/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* $Id: db_utilities.h,v 1.3 2011/06/17 14:03:31 mbansal Exp $ */ #ifndef DB_UTILITIES_H #define DB_UTILITIES_H #ifdef _WIN32 #pragma warning(disable: 4275) #pragma warning(disable: 4251) #pragma warning(disable: 4786) #pragma warning(disable: 4800) #pragma warning(disable: 4018) /* signed-unsigned mismatch */ #endif /* _WIN32 */ #ifdef _WIN32 #ifdef DBDYNAMIC_EXPORTS #define DB_API __declspec(dllexport) #else #ifdef DBDYNAMIC_IMPORTS #define DB_API __declspec(dllimport) #else #define DB_API #endif #endif #else #define DB_API #endif /* _WIN32 */ #ifdef _VERBOSE_ #include <iostream> #endif #include <math.h> #include <assert.h> #include "db_utilities_constants.h" /*! * \defgroup LMBasicUtilities (LM) Utility Functions (basic math, linear algebra and array manipulations) */ /*\{*/ /*! * Round double into int using fld and fistp instructions. */ inline int db_roundi (double x) { #ifdef WIN32_ASM int n; __asm { fld x; fistp n; } return n; #else return static_cast<int>(floor(x+0.5)); #endif } /*! * Square a double. */ inline double db_sqr(double a) { return(a*a); } /*! * Square a long. */ inline long db_sqr(long a) { return(a*a); } /*! * Square an int. */ inline long db_sqr(int a) { return(a*a); } /*! * Maximum of two doubles. */ inline double db_maxd(double a,double b) { if(b>a) return(b); else return(a); } /*! * Minumum of two doubles. */ inline double db_mind(double a,double b) { if(b<a) return(b); else return(a); } /*! * Maximum of two ints. */ inline int db_maxi(int a,int b) { if(b>a) return(b); else return(a); } /*! * Minimum of two numbers. */ inline int db_mini(int a,int b) { if(b<a) return(b); else return(a); } /*! * Maximum of two numbers. */ inline long db_maxl(long a,long b) { if(b>a) return(b); else return(a); } /*! * Minimum of two numbers. */ inline long db_minl(long a,long b) { if(b<a) return(b); else return(a); } /*! * Sign of a number. * \return -1.0 if negative, 1.0 if positive. */ inline double db_sign(double x) { if(x>=0.0) return(1.0); else return(-1.0); } /*! * Absolute value. */ inline int db_absi(int a) { if(a<0) return(-a); else return(a); } /*! * Absolute value. */ inline float db_absf(float a) { if(a<0) return(-a); else return(a); } /*! * Absolute value. */ inline double db_absd(double a) { if(a<0) return(-a); else return(a); } /*! * Reciprocal (1/a). Prevents divide by 0. * \return 1/a if a != 0. 1.0 otherwise. */ inline double db_SafeReciprocal(double a) { return((a!=0.0)?(1.0/a):1.0); } /*! * Division. Prevents divide by 0. * \return a/b if b!=0. a otherwise. */ inline double db_SafeDivision(double a,double b) { return((b!=0.0)?(a/b):a); } /*! * Square root. Prevents imaginary output. * \return sqrt(a) if a > 0.0. 0.0 otherewise. */ inline double db_SafeSqrt(double a) { return((a>=0.0)?(sqrt(a)):0.0); } /*! * Square root of a reciprocal. Prevents divide by 0 and imaginary output. * \return sqrt(1/a) if a > 0.0. 1.0 otherewise. */ inline double db_SafeSqrtReciprocal(double a) { return((a>0.0)?(sqrt(1.0/a)):1.0); } /*! * Cube root. */ inline double db_CubRoot(double x) { if(x>=0.0) return(pow(x,1.0/3.0)); else return(-pow(-x,1.0/3.0)); } /*! * Sum of squares of elements of x. */ inline double db_SquareSum3(const double x[3]) { return(db_sqr(x[0])+db_sqr(x[1])+db_sqr(x[2])); } /*! * Sum of squares of elements of x. */ inline double db_SquareSum7(double x[7]) { return(db_sqr(x[0])+db_sqr(x[1])+db_sqr(x[2])+ db_sqr(x[3])+db_sqr(x[4])+db_sqr(x[5])+ db_sqr(x[6])); } /*! * Sum of squares of elements of x. */ inline double db_SquareSum9(double x[9]) { return(db_sqr(x[0])+db_sqr(x[1])+db_sqr(x[2])+ db_sqr(x[3])+db_sqr(x[4])+db_sqr(x[5])+ db_sqr(x[6])+db_sqr(x[7])+db_sqr(x[8])); } /*! * Copy a vector. * \param xd destination * \param xs source */ void inline db_Copy3(double xd[3],const double xs[3]) { xd[0]=xs[0];xd[1]=xs[1];xd[2]=xs[2]; } /*! * Copy a vector. * \param xd destination * \param xs source */ void inline db_Copy6(double