/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define LOG_TAG "CamComm1.0-CamModule"
#define ATRACE_TAG ATRACE_TAG_CAMERA
//#define LOG_NDEBUG 0

#include <utils/Trace.h>

#include "CameraModule.h"

namespace android {
namespace hardware {
namespace camera {
namespace common {
namespace V1_0 {
namespace helper {

void CameraModule::deriveCameraCharacteristicsKeys(
        uint32_t deviceVersion, CameraMetadata &chars) {
    ATRACE_CALL();

    Vector<int32_t> derivedCharKeys;
    Vector<int32_t> derivedRequestKeys;
    Vector<int32_t> derivedResultKeys;
    // Keys added in HAL3.3
    if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_3) {
        Vector<uint8_t> controlModes;
        uint8_t data = ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE;
        chars.update(ANDROID_CONTROL_AE_LOCK_AVAILABLE, &data, /*count*/1);
        data = ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE;
        chars.update(ANDROID_CONTROL_AWB_LOCK_AVAILABLE, &data, /*count*/1);
        controlModes.push(ANDROID_CONTROL_MODE_AUTO);
        camera_metadata_entry entry = chars.find(ANDROID_CONTROL_AVAILABLE_SCENE_MODES);
        if (entry.count > 1 || entry.data.u8[0] != ANDROID_CONTROL_SCENE_MODE_DISABLED) {
            controlModes.push(ANDROID_CONTROL_MODE_USE_SCENE_MODE);
        }

        // Only advertise CONTROL_OFF mode if 3A manual controls are supported.
        bool isManualAeSupported = false;
        bool isManualAfSupported = false;
        bool isManualAwbSupported = false;
        entry = chars.find(ANDROID_CONTROL_AE_AVAILABLE_MODES);
        if (entry.count > 0) {
            for (size_t i = 0; i < entry.count; i++) {
                if (entry.data.u8[i] == ANDROID_CONTROL_AE_MODE_OFF) {
                    isManualAeSupported = true;
                    break;
                }
            }
        }
        entry = chars.find(ANDROID_CONTROL_AF_AVAILABLE_MODES);
        if (entry.count > 0) {
            for (size_t i = 0; i < entry.count; i++) {
                if (entry.data.u8[i] == ANDROID_CONTROL_AF_MODE_OFF) {
                    isManualAfSupported = true;
                    break;
                }
            }
        }
        entry = chars.find(ANDROID_CONTROL_AWB_AVAILABLE_MODES);
        if (entry.count > 0) {
            for (size_t i = 0; i < entry.count; i++) {
                if (entry.data.u8[i] == ANDROID_CONTROL_AWB_MODE_OFF) {
                    isManualAwbSupported = true;
                    break;
                }
            }
        }
        if (isManualAeSupported && isManualAfSupported && isManualAwbSupported) {
            controlModes.push(ANDROID_CONTROL_MODE_OFF);
        }

        chars.update(ANDROID_CONTROL_AVAILABLE_MODES, controlModes);

        entry = chars.find(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS);
        // HAL3.2 devices passing existing CTS test should all support all LSC modes and LSC map
        bool lensShadingModeSupported = false;
        if (entry.count > 0) {
            for (size_t i = 0; i < entry.count; i++) {
                if (entry.data.i32[i] == ANDROID_SHADING_MODE) {
                    lensShadingModeSupported = true;
                    break;
                }
            }
        }
        Vector<uint8_t> lscModes;
        Vector<uint8_t> lscMapModes;
        lscModes.push(ANDROID_SHADING_MODE_FAST);
        lscModes.push(ANDROID_SHADING_MODE_HIGH_QUALITY);
        lscMapModes.push(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF);
        if (lensShadingModeSupported) {
            lscModes.push(ANDROID_SHADING_MODE_OFF);
            lscMapModes.push(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_ON);
        }
        chars.update(ANDROID_SHADING_AVAILABLE_MODES, lscModes);
        chars.update(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES, lscMapModes);

        derivedCharKeys.push(ANDROID_CONTROL_AE_LOCK_AVAILABLE);
        derivedCharKeys.push(ANDROID_CONTROL_AWB_LOCK_AVAILABLE);
        derivedCharKeys.push(ANDROID_CONTROL_AVAILABLE_MODES);
        derivedCharKeys.push(ANDROID_SHADING_AVAILABLE_MODES);
        derivedCharKeys.push(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES);

