// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package draw import ( "image" "image/color" "image/png" "os" "testing" "testing/quick" ) func eq(c0, c1 color.Color) bool { r0, g0, b0, a0 := c0.RGBA() r1, g1, b1, a1 := c1.RGBA() return r0 == r1 && g0 == g1 && b0 == b1 && a0 == a1 } func fillBlue(alpha int) image.Image { return image.NewUniform(color.RGBA{0, 0, uint8(alpha), uint8(alpha)}) } func fillAlpha(alpha int) image.Image { return image.NewUniform(color.Alpha{uint8(alpha)}) } func vgradGreen(alpha int) image.Image { m := image.NewRGBA(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.RGBA{0, uint8(y * alpha / 15), 0, uint8(alpha)}) } } return m } func vgradAlpha(alpha int) image.Image { m := image.NewAlpha(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.Alpha{uint8(y * alpha / 15)}) } } return m } func vgradGreenNRGBA(alpha int) image.Image { m := image.NewNRGBA(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.RGBA{0, uint8(y * 0x11), 0, uint8(alpha)}) } } return m } func vgradCr() image.Image { m := &image.YCbCr{ Y: make([]byte, 16*16), Cb: make([]byte, 16*16), Cr: make([]byte, 16*16), YStride: 16, CStride: 16, SubsampleRatio: image.YCbCrSubsampleRatio444, Rect: image.Rect(0, 0, 16, 16), } for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Cr[y*m.CStride+x] = uint8(y * 0x11) } } return m } func vgradGray() image.Image { m := image.NewGray(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.Gray{uint8(y * 0x11)}) } } return m } func vgradMagenta() image.Image { m := image.NewCMYK(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.CMYK{0, uint8(y * 0x11), 0, 0x3f}) } } return m } func hgradRed(alpha int) Image { m := image.NewRGBA(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.RGBA{uint8(x * alpha / 15), 0, 0, uint8(alpha)}) } } return m } func gradYellow(alpha int) Image { m := image.NewRGBA(image.Rect(0, 0, 16, 16)) for y := 0; y < 16; y++ { for x := 0; x < 16; x++ { m.Set(x, y, color.RGBA{uint8(x * alpha / 15), uint8(y * alpha / 15), 0, uint8(alpha)}) } } return m } type drawTest struct { desc string src image.Image mask image.Image op Op expected color.Color } var drawTests = []drawTest{ // Uniform mask (0% opaque). {"nop", vgradGreen(255), fillAlpha(0), Over, color.RGBA{136, 0, 0, 255}}, {"clear", vgradGreen(255), fillAlpha(0), Src, color.RGBA{0, 0, 0, 0}}, // Uniform mask (100%, 75%, nil) and uniform source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 0, 90, 90}. {"fill", fillBlue(90), fillAlpha(255), Over, color.RGBA{88, 0, 90, 255}}, {"fillSrc", fillBlue(90), fillAlpha(255), Src, color.RGBA{0, 0, 90, 90}}, {"fillAlpha", fillBlue(90), fillAlpha(192), Over, color.RGBA{100, 0, 68, 255}}, {"fillAlphaSrc", fillBlue(90), fillAlpha(192), Src, color.RGBA{0, 0, 68, 68}}, {"fillNil", fillBlue(90), nil, Over, color.RGBA{88, 0, 90, 255}}, {"fillNilSrc", fillBlue(90), nil, Src, color.RGBA{0, 0, 90, 90}}, // Uniform mask (100%, 75%, nil) and variable source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 48, 0, 