/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package androidx.renderscript; import android.support.annotation.IntDef; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; /** * * ScriptIntrinsicBLAS class provides high performance RenderScript APIs to BLAS. * * The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard * building blocks for performing basic vector and matrix operations. * * For detailed description of BLAS, please refer to http://www.netlib.org/blas/ * **/ public final class ScriptIntrinsicBLAS extends ScriptIntrinsic { private Allocation mLUT; private static final int INTRINSIC_API_LEVEL = 23; private ScriptIntrinsicBLAS(long id, RenderScript rs) { super(id, rs); } private static final int RsBlas_sdsdot = 1; private static final int RsBlas_dsdot = 2; private static final int RsBlas_sdot = 3; private static final int RsBlas_ddot = 4; private static final int RsBlas_cdotu_sub = 5; private static final int RsBlas_cdotc_sub = 6; private static final int RsBlas_zdotu_sub = 7; private static final int RsBlas_zdotc_sub = 8; private static final int RsBlas_snrm2 = 9; private static final int RsBlas_sasum = 10; private static final int RsBlas_dnrm2 = 11; private static final int RsBlas_dasum = 12; private static final int RsBlas_scnrm2 = 13; private static final int RsBlas_scasum = 14; private static final int RsBlas_dznrm2 = 15; private static final int RsBlas_dzasum = 16; private static final int RsBlas_isamax = 17; private static final int RsBlas_idamax = 18; private static final int RsBlas_icamax = 19; private static final int RsBlas_izamax = 20; private static final int RsBlas_sswap = 21; private static final int RsBlas_scopy = 22; private static final int RsBlas_saxpy = 23; private static final int RsBlas_dswap = 24; private static final int RsBlas_dcopy = 25; private static final int RsBlas_daxpy = 26; private static final int RsBlas_cswap = 27; private static final int RsBlas_ccopy = 28; private static final int RsBlas_caxpy = 29; private static final int RsBlas_zswap = 30; private static final int RsBlas_zcopy = 31; private static final int RsBlas_zaxpy = 32; private static final int RsBlas_srotg = 33; private static final int RsBlas_srotmg = 34; private static final int RsBlas_srot = 35; private static final int RsBlas_srotm = 36; private static final int RsBlas_drotg = 37; private static final int RsBlas_drotmg = 38; private static final int RsBlas_drot = 39; private static final int RsBlas_drotm = 40; private static final int RsBlas_sscal = 41; private static final int RsBlas_dscal = 42; private static final int RsBlas_cscal = 43; private static final int RsBlas_zscal = 44; private static final int RsBlas_csscal = 45; private static final int RsBlas_zdscal = 46; private static final int RsBlas_sgemv = 47; private static final int RsBlas_sgbmv = 48; private static final int RsBlas_strmv = 49; private static final int RsBlas_stbmv = 50; private static final int RsBlas_stpmv = 51; private static final int RsBlas_strsv = 52; private static final int RsBlas_stbsv = 53; private static final int RsBlas_stpsv = 54; private static final int RsBlas_dgemv = 55; private static final int RsBlas_dgbmv = 56; private static final int RsBlas_dtrmv = 57; private static final int RsBlas_dtbmv = 58; private static final int RsBlas_dtpmv = 59; private static final int RsBlas_dtrsv = 60; private static final int RsBlas_dtbsv = 61; private static final int RsBlas_dtpsv = 62; private static final int RsBlas_cgemv = 63; private static final int RsBlas_cgbmv = 64; private static final int RsBlas_ctrmv = 65; private static final int RsBlas_ctbmv = 66; private static final int RsBlas_ctpmv = 67; private static final int RsBlas_ctrsv = 68; private static final int RsBlas_ctbsv = 69; private static final int RsBlas_ctpsv = 70; private static final int RsBlas_zgemv = 71; private static final int RsBlas_zgbmv = 72; private static final int RsBlas_ztrmv = 73; private static final int RsBlas_ztbmv = 74; private static final int RsBlas_ztpmv = 75; private static final int RsBlas_ztrsv = 76; private static final int RsBlas_ztbsv = 77; private static final int RsBlas_ztpsv = 78; private static final int RsBlas_ssymv = 79; private static final int RsBlas_ssbmv = 80; private static final int RsBlas_sspmv = 81; private static final int RsBlas_sger = 82; private static final int RsBlas_ssyr = 83; private static final int RsBlas_sspr = 84; private static final int RsBlas_ssyr2 = 85; private static final int RsBlas_sspr2 = 86; private static final int RsBlas_dsymv = 87; private static final int RsBlas_dsbmv = 88; private static final int RsBlas_dspmv = 89; private static final int RsBlas_dger = 90; private static final int RsBlas_dsyr = 91; private static final int RsBlas_dspr = 92; private static final int RsBlas_dsyr2 = 93; private static final int RsBlas_dspr2 = 94; private static final int RsBlas_chemv = 95; private static final int RsBlas_chbmv = 96; private static final int RsBlas_chpmv = 97; private static final int RsBlas_cgeru = 98; private static final int RsBlas_cgerc = 99; private static final int RsBlas_cher = 100; private static final int RsBlas_chpr = 101; private static final int RsBlas_cher2 = 102; private static final int RsBlas_chpr2 = 103; private static final int RsBlas_zhemv = 104; private static final int RsBlas_zhbmv = 105; private static final int RsBlas_zhpmv = 106; private static final int RsBlas_zgeru = 107; private static final int RsBlas_zgerc = 108; private static final int RsBlas_zher = 109; private static final int RsBlas_zhpr = 110; private static final int RsBlas_zher2 = 111; private static final int RsBlas_zhpr2 = 112; private static final int RsBlas_sgemm = 113; private static final int RsBlas_ssymm = 114; private static final int RsBlas_ssyrk = 115; private static final int RsBlas_ssyr2k = 116; private static final int RsBlas_strmm = 117; private static final int RsBlas_strsm = 118; private static final int RsBlas_dgemm = 119; private static final int RsBlas_dsymm = 120; private