/* * Copyright 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "a2dp_aac_encoder" #include "a2dp_aac_encoder.h" #include <inttypes.h> #include <stdio.h> #include <string.h> #include <aacenc_lib.h> #include <base/logging.h> #include "a2dp_aac.h" #include "bt_common.h" #include "common/time_util.h" #include "osi/include/log.h" #include "osi/include/osi.h" // // Encoder for AAC Source Codec // // A2DP AAC encoder interval in milliseconds #define A2DP_AAC_ENCODER_INTERVAL_MS 20 // offset #if (BTA_AV_CO_CP_SCMS_T == TRUE) #define A2DP_AAC_OFFSET (AVDT_MEDIA_OFFSET + 1) #else #define A2DP_AAC_OFFSET AVDT_MEDIA_OFFSET #endif typedef struct { uint32_t sample_rate; uint8_t channel_mode; uint8_t bits_per_sample; uint32_t frame_length; // Samples per channel in a frame uint8_t input_channels_n; // Number of channels int max_encoded_buffer_bytes; // Max encoded bytes per frame } tA2DP_AAC_ENCODER_PARAMS; typedef struct { uint32_t counter; uint32_t bytes_per_tick; /* pcm bytes read each media task tick */ uint64_t last_frame_us; } tA2DP_AAC_FEEDING_STATE; typedef struct { uint64_t session_start_us; size_t media_read_total_expected_packets; size_t media_read_total_expected_reads_count; size_t media_read_total_expected_read_bytes; size_t media_read_total_dropped_packets; size_t media_read_total_actual_reads_count; size_t media_read_total_actual_read_bytes; } a2dp_aac_encoder_stats_t; typedef struct { a2dp_source_read_callback_t read_callback; a2dp_source_enqueue_callback_t enqueue_callback; uint16_t TxAaMtuSize; bool use_SCMS_T; bool is_peer_edr; // True if the peer device supports EDR bool peer_supports_3mbps; // True if the peer device supports 3Mbps EDR uint16_t peer_mtu; // MTU of the A2DP peer uint32_t timestamp; // Timestamp for the A2DP frames HANDLE_AACENCODER aac_handle; bool has_aac_handle; // True if aac_handle is valid tA2DP_FEEDING_PARAMS feeding_params; tA2DP_AAC_ENCODER_PARAMS aac_encoder_params; tA2DP_AAC_FEEDING_STATE aac_feeding_state; a2dp_aac_encoder_stats_t stats; } tA2DP_AAC_ENCODER_CB; static tA2DP_AAC_ENCODER_CB a2dp_aac_encoder_cb; static void a2dp_aac_encoder_update(uint16_t peer_mtu, A2dpCodecConfig* a2dp_codec_config, bool* p_restart_input, bool* p_restart_output, bool* p_config_updated); static void a2dp_aac_get_num_frame_iteration(uint8_t* num_of_iterations, uint8_t* num_of_frames, uint64_t timestamp_us); static void a2dp_aac_encode_frames(uint8_t nb_frame); static bool a2dp_aac_read_feeding(uint8_t* read_buffer, uint32_t* bytes_read); bool A2DP_LoadEncoderAac(void) { // Nothing to do - the library is statically linked return true; } void A2DP_UnloadEncoderAac(void) { // Nothing to do - the library is statically linked if (a2dp_aac_encoder_cb.has_aac_handle) aacEncClose(&a2dp_aac_encoder_cb.aac_handle); memset(&a2dp_aac_encoder_cb, 0, sizeof(a2dp_aac_encoder_cb)); } void a2dp_aac_encoder_init(const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params, A2dpCodecConfig* a2dp_codec_config, a2dp_source_read_callback_t read_callback, a2dp_source_enqueue_callback_t enqueue_callback) { if (a2dp_aac_encoder_cb.has_aac_handle) aacEncClose(&a2dp_aac_encoder_cb.aac_handle); memset(&a2dp_aac_encoder_cb, 0, sizeof(a2dp_aac_encoder_cb)); a2dp_aac_encoder_cb.stats.session_start_us = bluetooth::common::time_get_os_boottime_us(); a2dp_aac_encoder_cb.read_callback = read_callback; a2dp_aac_encoder_cb.enqueue_callback = enqueue_callback; a2dp_aac_encoder_cb.is_peer_edr = p_peer_params->is_peer_edr; a2dp_aac_encoder_cb.peer_supports_3mbps = p_peer_params->peer_supports_3mbps; a2dp_aac_encoder_cb.peer_mtu = p_peer_params->peer_mtu; a2dp_aac_encoder_cb.timestamp = 0; a2dp_aac_encoder_cb.use_SCMS_T = false; // TODO: should be a parameter #if (BTA_AV_CO_CP_SCMS_T == TRUE) a2dp_aac_encoder_cb.use_SCMS_T = true; #endif // NOTE: Ignore the restart_input / restart_output flags - this initization // happens when the connection is (re)started. bool restart_input = false; bool restart_output = false; bool config_updated = false; a2dp_aac_encoder_update(a2dp_aac_encoder_cb.peer_mtu, a2dp_codec_config, &restart_input, &restart_output, &config_updated); } bool A2dpCodecConfigAacSource::updateEncoderUserConfig( const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params, bool* p_restart_input, bool* p_restart_output, bool* p_config_updated) { a2dp_aac_encoder_cb.is_peer_edr = p_peer_params->is_peer_edr; a2dp_aac_encoder_cb.peer_supports_3mbps = p_peer_params->peer_supports_3mbps; a2dp_aac_encoder_cb.peer_mtu = p_peer_params->peer_mtu; a2dp_aac_encoder_cb.timestamp = 0; if (a2dp_aac_encoder_cb.peer_mtu == 0) { LOG_ERROR(LOG_TAG, "%s: Cannot update the codec encoder for %s: " "invalid peer MTU", __func__, name().c_str()); return false; } a2dp_aac_encoder_update(a2dp_aac_encoder_cb.peer_mtu, this, p_restart_input, p_restart_output, p_config_updated); return true; } // Update the A2DP AAC encoder. // |peer_mtu| is the peer MTU. // |a2dp_codec_config| is the A2DP codec to use for the update. static void a2dp_aac_encoder_update(uint16_t peer_mtu, A2dpCodecConfig* a2dp_codec_config, bool* p_restart_input, bool* p_restart_output, bool* p_config_updated) { tA2DP_AAC_ENCODER_PARAMS* p_encoder_params = &a2dp_aac_encoder_cb.aac_encoder_params; uint8_t codec_info[AVDT_CODEC_SIZE]; AACENC_ERROR aac_error; int aac_param_value, aac_sampling_freq, aac_peak_bit_rate; *p_restart_input = false; *p_restart_output = false; *p_config_updated = false; if (!a2dp_aac_encoder_cb.has_aac_handle) { AACENC_ERROR aac_error = aacEncOpen(&a2dp_aac_encoder_cb.aac_handle, 0, 2 /* max 2 channels: stereo */); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot open AAC encoder handle: AAC error 0x%x", __func__, aac_error); return; // TODO: Return an error? } a2dp_aac_encoder_cb.has_aac_handle = true; } if (!a2dp_codec_config->copyOutOtaCodecConfig(codec_info)) { LOG_ERROR(LOG_TAG, "%s: Cannot update the codec encoder for %s: " "invalid codec config", __func__, a2dp_codec_config->name().c_str()); return; } const uint8_t* p_codec_info = codec_info; // The feeding parameters tA2DP_FEEDING_PARAMS* p_feeding_params = &a2dp_aac_encoder_cb.feeding_params; p_feeding_params->sample_rate = A2DP_GetTrackSampleRateAac(p_codec_info); p_feeding_params->bits_per_sample = a2dp_codec_config->getAudioBitsPerSample(); p_feeding_params->channel_count = A2DP_GetTrackChannelCountAac(p_codec_info); LOG_DEBUG(LOG_TAG, "%s: sample_rate=%u bits_per_sample=%u channel_count=%u", __func__, p_feeding_params->sample_rate, p_feeding_params->bits_per_sample, p_feeding_params->channel_count); a2dp_aac_feeding_reset(); // The codec parameters p_encoder_params->sample_rate = a2dp_aac_encoder_cb.feeding_params.sample_rate; p_encoder_params->channel_mode = A2DP_GetChannelModeCodeAac(p_codec_info); LOG_VERBOSE(LOG_TAG, "%s: original AVDTP MTU size: %d", __func__, a2dp_aac_encoder_cb.TxAaMtuSize); if (a2dp_aac_encoder_cb.is_peer_edr && !a2dp_aac_encoder_cb.peer_supports_3mbps) { // This condition would be satisfied only if the remote device is // EDR and supports only 2 Mbps, but the effective AVDTP MTU size // exceeds the 2DH5 packet size. LOG_VERBOSE(LOG_TAG, "%s: The remote device is EDR but does not support 3 Mbps", __func__); if (peer_mtu > MAX_2MBPS_AVDTP_MTU) { LOG_WARN(LOG_TAG, "%s: Restricting AVDTP MTU size from %d to %d", __func__, peer_mtu, MAX_2MBPS_AVDTP_MTU); peer_mtu = MAX_2MBPS_AVDTP_MTU; } } uint16_t mtu_size = BT_DEFAULT_BUFFER_SIZE - A2DP_AAC_OFFSET - sizeof(BT_HDR); if (mtu_size < peer_mtu) { a2dp_aac_encoder_cb.TxAaMtuSize = mtu_size; } else { a2dp_aac_encoder_cb.TxAaMtuSize = peer_mtu; } LOG_DEBUG(LOG_TAG, "%s: MTU=%d, peer_mtu=%d", __func__, a2dp_aac_encoder_cb.TxAaMtuSize, peer_mtu); LOG_DEBUG(LOG_TAG, "%s: sample_rate: %d channel_mode: %d ", __func__, p_encoder_params->sample_rate, p_encoder_params->channel_mode); // Set the encoder's parameters: Audio Object Type - MANDATORY // A2DP_AAC_OBJECT_TYPE_MPEG2_LC -> AOT_AAC_LC // A2DP_AAC_OBJECT_TYPE_MPEG4_LC -> AOT_AAC_LC // A2DP_AAC_OBJECT_TYPE_MPEG4_LTP -> AOT_AAC_LTP // A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE -> AOT_AAC_SCAL aac_param_value = AOT_AAC_LC; int object_type = A2DP_GetObjectTypeCodeAac(p_codec_info); switch (object_type) { case A2DP_AAC_OBJECT_TYPE_MPEG2_LC: aac_param_value = AOT_AAC_LC; break; case A2DP_AAC_OBJECT_TYPE_MPEG4_LC: aac_param_value = AOT_AAC_LC; break; case A2DP_AAC_OBJECT_TYPE_MPEG4_LTP: aac_param_value = AOT_AAC_LTP; break; case A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE: aac_param_value = AOT_AAC_SCAL; break; default: LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_AOT: " "invalid object type %d", __func__, object_type); return; // TODO: Return an error? } aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_AOT, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_AOT to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: audioMuxVersion aac_param_value = 2; // audioMuxVersion = "2" aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_AUDIOMUXVER, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_AUDIOMUXVER to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Signaling mode of the extension AOT aac_param_value = 1; // Signaling mode of the extension AOT = 1 aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_SIGNALING_MODE, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_SIGNALING_MODE to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Sample Rate - MANDATORY aac_param_value = A2DP_GetTrackSampleRateAac(p_codec_info); aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_SAMPLERATE, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_SAMPLERATE to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } aac_sampling_freq = aac_param_value; // Save for extra usage below // Set the encoder's parameters: Bit Rate - MANDATORY aac_param_value = A2DP_GetBitRateAac(p_codec_info); // Calculate the bit rate from MTU and sampling frequency aac_peak_bit_rate = A2DP_ComputeMaxBitRateAac(p_codec_info, a2dp_aac_encoder_cb.TxAaMtuSize); aac_param_value = std::min(aac_param_value, aac_peak_bit_rate); LOG_DEBUG(LOG_TAG, "%s: MTU = %d Sampling Frequency = %d Bit Rate = %d", __func__, a2dp_aac_encoder_cb.TxAaMtuSize, aac_sampling_freq, aac_param_value); if (aac_param_value == -1) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_BITRATE: " "invalid codec bit rate", __func__); return; // TODO: Return an error? } aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_BITRATE, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_BITRATE to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: PEAK Bit Rate aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_PEAK_BITRATE, aac_peak_bit_rate); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_PEAK_BITRATE to %d: " "AAC error 0x%x", __func__, aac_peak_bit_rate, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Channel Mode - MANDATORY if (A2DP_GetTrackChannelCountAac(p_codec_info) == 1) { aac_param_value = MODE_1; // Mono } else { aac_param_value = MODE_2; // Stereo } aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_CHANNELMODE, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_CHANNELMODE to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Transport Type aac_param_value = TT_MP4_LATM_MCP1; // muxConfigPresent = 1 aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_TRANSMUX, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_TRANSMUX to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Header Period aac_param_value = 1; aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_HEADER_PERIOD, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_HEADER_PERIOD to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Set the encoder's parameters: Variable Bit Rate Support aac_param_value = A2DP_GetVariableBitRateSupportAac(p_codec_info); if (aac_param_value == -1) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_BITRATEMODE: " "invalid codec bit rate mode", __func__); return; // TODO: Return an error? } aac_error = aacEncoder_SetParam(a2dp_aac_encoder_cb.aac_handle, AACENC_BITRATEMODE, aac_param_value); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot set AAC parameter AACENC_BITRATEMODE to %d: " "AAC error 0x%x", __func__, aac_param_value, aac_error); return; // TODO: Return an error? } // Mark the end of setting the encoder's parameters aac_error = aacEncEncode(a2dp_aac_encoder_cb.aac_handle, NULL, NULL, NULL, NULL); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot complete setting the AAC parameters: AAC error 0x%x", __func__, aac_error); return; // TODO: Return an error? } // Retrieve the encoder info so we can save the frame length AACENC_InfoStruct aac_info; aac_error = aacEncInfo(a2dp_aac_encoder_cb.aac_handle, &aac_info); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: Cannot retrieve the AAC encoder info: AAC error 0x%x", __func__, aac_error); return; // TODO: Return an error? } p_encoder_params->frame_length = aac_info.frameLength; p_encoder_params->input_channels_n = aac_info.inputChannels; p_encoder_params->max_encoded_buffer_bytes = aac_info.maxOutBufBytes; LOG_DEBUG(LOG_TAG, "%s: AAC frame_length = %u input_channels_n = %u " "max_encoded_buffer_bytes = %d", __func__, p_encoder_params->frame_length, p_encoder_params->input_channels_n, p_encoder_params->max_encoded_buffer_bytes); } void a2dp_aac_encoder_cleanup(void) { if (a2dp_aac_encoder_cb.has_aac_handle) aacEncClose(&a2dp_aac_encoder_cb.aac_handle); memset(&a2dp_aac_encoder_cb, 0, sizeof(a2dp_aac_encoder_cb)); } void a2dp_aac_feeding_reset(void) { /* By default, just clear the entire state */ memset(&a2dp_aac_encoder_cb.aac_feeding_state, 0, sizeof(a2dp_aac_encoder_cb.aac_feeding_state)); a2dp_aac_encoder_cb.aac_feeding_state.bytes_per_tick = (a2dp_aac_encoder_cb.feeding_params.sample_rate * a2dp_aac_encoder_cb.feeding_params.bits_per_sample / 8 * a2dp_aac_encoder_cb.feeding_params.channel_count * A2DP_AAC_ENCODER_INTERVAL_MS) / 1000; LOG_DEBUG(LOG_TAG, "%s: PCM bytes per tick %u", __func__, a2dp_aac_encoder_cb.aac_feeding_state.bytes_per_tick); } void a2dp_aac_feeding_flush(void) { a2dp_aac_encoder_cb.aac_feeding_state.counter = 0; } uint64_t a2dp_aac_get_encoder_interval_ms(void) { return A2DP_AAC_ENCODER_INTERVAL_MS; } void a2dp_aac_send_frames(uint64_t timestamp_us) { uint8_t nb_frame = 0; uint8_t nb_iterations = 0; a2dp_aac_get_num_frame_iteration(&nb_iterations, &nb_frame, timestamp_us); LOG_VERBOSE(LOG_TAG, "%s: Sending %d frames per iteration, %d iterations", __func__, nb_frame, nb_iterations); if (nb_frame == 0) return; for (uint8_t counter = 0; counter < nb_iterations; counter++) { // Transcode frame and enqueue a2dp_aac_encode_frames(nb_frame); } } // Obtains the number of frames to send and