90}. {"copy", vgradGreen(90), fillAlpha(255), Over, color.RGBA{88, 48, 0, 255}}, {"copySrc", vgradGreen(90), fillAlpha(255), Src, color.RGBA{0, 48, 0, 90}}, {"copyAlpha", vgradGreen(90), fillAlpha(192), Over, color.RGBA{100, 36, 0, 255}}, {"copyAlphaSrc", vgradGreen(90), fillAlpha(192), Src, color.RGBA{0, 36, 0, 68}}, {"copyNil", vgradGreen(90), nil, Over, color.RGBA{88, 48, 0, 255}}, {"copyNilSrc", vgradGreen(90), nil, Src, color.RGBA{0, 48, 0, 90}}, // Uniform mask (100%, 75%, nil) and variable NRGBA source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 136, 0, 90} in NRGBA-space, which is {0, 48, 0, 90} in RGBA-space. // The result pixel is different than in the "copy*" test cases because of rounding errors. {"nrgba", vgradGreenNRGBA(90), fillAlpha(255), Over, color.RGBA{88, 46, 0, 255}}, {"nrgbaSrc", vgradGreenNRGBA(90), fillAlpha(255), Src, color.RGBA{0, 46, 0, 90}}, {"nrgbaAlpha", vgradGreenNRGBA(90), fillAlpha(192), Over, color.RGBA{100, 34, 0, 255}}, {"nrgbaAlphaSrc", vgradGreenNRGBA(90), fillAlpha(192), Src, color.RGBA{0, 34, 0, 68}}, {"nrgbaNil", vgradGreenNRGBA(90), nil, Over, color.RGBA{88, 46, 0, 255}}, {"nrgbaNilSrc", vgradGreenNRGBA(90), nil, Src, color.RGBA{0, 46, 0, 90}}, // Uniform mask (100%, 75%, nil) and variable YCbCr source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 0, 136} in YCbCr-space, which is {11, 38, 0, 255} in RGB-space. {"ycbcr", vgradCr(), fillAlpha(255), Over, color.RGBA{11, 38, 0, 255}}, {"ycbcrSrc", vgradCr(), fillAlpha(255), Src, color.RGBA{11, 38, 0, 255}}, {"ycbcrAlpha", vgradCr(), fillAlpha(192), Over, color.RGBA{42, 28, 0, 255}}, {"ycbcrAlphaSrc", vgradCr(), fillAlpha(192), Src, color.RGBA{8, 28, 0, 192}}, {"ycbcrNil", vgradCr(), nil, Over, color.RGBA{11, 38, 0, 255}}, {"ycbcrNilSrc", vgradCr(), nil, Src, color.RGBA{11, 38, 0, 255}}, // Uniform mask (100%, 75%, nil) and variable Gray source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {136} in Gray-space, which is {136, 136, 136, 255} in RGBA-space. {"gray", vgradGray(), fillAlpha(255), Over, color.RGBA{136, 136, 136, 255}}, {"graySrc", vgradGray(), fillAlpha(255), Src, color.RGBA{136, 136, 136, 255}}, {"grayAlpha", vgradGray(), fillAlpha(192), Over, color.RGBA{136, 102, 102, 255}}, {"grayAlphaSrc", vgradGray(), fillAlpha(192), Src, color.RGBA{102, 102, 102, 192}}, {"grayNil", vgradGray(), nil, Over, color.RGBA{136, 136, 136, 255}}, {"grayNilSrc", vgradGray(), nil, Src, color.RGBA{136, 136, 136, 255}}, // Uniform mask (100%, 75%, nil) and variable CMYK source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 136, 0, 63} in CMYK-space, which is {192, 89, 192} in RGB-space. {"cmyk", vgradMagenta(), fillAlpha(255), Over, color.RGBA{192, 89, 192, 255}}, {"cmykSrc", vgradMagenta(), fillAlpha(255), Src, color.RGBA{192, 89, 192, 255}}, {"cmykAlpha", vgradMagenta(), fillAlpha(192), Over, color.RGBA{178, 67, 145, 255}}, {"cmykAlphaSrc", vgradMagenta(), fillAlpha(192), Src, color.RGBA{145, 67, 145, 192}}, {"cmykNil", vgradMagenta(), nil, Over, color.RGBA{192, 