        // Need update android.control.availableHighSpeedVideoConfigurations since HAL3.3
        // adds batch size to this array.
        entry = chars.find(ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS);
        if (entry.count > 0) {
            Vector<int32_t> highSpeedConfig;
            for (size_t i = 0; i < entry.count; i += 4) {
                highSpeedConfig.add(entry.data.i32[i]); // width
                highSpeedConfig.add(entry.data.i32[i + 1]); // height
                highSpeedConfig.add(entry.data.i32[i + 2]); // fps_min
                highSpeedConfig.add(entry.data.i32[i + 3]); // fps_max
                highSpeedConfig.add(1); // batchSize_max. default to 1 for HAL3.2
            }
            chars.update(ANDROID_CONTROL_AVAILABLE_HIGH_SPEED_VIDEO_CONFIGURATIONS,
                    highSpeedConfig);
        }
    }

    // Keys added in HAL3.4
    if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_4) {
        // Check if HAL supports RAW_OPAQUE output
        camera_metadata_entry entry = chars.find(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS);
        bool supportRawOpaque = false;
        bool supportAnyRaw = false;
        const int STREAM_CONFIGURATION_SIZE = 4;
        const int STREAM_FORMAT_OFFSET = 0;
        const int STREAM_WIDTH_OFFSET = 1;
        const int STREAM_HEIGHT_OFFSET = 2;
        const int STREAM_IS_INPUT_OFFSET = 3;
        Vector<int32_t> rawOpaqueSizes;

        for (size_t i=0; i < entry.count; i += STREAM_CONFIGURATION_SIZE) {
            int32_t format = entry.data.i32[i + STREAM_FORMAT_OFFSET];
            int32_t width = entry.data.i32[i + STREAM_WIDTH_OFFSET];
            int32_t height = entry.data.i32[i + STREAM_HEIGHT_OFFSET];
            int32_t isInput = entry.data.i32[i + STREAM_IS_INPUT_OFFSET];
            if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
                    format == HAL_PIXEL_FORMAT_RAW_OPAQUE) {
                supportRawOpaque = true;
                rawOpaqueSizes.push(width);
                rawOpaqueSizes.push(height);
                // 2 bytes per pixel. This rough estimation is only used when
                // HAL does not fill in the opaque raw size
                rawOpaqueSizes.push(width * height *2);
            }
            if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT &&
                    (format == HAL_PIXEL_FORMAT_RAW16 ||
                     format == HAL_PIXEL_FORMAT_RAW10 ||
                     format == HAL_PIXEL_FORMAT_RAW12 ||
                     format == HAL_PIXEL_FORMAT_RAW_OPAQUE)) {
                supportAnyRaw = true;
            }
        }

        if (supportRawOpaque) {
            entry = chars.find(ANDROID_SENSOR_OPAQUE_RAW_SIZE);
            if (entry.count == 0) {
                // Fill in estimated value if HAL does not list it
                chars.update(ANDROID_SENSOR_OPAQUE_RAW_SIZE, rawOpaqueSizes);
                derivedCharKeys.push(ANDROID_SENSOR_OPAQUE_RAW_SIZE);
            }
        }

        // Check if HAL supports any RAW output, if so, fill in postRawSensitivityBoost range
        if (supportAnyRaw) {
            int32_t defaultRange[2] = {100, 100};
            entry = chars.find(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE);
            if (entry.count == 0) {
                // Fill in default value (100, 100)
                chars.update(
                        ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE,
                        defaultRange, 2);
                derivedCharKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST_RANGE);
                // Actual request/results will be derived by camera device.
                derivedRequestKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST);
                derivedResultKeys.push(ANDROID_CONTROL_POST_RAW_SENSITIVITY_BOOST);
            }
        }
    }

    // Always add a default for the pre-correction active array if the vendor chooses to omit this
    camera_metadata_entry entry = chars.find(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
    if (entry.count == 0) {
        Vector<int32_t> preCorrectionArray;
        entry = chars.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE);
        preCorrectionArray.appendArray(entry.data.i32, entry.count);
        chars.update(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE, preCorrectionArray);
        derivedCharKeys.push(ANDROID_SENSOR_INFO_PRE_CORRECTION_ACTIVE_ARRAY_SIZE);
    }