xd[6],const double xs[6]) { xd[0]=xs[0];xd[1]=xs[1];xd[2]=xs[2]; xd[3]=xs[3];xd[4]=xs[4];xd[5]=xs[5]; } /*! * Copy a vector. * \param xd destination * \param xs source */ void inline db_Copy9(double xd[9],const double xs[9]) { xd[0]=xs[0];xd[1]=xs[1];xd[2]=xs[2]; xd[3]=xs[3];xd[4]=xs[4];xd[5]=xs[5]; xd[6]=xs[6];xd[7]=xs[7];xd[8]=xs[8]; } /*! * Scalar product: Transpose(A)*B. */ inline double db_ScalarProduct4(const double A[4],const double B[4]) { return(A[0]*B[0]+A[1]*B[1]+A[2]*B[2]+A[3]*B[3]); } /*! * Scalar product: Transpose(A)*B. */ inline double db_ScalarProduct7(const double A[7],const double B[7]) { return(A[0]*B[0]+A[1]*B[1]+A[2]*B[2]+ A[3]*B[3]+A[4]*B[4]+A[5]*B[5]+ A[6]*B[6]); } /*! * Scalar product: Transpose(A)*B. */ inline double db_ScalarProduct9(const double A[9],const double B[9]) { return(A[0]*B[0]+A[1]*B[1]+A[2]*B[2]+ A[3]*B[3]+A[4]*B[4]+A[5]*B[5]+ A[6]*B[6]+A[7]*B[7]+A[8]*B[8]); } /*! * Vector addition: S=A+B. */ inline void db_AddVectors6(double S[6],const double A[6],const double B[6]) { S[0]=A[0]+B[0]; S[1]=A[1]+B[1]; S[2]=A[2]+B[2]; S[3]=A[3]+B[3]; S[4]=A[4]+B[4]; S[5]=A[5]+B[5]; } /*! * Multiplication: C(3x1)=A(3x3)*B(3x1). */ inline void db_Multiply3x3_3x1(double y[3],const double A[9],const double x[3]) { y[0]=A[0]*x[0]+A[1]*x[1]+A[2]*x[2]; y[1]=A[3]*x[0]+A[4]*x[1]+A[5]*x[2]; y[2]=A[6]*x[0]+A[7]*x[1]+A[8]*x[2]; } inline void db_Multiply3x3_3x3(double C[9], const double A[9],const double B[9]) { C[0]=A[0]*B[0]+A[1]*B[3]+A[2]*B[6]; C[1]=A[0]*B[1]+A[1]*B[4]+A[2]*B[7]; C[2]=A[0]*B[2]+A[1]*B[5]+A[2]*B[8]; C[3]=A[3]*B[0]+A[4]*B[3]+A[5]*B[6]; C[4]=A[3]*B[1]+A[4]*B[4]+A[5]*B[7]; C[5]=A[3]*B[2]+A[4]*B[5]+A[5]*B[8]; C[6]=A[6]*B[0]+A[7]*B[3]+A[8]*B[6]; C[7]=A[6]*B[1]+A[7]*B[4]+A[8]*B[7]; C[8]=A[6]*B[2]+A[7]*B[5]+A[8]*B[8]; } /*! * Multiplication: C(4x1)=A(4x4)*B(4x1). */ inline void db_Multiply4x4_4x1(double y[4],const double A[16],const double x[4]) { y[0]=A[0]*x[0]+A[1]*x[1]+A[2]*x[2]+A[3]*x[3]; y[1]=A[4]*x[0]+A[5]*x[1]+A[6]*x[2]+A[7]*x[3]; y[2]=A[8]*x[0]+A[9]*x[1]+A[10]*x[2]+A[11]*x[3]; y[3]=A[12]*x[0]+A[13]*x[1]+A[14]*x[2]+A[15]*x[3]; } /*! * Scalar multiplication in place: A(3)=mult*A(3). */ inline void db_MultiplyScalar3(double *A,double mult) { (*A++) *= mult; (*A++) *= mult; (*A++) *= mult; } /*! * Scalar multiplication: A(3)=mult*B(3). */ inline void db_MultiplyScalarCopy3(double *A,const double *B,double mult) { (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; } /*! * Scalar multiplication: A(4)=mult*B(4). */ inline void db_MultiplyScalarCopy4(double *A,const double *B,double mult) { (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; } /*! * Scalar multiplication: A(7)=mult*B(7). */ inline void db_MultiplyScalarCopy7(double *A,const double *B,double mult) { (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; } /*! * Scalar multiplication: A(9)=mult*B(9). */ inline void db_MultiplyScalarCopy9(double *A,const double *B,double mult) { (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; (*A++)=(*B++)*mult; } /*! * \defgroup LMImageBasicUtilities (LM) Basic Image Utility Functions Images in db are simply 2D arrays of unsigned char or float types. Only the very basic operations are supported: allocation/deallocation, copying, simple pyramid construction and LUT warping. These images are used by db_CornerDetector_u and db_Matcher_u. The db_Image class is an attempt to wrap these images. It has not been tested well. */ /*\{*/ /*! * Given a float image array, allocates and returns the set of row poiners. * \param im image pointer * \param w image width * \param h image height */ DB_API float** db_SetupImageReferences_f(float *im,int w,int h); /*! * Allocate a float image. * Note: for feature detection images must be overallocated by 256 bytes. * \param w width * \param h height * \param over_allocation allocate this many extra bytes at the end * \return row array pointer */ DB_API float** db_AllocImage_f(int w,int h,int over_allocation=256); /*! * Free a float image * \param