static final int RsBlas_dsyrk = 121; private static final int RsBlas_dsyr2k = 122; private static final int RsBlas_dtrmm = 123; private static final int RsBlas_dtrsm = 124; private static final int RsBlas_cgemm = 125; private static final int RsBlas_csymm = 126; private static final int RsBlas_csyrk = 127; private static final int RsBlas_csyr2k = 128; private static final int RsBlas_ctrmm = 129; private static final int RsBlas_ctrsm = 130; private static final int RsBlas_zgemm = 131; private static final int RsBlas_zsymm = 132; private static final int RsBlas_zsyrk = 133; private static final int RsBlas_zsyr2k = 134; private static final int RsBlas_ztrmm = 135; private static final int RsBlas_ztrsm = 136; private static final int RsBlas_chemm = 137; private static final int RsBlas_cherk = 138; private static final int RsBlas_cher2k = 139; private static final int RsBlas_zhemm = 140; private static final int RsBlas_zherk = 141; private static final int RsBlas_zher2k = 142; // BLAS extensions start here private static final int RsBlas_bnnm = 1000; /** * Create an intrinsic to access BLAS subroutines. * * @param rs The RenderScript context * @return ScriptIntrinsicBLAS */ public static ScriptIntrinsicBLAS create(RenderScript rs) { long id; boolean mUseIncSupp = rs.isUseNative() && android.os.Build.VERSION.SDK_INT < INTRINSIC_API_LEVEL; id = rs.nScriptIntrinsicCreate(13, Element.U32(rs).getID(rs), mUseIncSupp); ScriptIntrinsicBLAS si = new ScriptIntrinsicBLAS(id, rs); si.setIncSupp(mUseIncSupp); return si; } /** * @hide */ @IntDef({NO_TRANSPOSE, TRANSPOSE, CONJ_TRANSPOSE}) @Retention(RetentionPolicy.SOURCE) public @interface Transpose {} /** * @hide */ @IntDef({UPPER, LOWER}) @Retention(RetentionPolicy.SOURCE) public @interface Uplo {} /** * @hide */ @IntDef({NON_UNIT, UNIT}) @Retention(RetentionPolicy.SOURCE) public @interface Diag {} /** * @hide */ @IntDef({LEFT, RIGHT}) @Retention(RetentionPolicy.SOURCE) public @interface Side {} public static final int NO_TRANSPOSE = 111; public static final int TRANSPOSE = 112; public static final int CONJ_TRANSPOSE = 113; public static final int UPPER = 121; public static final int LOWER = 122; public static final int NON_UNIT = 131; public static final int UNIT = 132; public static final int LEFT = 141; public static final int RIGHT = 142; static void validateSide(@Side int Side) { if (Side != LEFT && Side != RIGHT) { throw new RSRuntimeException("Invalid side passed to BLAS"); } } static void validateTranspose(@Transpose int Trans) { if (Trans != NO_TRANSPOSE && Trans != TRANSPOSE && Trans != CONJ_TRANSPOSE) { throw new RSRuntimeException("Invalid transpose passed to BLAS"); } } static void validateConjTranspose(@Transpose int Trans) { if (Trans != NO_TRANSPOSE && Trans != CONJ_TRANSPOSE) { throw new RSRuntimeException("Invalid transpose passed to BLAS"); } } static void validateDiag(@Diag int Diag) { if (Diag != NON_UNIT && Diag != UNIT) { throw new RSRuntimeException("Invalid diag passed to BLAS"); } } static void validateUplo(@Uplo int Uplo) { if (Uplo != UPPER && Uplo != LOWER) { throw new RSRuntimeException("Invalid uplo passed to BLAS"); } } /** * Level 2 BLAS */ static void validateGEMV(Element e, int TransA, Allocation A, Allocation X, int incX, Allocation Y, int incY) { validateTranspose(TransA); int M = A.getType().getY(); int N = A.getType().getX(); if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = -1, expectedYDim = -1; if (TransA == NO_TRANSPOSE) { expectedXDim = 1 + (N - 1) * incX; expectedYDim = 1 + (M - 1) * incY; } else { expectedXDim = 1 + (M - 1) * incX; expectedYDim = 1 + (N - 1) * incY; } if (X.getType().getX() != expectedXDim || Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for GEMV"); } } /** * SGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/d58/sgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void SGEMV(@Transpose int TransA, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) { validateGEMV(Element.F32(mRS), TransA, A, X, incX, Y, incY); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * DGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void DGEMV(@Transpose int TransA, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) { validateGEMV(Element.F64(mRS), TransA, A, X, incX, Y, incY); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * CGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d4/d8a/cgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void CGEMV(@Transpose int TransA, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) { validateGEMV(Element.F32_2(mRS), TransA, A, X, incX, Y, incY); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * ZGEMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/d40/zgemv_8f.html * * @param TransA The type of transpose applied to matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void ZGEMV(@Transpose int TransA, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) { validateGEMV(Element.F64_2(mRS), TransA, A, X, incX, Y, incY); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgemv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * SGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d6/d46/sgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void SGBMV(@Transpose int TransA, int KL, int KU, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) { // GBMV has the same validation requirements as GEMV + KL and KU >= 0 validateGEMV(Element.F32(mRS), TransA, A, X, incX, Y, incY); if (KL < 0 || KU < 0) { throw new RSRuntimeException("KL and KU must be greater than or equal to 0"); } int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha, aID, xID, beta, yID, incX, incY, KL, KU, mUseIncSupp); } /** * DGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d3f/dgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void DGBMV(@Transpose int TransA, int KL, int KU, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) { // GBMV has the same validation requirements as GEMV + KL and KU >= 0 validateGEMV(Element.F64(mRS), TransA, A, X, incX, Y, incY); if (KL < 0 || KU < 0) { throw new RSRuntimeException("KL and KU must be greater than or equal to 0"); } int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha, aID, xID, beta, yID, incX, incY, KL, KU, mUseIncSupp); } /** * CGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/d75/cgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void CGBMV(@Transpose int TransA, int KL, int KU, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) { // GBMV has the same validation requirements as GEMV + KL and KU >= 0 validateGEMV(Element.F32_2(mRS), TransA, A, X, incX, Y, incY); if (KL < 0 || KU < 0) { throw new RSRuntimeException("KL and KU must be greater than or equal to 0"); } int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, KL, KU, mUseIncSupp); } /** * ZGBMV performs one of the matrix-vector operations * y := alpha*A*x + beta*y or y := alpha*A**T*x + beta*y or y := alpha*A**H*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d9/d46/zgbmv_8f.html * * Note: For a M*N matrix, the input Allocation should also be of size M*N (dimY = M, dimX = N), * but only the region M*(KL+KU+1) will be referenced. The following subroutine can is an * example showing how to convert the original matrix 'a' to row-based band matrix 'b'. * for i in range(0, m): * for j in range(max(0, i-kl), min(i+ku+1, n)): * b[i, j-i+kl] = a[i, j] * * @param TransA The type of transpose applied to matrix A. * @param KL The number of sub-diagonals of the matrix A. * @param KU The number of super-diagonals of the matrix A. * @param alpha The scalar alpha. * @param A The input allocation contains the band matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void ZGBMV(@Transpose int TransA, int KL, int KU, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) { // GBMV has the same validation requirements as GEMV + KL and KU >= 0 validateGEMV(Element.F64_2(mRS), TransA, A, X, incX, Y, incY); if (KL < 0 || KU < 0) { throw new RSRuntimeException("KL and KU must be greater than or equal to 0"); } int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgbmv, TransA, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, KL, KU, mUseIncSupp); } static void validateTRMV(Element e, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { validateTranspose(TransA); validateUplo(Uplo); validateDiag(Diag); int N = A.getType().getY(); if (A.getType().getX() != N) { throw new RSRuntimeException("A must be a square matrix for TRMV"); } if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (incX <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for TRMV"); } } static int validateTPMV(Element e, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { validateTranspose(TransA); validateUplo(Uplo); validateDiag(Diag); if (!Ap.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (Ap.getType().getY() > 1) { throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1"); } int N = (int)Math.sqrt((double)Ap.getType().getX() * 2); //is it really doing anything? if (Ap.getType().getX() != ((N * (N+1)) / 2)) { throw new RSRuntimeException("Invalid dimension for Ap"); } if (incX <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for TPMV"); } return N; } /** * STRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/de/d45/strmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/dc/d7e/dtrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/df/d78/ctrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTRMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d0/dd1/ztrmv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTRMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * STBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/d6/d7d/stbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBMV has the same requirements as TRMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/df/d29/dtbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBMV has the same requirements as TRMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d3/dcd/ctbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBMV has the same requirements as TRMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTBMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d3/d39/ztbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTBMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBMV has the same requirements as TRMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztbmv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * STPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/db/db1/stpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { int N = validateTPMV(Element.F32(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, apID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x * * Details: http://www.netlib.org/lapack/explore-html/dc/dcd/dtpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { int N = validateTPMV(Element.F64(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, apID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d4/dbb/ctpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { int N = validateTPMV(Element.F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, apID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTPMV performs one of the matrix-vector operations * x := A*x or x := A**T*x or x := A**H*x * * Details: http://www.netlib.org/lapack/explore-html/d2/d9e/ztpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTPMV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { int N = validateTPMV(Element.F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztpmv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, apID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * STRSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d2a/strsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { // TRSV is the same as TRMV validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTRSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d6/d96/dtrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { // TRSV is the same as TRMV validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTRSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/dc8/ctrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { // TRSV is the same as TRMV validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTRSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d1/d2f/ztrsv_8f.html * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTRSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation A, Allocation X, int incX) { // TRSV is the same as TRMV validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * STBSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d1f/stbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBSV is the same as TRMV + K >= 0 validateTRMV(Element.F32(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); if (K < 0) { throw new RSRuntimeException("Number of diagonals must be positive"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTBSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/dcf/dtbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBSV is the same as TRMV + K >= 0 validateTRMV(Element.F64(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); if (K < 0) { throw new RSRuntimeException("Number of diagonals must be positive"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, aID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTBSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d9/d5f/ctbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBSV is the same as TRMV + K >= 0 validateTRMV(Element.F32_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); if (K < 0) { throw new RSRuntimeException("Number of diagonals must be positive"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTBSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d4/d5a/ztbsv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param K The number of off-diagonals of the matrix A * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTBSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, int K, Allocation A, Allocation X, int incX) { // TBSV is the same as TRMV + K >= 0 validateTRMV(Element.F64_2(mRS), Uplo, TransA, Diag, A, X, incX); int N = A.getType().getY(); if (K < 0) { throw new RSRuntimeException("Number of diagonals must be positive"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztbsv, TransA, 0, 0, Uplo, Diag, 0, N, K, 0, 0, aID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * STPSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d0/d7c/stpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void STPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { // TPSV is same as TPMV int N = validateTPMV(Element.F32(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_stpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, apID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DTPSV solves one of the systems of equations * A*x = b or A**T*x = b * * Details: http://www.netlib.org/lapack/explore-html/d9/d84/dtpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void DTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { // TPSV is same as TPMV int N = validateTPMV(Element.F64(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, apID, xID, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * CTPSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/d8/d56/ctpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void CTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { // TPSV is same as TPMV int N = validateTPMV(Element.F32_2(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, apID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * ZTPSV solves one of the systems of equations * A*x = b or A**T*x = b or A**H*x = b * * Details: http://www.netlib.org/lapack/explore-html/da/d57/ztpsv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the matrix is an upper or lower triangular matrix. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param Ap The input allocation contains packed matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. */ public void ZTPSV(@Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Allocation Ap, Allocation X, int incX) { // TPSV is same as TPMV int N = validateTPMV(Element.F64_2(mRS), Uplo, TransA, Diag, Ap, X, incX); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztpsv, TransA, 0, 0, Uplo, Diag, 0, N, 0, 0, 0, apID, xID, 0, 0, 0, incX, 0, 0, 0, mUseIncSupp); } /** * Level 2, S and D only */ static int validateSYMV(Element e, @Uplo int Uplo, Allocation A, Allocation X, Allocation Y, int incX, int incY) { validateUplo(Uplo); int N = A.getType().getY(); if (A.getType().getX() != N) { throw new RSRuntimeException("A must be a square matrix for SYMV"); } if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e) ) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for SYMV"); } int expectedYDim = 1 + (N - 1) * incY; if (Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for SYMV"); } return N; } static int validateSPMV(Element e, @Uplo int Uplo, Allocation Ap, Allocation X, int incX, Allocation Y, int incY) { validateUplo(Uplo); if (!Ap.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (Ap.getType().getY() > 1) { throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1"); } int N = (int)Math.sqrt((double)Ap.getType().getX() * 2); if (Ap.getType().getX() != ((N * (N+1)) / 2)) { throw new RSRuntimeException("Invalid dimension for Ap"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for SPMV"); } int expectedYDim = 1 + (N - 1) * incY; if (Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for SPMV"); } return N; } static void validateGER(Element e, Allocation X, int incX, Allocation Y, int incY, Allocation A) { if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e) ) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } int M = A.getType().getY(); int N = A.getType().getX(); if (N < 1 || M < 1) { throw new RSRuntimeException("M and N must be 1 or greater for GER"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (M - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for GER"); } int expectedYDim = 1 + (N - 1) * incY; if (Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for GER"); } } static int validateSYR(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation A) { validateUplo(Uplo); if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } int N = A.getType().getX(); if (X.