    // Add those newly added keys to AVAILABLE_CHARACTERISTICS_KEYS
    // This has to be done at this end of this function.
    if (derivedCharKeys.size() > 0) {
        appendAvailableKeys(
                chars, ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS, derivedCharKeys);
    }
    if (derivedRequestKeys.size() > 0) {
        appendAvailableKeys(
                chars, ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, derivedRequestKeys);
    }
    if (derivedResultKeys.size() > 0) {
        appendAvailableKeys(
                chars, ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, derivedResultKeys);
    }
    return;
}

void CameraModule::appendAvailableKeys(CameraMetadata &chars,
        int32_t keyTag, const Vector<int32_t>& appendKeys) {
    camera_metadata_entry entry = chars.find(keyTag);
    Vector<int32_t> availableKeys;
    availableKeys.setCapacity(entry.count + appendKeys.size());
    for (size_t i = 0; i < entry.count; i++) {
        availableKeys.push(entry.data.i32[i]);
    }
    for (size_t i = 0; i < appendKeys.size(); i++) {
        availableKeys.push(appendKeys[i]);
    }
    chars.update(keyTag, availableKeys);
}

CameraModule::CameraModule(camera_module_t *module) : mNumberOfCameras(0) {
    if (module == NULL) {
        ALOGE("%s: camera hardware module must not be null", __FUNCTION__);
        assert(0);
    }
    mModule = module;
}

CameraModule::~CameraModule()
{
    while (mCameraInfoMap.size() > 0) {
        camera_info cameraInfo = mCameraInfoMap.editValueAt(0);
        if (cameraInfo.static_camera_characteristics != NULL) {
            free_camera_metadata(
                    const_cast<camera_metadata_t*>(cameraInfo.static_camera_characteristics));
        }
        mCameraInfoMap.removeItemsAt(0);
    }

    while (mPhysicalCameraInfoMap.size() > 0) {
        camera_metadata_t* metadata = mPhysicalCameraInfoMap.editValueAt(0);
        if (metadata != NULL) {
            free_camera_metadata(metadata);
        }
        mPhysicalCameraInfoMap.removeItemsAt(0);
    }
}

int CameraModule::init() {
    ATRACE_CALL();
    int res = OK;
    if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_4 &&
            mModule->init != NULL) {
        ATRACE_BEGIN("camera_module->init");
        res = mModule->init();
        ATRACE_END();
    }
    mNumberOfCameras = getNumberOfCameras();
    mCameraInfoMap.setCapacity(mNumberOfCameras);
    return res;
}

int CameraModule::getCameraInfo(int cameraId, struct camera_info *info) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCameraInfoLock);
    if (cameraId < 0) {
        ALOGE("%s: Invalid camera ID %d", __FUNCTION__, cameraId);
        return -EINVAL;
    }

    // Only override static_camera_characteristics for API2 devices
    int apiVersion = mModule->common.module_api_version;
    if (apiVersion < CAMERA_MODULE_API_VERSION_2_0) {
        int ret;
        ATRACE_BEGIN("camera_module->get_camera_info");
        ret = mModule->get_camera_info(cameraId, info);
        // Fill in this so CameraService won't be confused by
        // possibly 0 device_version
        info->device_version = CAMERA_DEVICE_API_VERSION_1_0;
        ATRACE_END();
        return ret;
    }

    ssize_t index = mCameraInfoMap.indexOfKey(cameraId);
    if (index == NAME_NOT_FOUND) {
        // Get camera info from raw module and cache it
        camera_info rawInfo, cameraInfo;
        ATRACE_BEGIN("camera_module->get_camera_info");
        int ret = mModule->get_camera_info(cameraId, &rawInfo);
        ATRACE_END();
        if (ret != 0) {
            return ret;
        }
        int deviceVersion = rawInfo.device_version;
        if (deviceVersion < CAMERA_DEVICE_API_VERSION_3_0) {
            // static_camera_characteristics is invalid
            *info = rawInfo;
            return ret;
        }
        CameraMetadata m;
        m.append(rawInfo.static_camera_characteristics);
        deriveCameraCharacteristicsKeys(rawInfo.device_version, m);
        cameraInfo = rawInfo;
        cameraInfo.static_camera_characteristics = m.release();
        index = mCameraInfoMap.add(cameraId, cameraInfo);
    }

    assert(index != NAME_NOT_FOUND);
    // return the cached camera info
    *info = mCameraInfoMap[index];
    return OK;
}

int CameraModule::getPhysicalCameraInfo(int physicalCameraId, camera_metadata_t **physicalInfo) {
    ATRACE_CALL();
    Mutex::Autolock lock(mCameraInfoLock);
    if (physicalCameraId < mNumberOfCameras) {
        ALOGE("%s: Invalid physical camera ID %d", __FUNCTION__, physicalCameraId);
        return -EINVAL;
    }