img row array pointer * \param h image height (number of rows) */ DB_API void db_FreeImage_f(float **img,int h); /*! * Given an unsigned char image array, allocates and returns the set of row poiners. * \param im image pointer * \param w image width * \param h image height */ DB_API unsigned char** db_SetupImageReferences_u(unsigned char *im,int w,int h); /*! * Allocate an unsigned char image. * Note: for feature detection images must be overallocated by 256 bytes. * \param w width * \param h height * \param over_allocation allocate this many extra bytes at the end * \return row array pointer */ DB_API unsigned char** db_AllocImage_u(int w,int h,int over_allocation=256); /*! * Free an unsigned char image * \param img row array pointer * \param h image height (number of rows) */ DB_API void db_FreeImage_u(unsigned char **img,int h); /*! Copy an image from s to d. Both s and d must be pre-allocated at of the same size. Copy is done row by row. \param s source \param d destination \param w width \param h height \param over_allocation copy this many bytes after the end of the last line */ DB_API void db_CopyImage_u(unsigned char **d,const unsigned char * const *s,int w,int h,int over_allocation=0); DB_API inline unsigned char db_BilinearInterpolation(double y, double x, const unsigned char * const * v) { int floor_x=(int) x; int floor_y=(int) y; int ceil_x=floor_x+1; int ceil_y=floor_y+1; unsigned char f00 = v[floor_y][floor_x]; unsigned char f01 = v[floor_y][ceil_x]; unsigned char f10 = v[ceil_y][floor_x]; unsigned char f11 = v[ceil_y][ceil_x]; double xl = x-floor_x; double yl = y-floor_y; return (unsigned char)(f00*(1-yl)*(1-xl) + f10*yl*(1-xl) + f01*(1-yl)*xl + f11*yl*xl); } /*\}*/ /*! * \ingroup LMRotation * Compute an incremental rotation matrix using the update dx=[sin(phi) sin(ohm) sin(kap)] */ inline void db_IncrementalRotationMatrix(double R[9],const double dx[3]) { double sp,so,sk,om_sp2,om_so2,om_sk2,cp,co,ck,sp_so,cp_so; /*Store sines*/ sp=dx[0]; so=dx[1]; sk=dx[2]; om_sp2=1.0-sp*sp; om_so2=1.0-so*so; om_sk2=1.0-sk*sk; /*Compute cosines*/ cp=(om_sp2>=0.0)?sqrt(om_sp2):1.0; co=(om_so2>=0.0)?sqrt(om_so2):1.0; ck=(om_sk2>=0.0)?sqrt(om_sk2):1.0; /*Compute matrix*/ sp_so=sp*so; cp_so=cp*so; R[0]=sp_so*sk+cp*ck; R[1]=co*sk; R[2]=cp_so*sk-sp*ck; R[3]=sp_so*ck-cp*sk; R[4]=co*ck; R[5]=cp_so*ck+sp*sk; R[6]=sp*co; R[7]= -so; R[8]=cp*co; } /*! * Zero out 2 vector in place. */ void inline db_Zero2(double x[2]) { x[0]=x[1]=0; } /*! * Zero out 3 vector in place. */ void inline db_Zero3(double x[3]) { x[0]=x[1]=x[2]=0; } /*! * Zero out 4 vector in place. */ void inline db_Zero4(double x[4]) { x[0]=x[1]=x[2]=x[3]=0; } /*! * Zero out 9 vector in place. */ void inline db_Zero9(double x[9]) { x[0]=x[1]=x[2]=x[3]=x[4]=x[5]=x[6]=x[7]=x[8]=0; } #define DB_WARP_FAST 0 #define DB_WARP_BILINEAR 1 /*! * Perform a look-up table warp. * The LUTs must be float images of the same size as source image. * The source value x_s is determined from destination (x_d,y_d) through lut_x * and y_s is determined from lut_y: \code x_s = lut_x[y_d][x_d]; y_s = lut_y[y_d][x_d]; \endcode * \param src source image * \param dst destination image * \param w width * \param h height * \param lut_x LUT for x * \param lut_y LUT for y * \param type warp type (DB_WARP_FAST or DB_WARP_BILINEAR) */ DB_API void db_WarpImageLut_u(const unsigned char * const * src,unsigned char ** dst, int w, int h, const float * const * lut_x, const float * const * lut_y, int type=DB_WARP_BILINEAR); DB_API void db_PrintDoubleVector(double *a,long size); DB_API void db_PrintDoubleMatrix(double *a,long rows,long cols); #include "db_utilities_constants.h" #include "db_utilities_algebra.h" #include "db_utilities_indexing.h" #include "db_utilities_linalg.h" #include "db_utilities_poly.h" #include "db_utilities_geometry.h" #include "db_utilities_random.h" #include "db_utilities_rotation.h" #include "db_utilities_camera.h" #define DB_INVALID (-1) #endif /* DB_UTILITIES_H */