89, 192, 255}}, {"cmykNilSrc", vgradMagenta(), nil, Src, color.RGBA{192, 89, 192, 255}}, // Variable mask and variable source. // At (x, y) == (8, 8): // The destination pixel is {136, 0, 0, 255}. // The source pixel is {0, 0, 255, 255}. // The mask pixel's alpha is 102, or 40%. {"generic", fillBlue(255), vgradAlpha(192), Over, color.RGBA{81, 0, 102, 255}}, {"genericSrc", fillBlue(255), vgradAlpha(192), Src, color.RGBA{0, 0, 102, 102}}, } func makeGolden(dst image.Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) image.Image { // Since golden is a newly allocated image, we don't have to check if the // input source and mask images and the output golden image overlap. b := dst.Bounds() sb := src.Bounds() mb := image.Rect(-1e9, -1e9, 1e9, 1e9) if mask != nil { mb = mask.Bounds() } golden := image.NewRGBA(image.Rect(0, 0, b.Max.X, b.Max.Y)) for y := r.Min.Y; y < r.Max.Y; y++ { sy := y + sp.Y - r.Min.Y my := y + mp.Y - r.Min.Y for x := r.Min.X; x < r.Max.X; x++ { if !(image.Pt(x, y).In(b)) { continue } sx := x + sp.X - r.Min.X if !(image.Pt(sx, sy).In(sb)) { continue } mx := x + mp.X - r.Min.X if !(image.Pt(mx, my).In(mb)) { continue } const M = 1<<16 - 1 var dr, dg, db, da uint32 if op == Over { dr, dg, db, da = dst.At(x, y).RGBA() } sr, sg, sb, sa := src.At(sx, sy).RGBA() ma := uint32(M) if mask != nil { _, _, _, ma = mask.At(mx, my).RGBA() } a := M - (sa * ma / M) golden.Set(x, y, color.RGBA64{ uint16((dr*a + sr*ma) / M), uint16((dg*a + sg*ma) / M), uint16((db*a + sb*ma) / M), uint16((da*a + sa*ma) / M), }) } } return golden.SubImage(b) } func TestDraw(t *testing.T) { rr := []image.Rectangle{ image.Rect(0, 0, 0, 0), image.Rect(0, 0, 16, 16), image.Rect(3, 5, 12, 10), image.Rect(0, 0, 9, 9), image.Rect(8, 8, 16, 16), image.Rect(8, 0, 9, 16), image.Rect(0, 8, 16, 9), image.Rect(8, 8, 9, 9), image.Rect(8, 8, 8, 8), } for _, r := range rr { loop: for _, test := range drawTests { dst := hgradRed(255).(*image.RGBA).SubImage(r).(Image) // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. golden := makeGolden(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) b := dst.Bounds() if !b.Eq(golden.Bounds()) { t.Errorf("draw %v %s: bounds %v versus %v", r, test.desc, dst.Bounds(), golden.Bounds()) continue } // Draw the same combination onto the actual dst using the optimized DrawMask implementation. DrawMask(dst, image.Rect(0, 0, 16, 16), test.src, image.ZP, test.mask, image.ZP, test.op) if image.Pt(8, 8).In(r) { // Check that the resultant pixel at (8, 8) matches what we expect // (the expected value can be verified by hand). if !eq(dst.At(8, 8), test.expected) { t.Errorf("draw %v %s: at (8, 8) %v versus %v", r, test.desc, dst.At(8, 8), test.expected) continue } } // Check that the resultant dst image matches the golden output. for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { if !eq(dst.At(x, y), golden.At(x, y)) { t.Errorf("draw %v %s: at (%d, %d), %v versus golden %v", r, test.desc, x, y, dst.At(x, y), golden.At(x, y)) continue loop } } } } } } func TestDrawOverlap(t *testing.T) { for _, op := range []Op{Over, Src} { for yoff := -2; yoff <= 2; yoff++ { loop: for xoff := -2; xoff <= 2; xoff++ { m := gradYellow(127).