    // Only query physical camera info for 2.5 version for newer
    int apiVersion = mModule->common.module_api_version;
    if (apiVersion < CAMERA_MODULE_API_VERSION_2_5) {
        ALOGE("%s: Module version must be at least 2.5 to handle getPhysicalCameraInfo",
                __FUNCTION__);
        return -ENODEV;
    }
    if (mModule->get_physical_camera_info == nullptr) {
        ALOGE("%s: get_physical_camera is NULL for module version 2.5", __FUNCTION__);
        return -EINVAL;
    }

    ssize_t index = mPhysicalCameraInfoMap.indexOfKey(physicalCameraId);
    if (index == NAME_NOT_FOUND) {
        // Get physical camera characteristics, and cache it
        camera_metadata_t *info = nullptr;
        ATRACE_BEGIN("camera_module->get_physical_camera_info");
        int ret = mModule->get_physical_camera_info(physicalCameraId, &info);
        ATRACE_END();
        if (ret != 0) {
            return ret;
        }

        // The camera_metadata_t returned by get_physical_camera_info could be using
        // more memory than necessary due to unused reserved space. Reduce the
        // size by appending it to a new CameraMetadata object, which internally
        // calls resizeIfNeeded.
        CameraMetadata m;
        m.append(info);
        camera_metadata_t* derivedMetadata = m.release();
        index = mPhysicalCameraInfoMap.add(physicalCameraId, derivedMetadata);
    }

    assert(index != NAME_NOT_FOUND);
    *physicalInfo = mPhysicalCameraInfoMap[index];
    return OK;
}

int CameraModule::getDeviceVersion(int cameraId) {
    ssize_t index = mDeviceVersionMap.indexOfKey(cameraId);
    if (index == NAME_NOT_FOUND) {
        int deviceVersion;
        if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_0) {
            struct camera_info info;
            getCameraInfo(cameraId, &info);
            deviceVersion = info.device_version;
        } else {
            deviceVersion = CAMERA_DEVICE_API_VERSION_1_0;
        }
        index = mDeviceVersionMap.add(cameraId, deviceVersion);
    }
    assert(index != NAME_NOT_FOUND);
    return mDeviceVersionMap[index];
}

int CameraModule::open(const char* id, struct hw_device_t** device) {
    int res;
    ATRACE_BEGIN("camera_module->open");
    res = filterOpenErrorCode(mModule->common.methods->open(&mModule->common, id, device));
    ATRACE_END();
    return res;
}

bool CameraModule::isOpenLegacyDefined() const {
    if (getModuleApiVersion() < CAMERA_MODULE_API_VERSION_2_3) {
        return false;
    }
    return mModule->open_legacy != NULL;
}

int CameraModule::openLegacy(
        const char* id, uint32_t halVersion, struct hw_device_t** device) {
    int res;
    ATRACE_BEGIN("camera_module->open_legacy");
    res = mModule->open_legacy(&mModule->common, id, halVersion, device);
    ATRACE_END();
    return res;
}

int CameraModule::getNumberOfCameras() {
    int numCameras;
    ATRACE_BEGIN("camera_module->get_number_of_cameras");
    numCameras = mModule->get_number_of_cameras();
    ATRACE_END();
    return numCameras;
}

int CameraModule::setCallbacks(const camera_module_callbacks_t *callbacks) {
    int res = OK;
    ATRACE_BEGIN("camera_module->set_callbacks");
    if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_1) {
        res = mModule->set_callbacks(callbacks);
    }
    ATRACE_END();
    return res;
}

bool CameraModule::isVendorTagDefined() const {
    return mModule->get_vendor_tag_ops != NULL;
}

void CameraModule::getVendorTagOps(vendor_tag_ops_t* ops) {
    if (mModule->get_vendor_tag_ops) {
        ATRACE_BEGIN("camera_module->get_vendor_tag_ops");
        mModule->get_vendor_tag_ops(ops);
        ATRACE_END();
    }
}

bool CameraModule::isSetTorchModeSupported() const {
    if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_4) {
        if (mModule->set_torch_mode == NULL) {
            ALOGE("%s: Module 2.4 device must support set torch API!",
                    __FUNCTION__);
            return false;
        }
        return true;
    }
    return false;
}