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (N != A.getType().getY()) { throw new RSRuntimeException("A must be a symmetric matrix"); } if (incX <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for SYR"); } return N; } static int validateSPR(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Ap) { validateUplo(Uplo); if (!Ap.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (Ap.getType().getY() > 1) { throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1"); } int N = (int)Math.sqrt((double)Ap.getType().getX() * 2); if (Ap.getType().getX() != ((N * (N+1)) / 2)) { throw new RSRuntimeException("Invalid dimension for Ap"); } if (incX <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for SPR"); } return N; } static int validateSYR2(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Y, int incY, Allocation A) { validateUplo(Uplo); if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } int N = A.getType().getX(); if (N != A.getType().getY()) { throw new RSRuntimeException("A must be a symmetric matrix"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; int expectedYDim = 1 + (N - 1) * incY; if (X.getType().getX() != expectedXDim || Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for SYR"); } return N; } static int validateSPR2(Element e, @Uplo int Uplo, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) { validateUplo(Uplo); if (!Ap.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } if (Ap.getType().getY() > 1) { throw new RSRuntimeException("Ap must have a Y dimension of 0 or 1"); } int N = (int)Math.sqrt((double)Ap.getType().getX() * 2); if (Ap.getType().getX() != ((N * (N+1)) / 2)) { throw new RSRuntimeException("Invalid dimension for Ap"); } if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (N - 1) * incX; int expectedYDim = 1 + (N - 1) * incY; if (X.getType().getX() != expectedXDim || Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for SPR2"); } return N; } /** * SSYMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d94/ssymv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void SSYMV(@Uplo int Uplo, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) { int N = validateSYMV(Element.F32(mRS), Uplo, A, X, Y, incX, incY); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssymv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * SSBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d3/da1/ssbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void SSBMV(@Uplo int Uplo, int K, float alpha, Allocation A, Allocation X, int incX, float beta, Allocation Y, int incY) { // SBMV is the same as SYMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } int N = validateSYMV(Element.F32(mRS), Uplo, A, X, Y, incX, incY); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * SSPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/d68/sspmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void SSPMV(@Uplo int Uplo, float alpha, Allocation Ap, Allocation X, int incX, float beta, Allocation Y, int incY) { int N = validateSPMV(Element.F32(mRS), Uplo, Ap, X, incX, Y, incY); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, apID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * SGER performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d5c/sger_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. */ public void SGER(float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { int M = A.getType().getY(); int N = A.getType().getX(); validateGER(Element.F32(mRS), X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sger, 0, 0, 0, 0, 0, M, N, 0, alpha, xID, yID, 0.f, aID, incX, incY, 0, 0, mUseIncSupp); } /** * SSYR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d6/dac/ssyr_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. */ public void SSYR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation A) { int N = validateSYR(Element.F32(mRS), Uplo, X, incX, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, aID, 0.f, 0, incX, 0, 0, 0, mUseIncSupp); } /** * SSPR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d2/d9b/sspr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}. */ public void SSPR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Ap) { int N = validateSPR(Element.F32(mRS), Uplo, X, incX, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, apID, 0.f, 0, incX, 0, 0, 0, mUseIncSupp); } /** * SSYR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. */ public void SSYR2(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { int N = validateSYR2(Element.F32(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, yID, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * SSPR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d3e/sspr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32}. */ public void SSPR2(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) { int N = validateSPR2(Element.F32(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sspr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, yID, 0, apID, incX, incY, 0, 0, mUseIncSupp); } /** * DSYMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/dbe/dsymv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void DSYMV(@Uplo int Uplo, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) { int N = validateSYMV(Element.F64(mRS), Uplo, A, X, Y, incX, incY); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsymv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * DSBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d8/d1e/dsbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void DSBMV(@Uplo int Uplo, int K, double alpha, Allocation A, Allocation X, int incX, double beta, Allocation Y, int