(*image.RGBA) dst := m.SubImage(image.Rect(5, 5, 10, 10)).(*image.RGBA) src := m.SubImage(image.Rect(5+xoff, 5+yoff, 10+xoff, 10+yoff)).(*image.RGBA) b := dst.Bounds() // Draw the (src, mask, op) onto a copy of dst using a slow but obviously correct implementation. golden := makeGolden(dst, b, src, src.Bounds().Min, nil, image.ZP, op) if !b.Eq(golden.Bounds()) { t.Errorf("drawOverlap xoff=%d,yoff=%d: bounds %v versus %v", xoff, yoff, dst.Bounds(), golden.Bounds()) continue } // Draw the same combination onto the actual dst using the optimized DrawMask implementation. DrawMask(dst, b, src, src.Bounds().Min, nil, image.ZP, op) // Check that the resultant dst image matches the golden output. for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { if !eq(dst.At(x, y), golden.At(x, y)) { t.Errorf("drawOverlap xoff=%d,yoff=%d: at (%d, %d), %v versus golden %v", xoff, yoff, x, y, dst.At(x, y), golden.At(x, y)) continue loop } } } } } } } // TestNonZeroSrcPt checks drawing with a non-zero src point parameter. func TestNonZeroSrcPt(t *testing.T) { a := image.NewRGBA(image.Rect(0, 0, 1, 1)) b := image.NewRGBA(image.Rect(0, 0, 2, 2)) b.Set(0, 0, color.RGBA{0, 0, 0, 5}) b.Set(1, 0, color.RGBA{0, 0, 5, 5}) b.Set(0, 1, color.RGBA{0, 5, 0, 5}) b.Set(1, 1, color.RGBA{5, 0, 0, 5}) Draw(a, image.Rect(0, 0, 1, 1), b, image.Pt(1, 1), Over) if !eq(color.RGBA{5, 0, 0, 5}, a.At(0, 0)) { t.Errorf("non-zero src pt: want %v got %v", color.RGBA{5, 0, 0, 5}, a.At(0, 0)) } } func TestFill(t *testing.T) { rr := []image.Rectangle{ image.Rect(0, 0, 0, 0), image.Rect(0, 0, 40, 30), image.Rect(10, 0, 40, 30), image.Rect(0, 20, 40, 30), image.Rect(10, 20, 40, 30), image.Rect(10, 20, 15, 25), image.Rect(10, 0, 35, 30), image.Rect(0, 15, 40, 16), image.Rect(24, 24, 25, 25), image.Rect(23, 23, 26, 26), image.Rect(22, 22, 27, 27), image.Rect(21, 21, 28, 28), image.Rect(20, 20, 29, 29), } for _, r := range rr { m := image.NewRGBA(image.Rect(0, 0, 40, 30)).SubImage(r).(*image.RGBA) b := m.Bounds() c := color.RGBA{11, 0, 0, 255} src := &image.Uniform{C: c} check := func(desc string) { for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { if !eq(c, m.At(x, y)) { t.Errorf("%s fill: at (%d, %d), sub-image bounds=%v: want %v got %v", desc, x, y, r, c, m.At(x, y)) return } } } } // Draw 1 pixel at a time. for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { DrawMask(m, image.Rect(x, y, x+1, y+1), src, image.ZP, nil, image.ZP, Src) } } check("pixel") // Draw 1 row at a time. c = color.RGBA{0, 22, 0, 255} src = &image.Uniform{C: c} for y := b.Min.Y; y < b.Max.Y; y++ { DrawMask(m, image.Rect(b.Min.X, y, b.Max.X, y+1), src, image.ZP, nil, image.ZP, Src) } check("row") // Draw 1 column at a time. c = color.RGBA{0, 0, 33, 255} src = &image.Uniform{C: c} for x := b.Min.X; x < b.Max.X; x++ { DrawMask(m, image.Rect(x, b.Min.Y, x+1, b.Max.Y), src, image.ZP, nil, image.ZP, Src) } check("column") // Draw the whole image at once. c = color.RGBA{44, 55, 66, 77} src = &image.Uniform{C: c} DrawMask(m, b, src, image.ZP, nil, image.ZP, Src) check("whole") } } // TestFloydSteinbergCheckerboard tests that the result of Floyd-Steinberg // error diffusion of a uniform 50% gray source image with a black-and-white // palette is a checkerboard pattern. func TestFloydSteinbergCheckerboard(t *testing.T) { b := image.Rect(0, 0, 640, 480) // We can't represent 50% exactly, but 0x7fff / 0xffff is close enough. src := &image.Uniform{color.Gray16{0x7fff}} dst := image.NewPaletted(b, color.Palette{color.Black, color.White}) FloydSteinberg.Draw(dst, b, src, image.Point{}) nErr := 0 for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { got := dst.Pix[dst.PixOffset(x, y)] want := uint8(x+y) % 2 if got != want { t.Errorf("at (%d, %d): got %d, want %d", x, y, got, want) if nErr++; nErr == 10 { t.Fatal("there may be more errors") } } } } } // embeddedPaletted is an Image that behaves like an *image.Paletted but whose // type is not *image.Paletted. type embeddedPaletted struct { *image.Paletted } // TestPaletted tests that the drawPaletted function behaves the same // regardless of whether dst is an *image.Paletted. func TestPaletted(t *testing.T) { f, err := os.Open("../testdata/video-001.png") if err != nil { t.Fatalf("open: %v", err) } defer f.Close() src, err := png.Decode(f) if err != nil { t.Fatalf("decode: %v", err) } b := src.Bounds() cgaPalette := color.Palette{ color.RGBA{0x00, 0x00, 0x00, 0xff}, color.RGBA{0x55, 0xff, 0xff, 0xff}, color.RGBA{0xff, 0x55, 0xff, 0xff}, color.RGBA{0xff, 0xff, 0xff, 0xff}, } drawers := map[string]Drawer{ "src": Src, "floyd-steinberg": FloydSteinberg, } loop: for dName, d := range drawers { dst0 := image.NewPaletted(b, cgaPalette) dst1 := image.NewPaletted(b, cgaPalette) d.Draw(dst0, b, src, image.Point{}) d.Draw(embeddedPaletted{dst1}, b, src, image.Point{}) for y := b.Min.Y; y < b.Max.Y; y++ { for x := b.Min.X; x < b.Max.X; x++ { if !eq(dst0.At(x, y), dst1.At(x, y)) { t.Errorf("%s: at (%d, %d), %v versus %v", dName, x, y, dst0.At(x, y), dst1.At(x, y)) continue loop } } } } } func TestSqDiff(t *testing.T) { // This test is similar to the one from the image/color package, but // sqDiff in this package accepts int32 instead of uint32, so test it // for appropriate input. // canonical sqDiff implementation orig := func(x, y int32) uint32 { var d uint32 if x > y { d = uint32(x - y) } else { d = uint32(y - x) } return (d * d) >> 2 } testCases := []int32{ 0, 1, 2, 0x0fffd, 0x0fffe, 0x0ffff, 0x10000, 0x10001, 0x10002, 0x7ffffffd, 0x7ffffffe, 0x7fffffff, -0x7ffffffd, -0x7ffffffe, -0x80000000, } for _, x := range testCases { for _, y := range testCases { if got, want := sqDiff(x, y), orig(x, y); got != want { t.Fatalf("sqDiff(%#x, %#x): got %d, want %d", x, y, got, want) } } } if err := quick.CheckEqual(orig, sqDiff, &quick.Config{MaxCountScale: 10}); err != nil { t.Fatal(err) } }