detach(); // Wait for initialization to finish while (!usb_inited_flag) { std::this_thread::sleep_for(100ms); } initialized = true; } } int usb_write(usb_handle *handle, const void *buf, int len) { IOReturn result; if (!len) return 0; if (!handle || handle->dead) return -1; if (NULL == handle->interface) { LOG(ERROR) << "usb_write interface was null"; return -1; } if (0 == handle->bulkOut) { LOG(ERROR) << "bulkOut endpoint not assigned"; return -1; } result = (*handle->interface)->WritePipe(handle->interface, handle->bulkOut, (void *)buf, len); if ((result == 0) && (handle->zero_mask)) { /* we need 0-markers and our transfer */ if(!(len & handle->zero_mask)) { result = (*handle->interface)->WritePipe( handle->interface, handle->bulkOut, (void *)buf, 0); } } if (!result) return len; LOG(ERROR) << "usb_write failed with status: " << std::hex << result; return -1; } int usb_read(usb_handle *handle, void *buf, int len) { IOReturn result; UInt32 numBytes = len; if (!len) { return 0; } if (!handle || handle->dead) { return -1; } if (NULL == handle->interface) { LOG(ERROR) << "usb_read interface was null"; return -1; } if (0 == handle->bulkIn) { LOG(ERROR) << "bulkIn endpoint not assigned"; return -1; } result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes); if (kIOUSBPipeStalled == result) { LOG(ERROR) << "Pipe stalled, clearing stall.\n"; (*handle->interface)->ClearPipeStall(handle->interface, handle->bulkIn); result = (*handle->interface)->ReadPipe(handle->interface, handle->bulkIn, buf, &numBytes); } if (kIOReturnSuccess == result) return numBytes; else { LOG(ERROR) << "usb_read failed with status: " << std::hex << result; } return -1; } int usb_close(usb_handle *handle) { std::lock_guard<std::mutex> lock(g_usb_handles_mutex); for (auto it = g_usb_handles.begin(); it != g_usb_handles.end(); ++it) { if ((*it).get() == handle) { g_usb_handles.erase(it); break; } } return 0; } void usb_reset(usb_handle* handle) { // Unimplemented on OS X. usb_kick(handle); } static void usb_kick_locked(usb_handle *handle) { LOG(INFO) << "Kicking handle"; /* release the interface */ if (!handle) return; if (!handle->dead) { handle->dead = true; (*handle->interface)->USBInterfaceClose(handle->interface); (*handle->interface)->Release(handle->interface); } } void usb_kick(usb_handle *handle) { // Use the lock to avoid multiple thread kicking the device at the same time. std::lock_guard<std::mutex> lock_guard(g_usb_handles_mutex); usb_kick_locked(handle); } size_t usb_get_max_packet_size(usb_handle* handle) { return handle->max_packet_size; } } // namespace native