// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package sha1 implements the SHA-1 hash algorithm as defined in RFC 3174. // // SHA-1 is cryptographically broken and should not be used for secure // applications. package sha1 import ( "crypto" "errors" "hash" ) func init() { crypto.RegisterHash(crypto.SHA1, New) } // The size of a SHA-1 checksum in bytes. const Size = 20 // The blocksize of SHA-1 in bytes. const BlockSize = 64 const ( chunk = 64 init0 = 0x67452301 init1 = 0xEFCDAB89 init2 = 0x98BADCFE init3 = 0x10325476 init4 = 0xC3D2E1F0 ) // digest represents the partial evaluation of a checksum. type digest struct { h [5]uint32 x [chunk]byte nx int len uint64 } const ( magic = "sha\x01" marshaledSize = len(magic) + 5*4 + chunk + 8 ) func (d *digest) MarshalBinary() ([]byte, error) { b := make([]byte, 0, marshaledSize) b = append(b, magic...) b = appendUint32(b, d.h[0]) b = appendUint32(b, d.h[1]) b = appendUint32(b, d.h[2]) b = appendUint32(b, d.h[3]) b = appendUint32(b, d.h[4]) b = append(b, d.x[:d.nx]...) b = b[:len(b)+len(d.x)-int(d.nx)] // already zero b = appendUint64(b, d.len) return b, nil } func (d *digest) UnmarshalBinary(b []byte) error { if len(b) < len(magic) || string(b[:len(magic)]) != magic { return errors.New("crypto/sha1: invalid hash state identifier") } if len(b) != marshaledSize { return errors.New("crypto/sha1: invalid hash state size") } b = b[len(magic):] b, d.h[0] = consumeUint32(b) b, d.h[1] = consumeUint32(b) b, d.h[2] = consumeUint32(b) b, d.h[3] = consumeUint32(b) b, d.h[4] = consumeUint32(b) b = b[copy(d.x[:], b):] b, d.len = consumeUint64(b) d.nx = int(d.len % chunk) return nil } func appendUint64(b []byte, x uint64) []byte { var a [8]byte putUint64(a[:], x) return append(b, a[:]...) } func appendUint32(b []byte, x uint32) []byte { var a [4]byte putUint32(a[:], x) return append(b, a[:]...) } func consumeUint64(b []byte) ([]byte, uint64) { _ = b[7] x := uint64(b[7]) | uint64(b[6])<<8 | uint64(b[5])<<16 | uint64(b[4])<<24 | uint64(b[3])<<32 | uint64(b[2])<<40 | uint64(b[1])<<48 | uint64(b[0])<<56 return b[8:], x } func consumeUint32(b []byte) ([]byte, uint32) { _ = b[3] x := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 return b[4:], x } func (d *digest) Reset() { d.h[0] = init0 d.h[1] = init1 d.h[2] = init2 d.h[3] = init3 d.h[4] = init4 d.nx = 0 d.len = 0 } // New returns a new hash.Hash computing the SHA1 checksum. The Hash also // implements encoding.BinaryMarshaler and encoding.BinaryUnmarshaler to // marshal and unmarshal the internal state of the hash. func New() hash.Hash { d := new(digest) d.Reset() return d } func (d *digest) Size() int { return Size } func (d *digest) BlockSize() int { return BlockSize } func (d *digest) Write(p []byte) (nn int, err error) { nn = len(p) d.len += uint64(nn) if d.nx > 0 { n := copy(d.x[d.nx:], p) d.nx += n if d.nx == chunk { block(d, d.x[:]) d.nx = 0 } p = p[n:] } if len(p) >= chunk { n := len(p) &^ (chunk - 1) block(d, p[:n]) p = p[n:] } if len(p) > 0 { d.nx = copy(d.x[:], p) } return } func (d *digest) Sum(in []byte) []byte { // Make a copy of d so that caller can keep writing and summing. d0 := *d hash := d0.checkSum() return append(in, hash[:]...) } func (d *digest) checkSum() [Size]byte { len := d.len // Padding. Add a 1 bit and 0 bits until 56 bytes mod 64. var tmp [64]byte tmp[0] = 0x80 if len%64 < 56 { d.Write(tmp[0 : 56-len%64]) } else { d.Write(tmp[0 : 64+56-len%64]) } // Length in bits. len <<= 3 putUint64(tmp[:], len) d.Write(tmp[0:8]) if d.nx != 0 { panic("d.nx != 0") } var digest [Size]byte putUint32(digest[0:], d.h[0]) putUint32(digest[4:], d.h[1]) putUint32(digest[8:], d.h[2]) putUint32(digest[12:], d.h[3]) putUint32(digest[16:], d.h[4]) return digest } // ConstantTimeSum computes the same result of Sum() but in constant time func (d *digest) ConstantTimeSum(in []byte) []byte { d0 := *d hash := d0.constSum() return append(in, hash[:]...) } func (d *digest) constSum() [Size]byte { var length [8]byte l := d.len << 3 for i := uint(0); i < 8; i++ { length[i] = byte(l >> (56 - 8*i)) } nx := byte(d.nx) t := nx - 56 // if nx < 56 then the MSB of t is one mask1b := byte(int8(t) >> 7) // mask1b is 0xFF iff one block is enough separator := byte(0x80) // gets reset to 0x00 once used for i := byte(0); i < chunk; i++ { mask := byte(int8(i-nx) >> 7) // 0x00 after the end of data // if we reached the end of the data, replace with 0x80 or 0x00 d.x[i] = (^mask & separator) | (mask & d.x[i]) // zero the separator once used separator &= mask if i >= 56 { // we might have to write the length here if all fit in one block d.x[i] |= mask1b & length[i-56] } } // compress, and only keep the digest if all fit in one block block(d, d.x[:]) var digest [Size]byte for i, s := range d.h { digest[i*4] = mask1b & byte(s>>24) digest[i*4+1] = mask1b & byte(s>>16) digest[i*4+2] = mask1b & byte(s>>8) digest[i*4+3] = mask1b & byte(s) } for i := byte(0); i < chunk; i++ { // second block, it's always past the end of data, might start with 0x80 if i < 56 { d.x[i] = separator separator = 0 } else { d.x[i] = length[i-56] } } // compress, and only keep the digest if we actually needed the second block block(d, d.x[:]) for i, s := range d.h { digest[i*4] |= ^mask1b & byte(s>>24) digest[i*4+1] |= ^mask1b & byte(s>>16) digest[i*4+2] |= ^mask1b & byte(s>>8) digest[i*4+3] |= ^mask1b & byte(s) } return digest } // Sum returns the SHA-1 checksum of the data. func Sum(data []byte) [Size]byte { var d digest d.Reset() d.Write(data) return d.checkSum() } func putUint64(x []byte, s uint64) { _ = x[7] x[0] = byte(s >> 56) x[1] = byte(s >> 48) x[2] = byte(s >> 40) x[3] = byte(s >> 32) x[4] = byte(s >> 24) x[5] = byte(s >> 16) x[6] = byte(s >> 8) x[7] = byte(s) } func putUint32(x []byte, s uint32) { _ = x[3] x[0] = byte(s >> 24) x[1] = byte(s >> 16) x[2] = byte(s >> 8) x[3] = byte(s) }