int CameraModule::setTorchMode(const char* camera_id, bool enable) {
    int res = INVALID_OPERATION;
    if (mModule->set_torch_mode != NULL) {
        ATRACE_BEGIN("camera_module->set_torch_mode");
        res = mModule->set_torch_mode(camera_id, enable);
        ATRACE_END();
    }
    return res;
}

int CameraModule::isStreamCombinationSupported(int cameraId, camera_stream_combination_t *streams) {
    int res = INVALID_OPERATION;
    if (mModule->is_stream_combination_supported != NULL) {
        ATRACE_BEGIN("camera_module->is_stream_combination_supported");
        res = mModule->is_stream_combination_supported(cameraId, streams);
        ATRACE_END();
    }
    return res;
}

void CameraModule::notifyDeviceStateChange(uint64_t deviceState) {
   if (getModuleApiVersion() >= CAMERA_MODULE_API_VERSION_2_5 &&
           mModule->notify_device_state_change != NULL) {
       ATRACE_BEGIN("camera_module->notify_device_state_change");
       ALOGI("%s: calling notify_device_state_change with state %" PRId64, __FUNCTION__,
               deviceState);
       mModule->notify_device_state_change(deviceState);
       ATRACE_END();
   }
}

bool CameraModule::isLogicalMultiCamera(
        const common::V1_0::helper::CameraMetadata& metadata,
        std::unordered_set<std::string>* physicalCameraIds) {
    if (physicalCameraIds == nullptr) {
        ALOGE("%s: physicalCameraIds must not be null", __FUNCTION__);
        return false;
    }

    bool isLogicalMultiCamera = false;
    camera_metadata_ro_entry_t capabilities =
            metadata.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES);
    for (size_t i = 0; i < capabilities.count; i++) {
        if (capabilities.data.u8[i] ==
                ANDROID_REQUEST_AVAILABLE_CAPABILITIES_LOGICAL_MULTI_CAMERA) {
            isLogicalMultiCamera = true;
            break;
        }
    }

    if (isLogicalMultiCamera) {
        camera_metadata_ro_entry_t entry =
                metadata.find(ANDROID_LOGICAL_MULTI_CAMERA_PHYSICAL_IDS);
        const uint8_t* ids = entry.data.u8;
        size_t start = 0;
        for (size_t i = 0; i < entry.count; ++i) {
            if (ids[i] == '\0') {
                if (start != i) {
                    const char* physicalId = reinterpret_cast<const char*>(ids+start);
                    physicalCameraIds->emplace(physicalId);
                }
                start = i + 1;
            }
        }
    }
    return isLogicalMultiCamera;
}

status_t CameraModule::filterOpenErrorCode(status_t err) {
    switch(err) {
        case NO_ERROR:
        case -EBUSY:
        case -EINVAL:
        case -EUSERS:
            return err;
        default:
            break;
    }
    return -ENODEV;
}

void CameraModule::removeCamera(int cameraId) {
    std::unordered_set<std::string> physicalIds;
    camera_metadata_t *metadata = const_cast<camera_metadata_t*>(
            mCameraInfoMap.valueFor(cameraId).static_camera_characteristics);
    common::V1_0::helper::CameraMetadata hidlMetadata(metadata);

    if (isLogicalMultiCamera(hidlMetadata, &physicalIds)) {
        for (const auto& id : physicalIds) {
            int idInt = std::stoi(id);
            if (mPhysicalCameraInfoMap.indexOfKey(idInt) >= 0) {
                free_camera_metadata(mPhysicalCameraInfoMap[idInt]);
                mPhysicalCameraInfoMap.removeItem(idInt);
            } else {
                ALOGE("%s: Cannot find corresponding static metadata for physical id %s",
                        __FUNCTION__, id.c_str());
            }
        }
    }
    free_camera_metadata(metadata);
    mCameraInfoMap.removeItem(cameraId);
    mDeviceVersionMap.removeItem(cameraId);
}

uint16_t CameraModule::getModuleApiVersion() const {
    return mModule->common.module_api_version;
}

const char* CameraModule::getModuleName() const {
    return mModule->common.name;
}

uint16_t CameraModule::getHalApiVersion() const {
    return mModule->common.hal_api_version;
}

const char* CameraModule::getModuleAuthor() const {
    return mModule->common.author;
}

void* CameraModule::getDso() {
    return mModule->common.dso;
}

} // namespace helper
} // namespace V1_0
} // namespace common
} // namespace camera
} // namespace hardware
} // namespace android