incY) { // SBMV is the same as SYMV + K >= 0 if (K < 0) { throw new RSRuntimeException("K must be greater than or equal to 0"); } int N = validateSYMV(Element.F64(mRS), Uplo, A, X, Y, incX, incY); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha, aID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * DSPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d4/d85/dspmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void DSPMV(@Uplo int Uplo, double alpha, Allocation Ap, Allocation X, int incX, double beta, Allocation Y, int incY) { int N = validateSPMV(Element.F64(mRS), Uplo, Ap, X, incX, Y, incY); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, apID, xID, beta, yID, incX, incY, 0, 0, mUseIncSupp); } /** * DGER performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/dc/da8/dger_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. */ public void DGER(double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { int M = A.getType().getY(); int N = A.getType().getX(); validateGER(Element.F64(mRS), X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dger, 0, 0, 0, 0, 0, M, N, 0, alpha, xID, yID, 0.f, aID, incX, incY, 0, 0, mUseIncSupp); } /** * DSYR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/d3/d60/dsyr_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. */ public void DSYR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation A) { int N = validateSYR(Element.F64(mRS), Uplo, X, incX, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, aID, 0.f, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DSPR performs the rank 1 operation * A := alpha*x*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/dd/dba/dspr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}. */ public void DSPR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Ap) { int N = validateSPR(Element.F64(mRS), Uplo, X, incX, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, apID, 0.f, 0, incX, 0, 0, 0, mUseIncSupp); } /** * DSYR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. */ public void DSYR2(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { int N = validateSYR2(Element.F64(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, yID, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * DSPR2 performs the symmetric rank 2 operation * A := alpha*x*y**T + alpha*y*x**T + A * * Details: http://www.netlib.org/lapack/explore-html/dd/d9e/dspr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64}. */ public void DSPR2(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) { int N = validateSPR2(Element.F64(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dspr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, xID, yID, 0, apID, incX, incY, 0, 0, mUseIncSupp); } /** * Level 2, C and Z only */ static void validateGERU(Element e, Allocation X, int incX, Allocation Y, int incY, Allocation A) { if (!A.getType().getElement().isCompatible(e) || !X.getType().getElement().isCompatible(e) || !Y.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (X.getType().getY() > 1 || Y.getType().getY() > 1) { throw new RSRuntimeException("BLAS vectors must have Y dimension of 0 or 1"); } int M = A.getType().getY(); int N = A.getType().getX(); if (incX <= 0 || incY <= 0) { throw new RSRuntimeException("Vector increments must be greater than 0"); } int expectedXDim = 1 + (M - 1) * incX; if (X.getType().getX() != expectedXDim) { throw new RSRuntimeException("Incorrect vector dimensions for GERU"); } int expectedYDim = 1 + (N - 1) * incY; if (Y.getType().getX() != expectedYDim) { throw new RSRuntimeException("Incorrect vector dimensions for GERU"); } } /** * CHEMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d7/d51/chemv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void CHEMV(@Uplo int Uplo, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) { // HEMV is the same as SYR2 validation-wise int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chemv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * CHBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/db/dc2/chbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void CHBMV(@Uplo int Uplo, int K, Float2 alpha, Allocation A, Allocation X, int incX, Float2 beta, Allocation Y, int incY) { // HBMV is the same as SYR2 validation-wise int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A); if (K < 0) { throw new RSRuntimeException("K must be 0 or greater for HBMV"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * CHPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d2/d06/chpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void CHPMV(@Uplo int Uplo, Float2 alpha, Allocation Ap, Allocation X, int incX, Float2 beta, Allocation Y, int incY) { // HPMV is the same as SPR2 int N = validateSPR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, apID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * CGERU performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/db/d5f/cgeru_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CGERU(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { validateGERU(Element.F32_2(mRS), X, incX, Y, incY, A); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgeru, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * CGERC performs the rank 1 operation * A := alpha*x*y**H + A * * Details: http://www.netlib.org/lapack/explore-html/dd/d84/cgerc_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CGERC(Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { // same as GERU validateGERU(Element.F32_2(mRS), X, incX, Y, incY, A); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgerc, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * CHER performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d3/d6d/cher_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CHER(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation A) { // same as SYR int N = validateSYR(Element.F32_2(mRS), Uplo, X, incX, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, xID, 0, 0, 0, aID, incX, 0, 0, 