number of iterations // to be used. |num_of_iterations| and |num_of_frames| parameters // are used as output param for returning the respective values. static void a2dp_aac_get_num_frame_iteration(uint8_t* num_of_iterations, uint8_t* num_of_frames, uint64_t timestamp_us) { uint32_t result = 0; uint8_t nof = 0; uint8_t noi = 1; uint32_t pcm_bytes_per_frame = a2dp_aac_encoder_cb.aac_encoder_params.frame_length * a2dp_aac_encoder_cb.feeding_params.channel_count * a2dp_aac_encoder_cb.feeding_params.bits_per_sample / 8; LOG_VERBOSE(LOG_TAG, "%s: pcm_bytes_per_frame %u", __func__, pcm_bytes_per_frame); uint32_t us_this_tick = A2DP_AAC_ENCODER_INTERVAL_MS * 1000; uint64_t now_us = timestamp_us; if (a2dp_aac_encoder_cb.aac_feeding_state.last_frame_us != 0) us_this_tick = (now_us - a2dp_aac_encoder_cb.aac_feeding_state.last_frame_us); a2dp_aac_encoder_cb.aac_feeding_state.last_frame_us = now_us; a2dp_aac_encoder_cb.aac_feeding_state.counter += a2dp_aac_encoder_cb.aac_feeding_state.bytes_per_tick * us_this_tick / (A2DP_AAC_ENCODER_INTERVAL_MS * 1000); result = a2dp_aac_encoder_cb.aac_feeding_state.counter / pcm_bytes_per_frame; a2dp_aac_encoder_cb.aac_feeding_state.counter -= result * pcm_bytes_per_frame; nof = result; LOG_VERBOSE(LOG_TAG, "%s: effective num of frames %u, iterations %u", __func__, nof, noi); *num_of_frames = nof; *num_of_iterations = noi; } static void a2dp_aac_encode_frames(uint8_t nb_frame) { tA2DP_AAC_ENCODER_PARAMS* p_encoder_params = &a2dp_aac_encoder_cb.aac_encoder_params; tA2DP_FEEDING_PARAMS* p_feeding_params = &a2dp_aac_encoder_cb.feeding_params; uint8_t remain_nb_frame = nb_frame; uint8_t read_buffer[BT_DEFAULT_BUFFER_SIZE]; int pcm_bytes_per_frame = p_encoder_params->frame_length * p_feeding_params->channel_count * p_feeding_params->bits_per_sample / 8; CHECK(pcm_bytes_per_frame <= static_cast<int>(sizeof(read_buffer))); // Setup the input buffer AACENC_BufDesc in_buf_desc; void* in_buf_vector[1] = {nullptr}; int in_buf_identifiers[1] = {IN_AUDIO_DATA}; int in_buf_sizes[1] = {pcm_bytes_per_frame}; int in_buf_element_sizes[1] = {p_feeding_params->bits_per_sample / 8}; in_buf_desc.numBufs = 1; in_buf_desc.bufs = in_buf_vector; in_buf_desc.bufferIdentifiers = in_buf_identifiers; in_buf_desc.bufSizes = in_buf_sizes; in_buf_desc.bufElSizes = in_buf_element_sizes; // Setup the output buffer (partially) AACENC_BufDesc out_buf_desc; void* out_buf_vector[1] = {nullptr}; int out_buf_identifiers[1] = {OUT_BITSTREAM_DATA}; int out_buf_sizes[1] = {p_encoder_params->max_encoded_buffer_bytes}; // NOTE: out_buf_element_sizes below is probably unused by the encoder int out_buf_element_sizes[1] = {p_feeding_params->bits_per_sample / 8}; out_buf_desc.numBufs = 1; out_buf_desc.bufs = out_buf_vector; out_buf_desc.bufferIdentifiers = out_buf_identifiers; out_buf_desc.bufSizes = out_buf_sizes; out_buf_desc.bufElSizes = out_buf_element_sizes; CHECK(p_encoder_params->max_encoded_buffer_bytes <= static_cast<int>(BT_DEFAULT_BUFFER_SIZE - sizeof(BT_HDR))); AACENC_InArgs aac_in_args; aac_in_args.numInSamples = p_encoder_params->frame_length * p_feeding_params->channel_count; aac_in_args.numAncBytes = 0; AACENC_OutArgs aac_out_args = { .numOutBytes = 0, .numInSamples = 0, .numAncBytes = 0}; uint32_t count; uint32_t total_bytes_read = 0; int written = 0; while (nb_frame) { BT_HDR* p_buf = (BT_HDR*)osi_malloc(BT_DEFAULT_BUFFER_SIZE); p_buf->offset = A2DP_AAC_OFFSET; p_buf->len = 0; p_buf->layer_specific = 0; a2dp_aac_encoder_cb.stats.media_read_total_expected_packets++; count = 0; do { // // Read the PCM data and encode it // uint32_t bytes_read = 0; if (a2dp_aac_read_feeding(read_buffer, &bytes_read)) { uint8_t* packet = (uint8_t*)(p_buf + 1) + p_buf->offset + p_buf->len; if (!a2dp_aac_encoder_cb.has_aac_handle) { LOG_ERROR(LOG_TAG, "%s: invalid AAC handle", __func__); a2dp_aac_encoder_cb.stats.media_read_total_dropped_packets++; osi_free(p_buf); return; } in_buf_vector[0] = read_buffer; out_buf_vector[0] = packet + count; AACENC_ERROR aac_error = aacEncEncode(a2dp_aac_encoder_cb.aac_handle, &in_buf_desc, &out_buf_desc, &aac_in_args, &aac_out_args); if (aac_error != AACENC_OK) { LOG_ERROR(LOG_TAG, "%s: AAC encoding error: 0x%x", __func__, aac_error); a2dp_aac_encoder_cb.stats.media_read_total_dropped_packets++; osi_free(p_buf); return; } written = aac_out_args.numOutBytes; count += written; p_buf->len += written; nb_frame--; p_buf->layer_specific++; // added a frame to the buffer } else { LOG_WARN(LOG_TAG, "%s: underflow %d", __func__, nb_frame); a2dp_aac_encoder_cb.aac_feeding_state.counter += nb_frame * p_encoder_params->frame_length * p_feeding_params->channel_count * p_feeding_params->bits_per_sample / 8; // no more pcm to read nb_frame = 0; } total_bytes_read += bytes_read; } while ((written == 0) && nb_frame); // NOTE: We don't check whether the packet will fit in the MTU, // because AAC doesn't give us control over the encoded frame size. // If the packet is larger than the MTU, it will be fragmented before // transmission. if (p_buf->len) { /* * Timestamp of the media packet header represent the TS of the * first frame, i.e the timestamp before including this frame. */ *((uint32_t*)(p_buf + 1)) = a2dp_aac_encoder_cb.timestamp; a2dp_aac_encoder_cb.timestamp += p_buf->layer_specific * p_encoder_params->frame_length; uint8_t done_nb_frame = remain_nb_frame - nb_frame; remain_nb_frame = nb_frame; if (!a2dp_aac_encoder_cb.enqueue_callback(p_buf, done_nb_frame, total_bytes_read)) return; } else { a2dp_aac_encoder_cb.stats.media_read_total_dropped_packets++; osi_free(p_buf); } } } static bool a2dp_aac_read_feeding(uint8_t* read_buffer, uint32_t* bytes_read) { uint32_t read_size = a2dp_aac_encoder_cb.aac_encoder_params.frame_length * a2dp_aac_encoder_cb.feeding_params.channel_count * a2dp_aac_encoder_cb.feeding_params.bits_per_sample / 8; a2dp_aac_encoder_cb.stats.media_read_total_expected_reads_count++; a2dp_aac_encoder_cb.stats.media_read_total_expected_read_bytes += read_size; /* Read Data from UIPC channel */ uint32_t nb_byte_read = a2dp_aac_encoder_cb.read_callback(read_buffer, read_size); a2dp_aac_encoder_cb.stats.media_read_total_actual_read_bytes += nb_byte_read; *bytes_read = nb_byte_read; if (nb_byte_read < read_size) { if (nb_byte_read == 0) return false; /* Fill the unfilled part of the read buffer with silence (0) */ memset(((uint8_t*)read_buffer) + nb_byte_read, 0, read_size - nb_byte_read); nb_byte_read = read_size; } a2dp_aac_encoder_cb.stats.media_read_total_actual_reads_count++; return true; } uint64_t A2dpCodecConfigAacSource::encoderIntervalMs() const { return a2dp_aac_get_encoder_interval_ms(); } int A2dpCodecConfigAacSource::getEffectiveMtu() const { return a2dp_aac_encoder_cb.TxAaMtuSize; } void A2dpCodecConfigAacSource::debug_codec_dump(int fd) { a2dp_aac_encoder_stats_t* stats = &a2dp_aac_encoder_cb.stats; A2dpCodecConfig::debug_codec_dump(fd); dprintf(fd, " Packet counts (expected/dropped) : %zu / " "%zu\n", stats->media_read_total_expected_packets, stats->media_read_total_dropped_packets); dprintf(fd, " PCM read counts (expected/actual) : %zu / " "%zu\n", stats->media_read_total_expected_reads_count, stats->media_read_total_actual_reads_count); dprintf(fd, " PCM read bytes (expected/actual) : %zu / " "%zu\n", stats->media_read_total_expected_read_bytes, stats->media_read_total_actual_read_bytes); }