0, mUseIncSupp); } /** * CHPR performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/db/dcd/chpr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CHPR(@Uplo int Uplo, float alpha, Allocation X, int incX, Allocation Ap) { // equivalent to SPR for validation int N = validateSPR(Element.F32_2(mRS), Uplo, X, incX, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, xID, 0, 0, 0, apID, incX, 0, 0, 0, mUseIncSupp); } /** * CHER2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/db/d87/cher2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CHER2(@Uplo int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { // same as SYR2 int N = validateSYR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * CHPR2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F32_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F32_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F32_2}. */ public void CHPR2(@Uplo int Uplo, Float2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) { // same as SPR2 int N = validateSPR2(Element.F32_2(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chpr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, apID, incX, incY, 0, 0, mUseIncSupp); } /** * ZHEMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/ddd/zhemv_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void ZHEMV(@Uplo int Uplo, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) { // HEMV is the same as SYR2 validation-wise int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhemv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * ZHBMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d3/d1a/zhbmv_8f.html * * Note: For a N*N matrix, the input Allocation should also be of size N*N (dimY = N, dimX = N), * but only the region N*(K+1) will be referenced. The following subroutine can is an * example showing how to convert a UPPER trianglar matrix 'a' to row-based band matrix 'b'. * for i in range(0, n): * for j in range(i, min(i+k+1, n)): * b[i, j-i] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the band matrix A is being supplied. * @param K The number of off-diagonals of the matrix A * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void ZHBMV(@Uplo int Uplo, int K, Double2 alpha, Allocation A, Allocation X, int incX, Double2 beta, Allocation Y, int incY) { // HBMV is the same as SYR2 validation-wise int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A); if (K < 0) { throw new RSRuntimeException("K must be 0 or greater for HBMV"); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhbmv, 0, 0, 0, Uplo, 0, 0, N, K, alpha.x, alpha.y, aID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * ZHPMV performs the matrix-vector operation * y := alpha*A*x + beta*y * * Details: http://www.netlib.org/lapack/explore-html/d0/d60/zhpmv_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part of the matrix A is supplied in packed form. * @param alpha The scalar alpha. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param beta The scalar beta. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. */ public void ZHPMV(@Uplo int Uplo, Double2 alpha, Allocation Ap, Allocation X, int incX, Double2 beta, Allocation Y, int incY) { // HPMV is the same as SPR2 int N = validateSPR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpmv, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, apID, xID, beta.x, beta.y, yID, incX, incY, 0, 0, mUseIncSupp); } /** * ZGERU performs the rank 1 operation * A := alpha*x*y**T + A * * Details: http://www.netlib.org/lapack/explore-html/d7/d12/zgeru_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZGERU(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { validateGERU(Element.F64_2(mRS), X, incX, Y, incY, A); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgeru, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * ZGERC performs the rank 1 operation * A := alpha*x*y**H + A * * Details: http://www.netlib.org/lapack/explore-html/d3/dad/zgerc_8f.html * * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZGERC(Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { // same as GERU validateGERU(Element.F64_2(mRS), X, incX, Y, incY, A); int M = A.getType().getY(); int N = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgerc, 0, 0, 0, 0, 0, M, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * ZHER performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/de/d0e/zher_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZHER(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation A) { // same as SYR int N = validateSYR(Element.F64_2(mRS), Uplo, X, incX, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, xID, 0, 0, 0, aID, incX, 0, 0, 0, mUseIncSupp); } /** * ZHPR performs the rank 1 operation * A := alpha*x*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/de/de1/zhpr_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZHPR(@Uplo int Uplo, double alpha, Allocation X, int incX, Allocation Ap) { // equivalent to SPR for validation int N = validateSPR(Element.F64_2(mRS), Uplo, X, incX, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpr, 0, 0, 0, Uplo, 0, 0, N, 0, alpha, 0, xID, 0, 0, 0, apID, incX, 0, 0, 0, mUseIncSupp); } /** * ZHER2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/da/d8a/zher2_8f.html * * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZHER2(@Uplo int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation A) { // same as SYR2 int N = validateSYR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, A); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, aID, incX, incY, 0, 0, mUseIncSupp); } /** * ZHPR2 performs the symmetric rank 2 operation * A := alpha*x*y**H + alpha*y*x**H + A * * Details: http://www.netlib.org/lapack/explore-html/d5/d52/zhpr2_8f.html * * Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, * The following subroutine can is an example showing how to convert a UPPER trianglar matrix * 'a' to packed matrix 'b'. * k = 0 * for i in range(0, n): * for j in range(i, n): * b[k++] = a[i, j] * * @param Uplo Specifies whether the upper or lower triangular part is to be supplied in the packed form. * @param alpha The scalar alpha. * @param X The input allocation contains vector x, supported elements type {@link Element#F64_2}. * @param incX The increment for the elements of vector x, must be larger than zero. * @param Y The input allocation contains vector y, supported elements type {@link Element#F64_2}. * @param incY The increment for the elements of vector y, must be larger than zero. * @param Ap The input allocation contains matrix A, supported elements type {@link Element#F64_2}. */ public void ZHPR2(@Uplo int Uplo, Double2 alpha, Allocation X, int incX, Allocation Y, int incY, Allocation Ap) { // same as SPR2 int N = validateSPR2(Element.F64_2(mRS), Uplo, X, incX, Y, incY, Ap); boolean mUseIncSupp = isIncSupp(); long apID = Ap.getID(mRS); long xID = X.getID(mRS); long yID = Y.getID(mRS); if (mUseIncSupp) { apID = getDummyAlloc(Ap); xID = getDummyAlloc(X); yID = getDummyAlloc(Y); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhpr2, 0, 0, 0, Uplo, 0, 0, N, 0, alpha.x, alpha.y, xID, yID, 0, 0, apID, incX, incY, 0, 0, mUseIncSupp); } /** * Level 3 BLAS */ static void validateL3(Element e, int TransA, int TransB, int Side, Allocation A, Allocation B, Allocation C) { int aM = -1, aN = -1, bM = -1, bN = -1, cM = -1, cN = -1; if ((A != null && !A.getType().getElement().isCompatible(e)) || (B != null && !B.getType().getElement().isCompatible(e)) || (C != null && !C.getType().getElement().isCompatible(e))) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } if (C == null) { //since matrix C is used to store the result, it cannot be null. throw new RSRuntimeException("Allocation C cannot be null"); } cM = C.getType().getY(); cN = C.getType().getX(); if (Side == RIGHT) { if ((A == null && B != null) || (A != null && B == null)) { throw new RSRuntimeException("Provided Matrix A without Matrix B, or vice versa"); } if (B != null) { bM = A.getType().getY(); bN = A.getType().getX(); } if (A != null) { aM = B.getType().getY(); aN = B.getType().getX(); } } else { if (A != null) { if (TransA == TRANSPOSE || TransA == CONJ_TRANSPOSE) { aN = A.getType().getY(); aM = A.getType().getX(); } else { aM = A.getType().getY(); aN = A.getType().getX(); } } if (B != null) { if (TransB == TRANSPOSE || TransB == CONJ_TRANSPOSE) { bN = B.getType().getY(); bM = B.getType().getX(); } else { bM = B.getType().getY(); bN = B.getType().getX(); } } } if (A != null && B != null && C != null) { if (aN != bM || aM != cM || bN != cN) { throw new RSRuntimeException("Called BLAS with invalid dimensions"); } } else if (A != null && C != null) { // A and C only, for SYRK if (cM != cN) { throw new RSRuntimeException("Matrix C is not symmetric"); } if (aM != cM) { throw new RSRuntimeException("Called BLAS with invalid dimensions"); } } else if (A != null && B != null) { // A and B only if (aN != bM) { throw new RSRuntimeException("Called BLAS with invalid dimensions"); } } } /** * SGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T * * Details: http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32}. */ public void SGEMM(@Transpose int TransA, @Transpose int TransB, float alpha, Allocation A, Allocation B, float beta, Allocation C) { validateTranspose(TransA); validateTranspose(TransB); validateL3(Element.F32(mRS), TransA, TransB, 0, A, B, C); int M = -1, N = -1, K = -1; if (TransA != NO_TRANSPOSE) { M = A.getType().getX(); K = A.getType().getY(); } else { M = A.getType().getY(); K = A.getType().getX(); } if (TransB != NO_TRANSPOSE) { N = B.getType().getY(); } else { N = B.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_sgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * DGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T * * Details: http://www.netlib.org/lapack/explore-html/d7/d2b/dgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64}. */ public void DGEMM(@Transpose int TransA, @Transpose int TransB, double alpha, Allocation A, Allocation B, double beta, Allocation C) { validateTranspose(TransA); validateTranspose(TransB); validateL3(Element.F64(mRS), TransA, TransB, 0, A, B, C); int M = -1, N = -1, K = -1; if (TransA != NO_TRANSPOSE) { M = A.getType().getX(); K = A.getType().getY(); } else { M = A.getType().getY(); K = A.getType().getX(); } if (TransB != NO_TRANSPOSE) { N = B.getType().getY(); } else { N = B.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * CGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H * * Details: http://www.netlib.org/lapack/explore-html/d6/d5b/cgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CGEMM(@Transpose int TransA, @Transpose int TransB, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) { validateTranspose(TransA); validateTranspose(TransB); validateL3(Element.F32_2(mRS), TransA, TransB, 0, A, B, C); int M = -1, N = -1, K = -1; if (TransA != NO_TRANSPOSE) { M = A.getType().getX(); K = A.getType().getY(); } else { M = A.getType().getY(); K = A.getType().getX(); } if (TransB != NO_TRANSPOSE) { N = B.getType().getY(); } else { N = B.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZGEMM performs one of the matrix-matrix operations * C := alpha*op(A)*op(B) + beta*C where op(X) is one of op(X) = X or op(X) = X**T or op(X) = X**H * * Details: http://www.netlib.org/lapack/explore-html/d7/d76/zgemm_8f.html * * @param TransA The type of transpose applied to matrix A. * @param TransB The type of transpose applied to matrix B. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2 * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2 * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2 */ public void ZGEMM(@Transpose int TransA, @Transpose int TransB, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) { validateTranspose(TransA); validateTranspose(TransB); validateL3(Element.F64_2(mRS), TransA, TransB, 0, A, B, C); int M = -1, N = -1, K = -1; if (TransA != NO_TRANSPOSE) { M = A.getType().getX(); K = A.getType().getY(); } else { M = A.getType().getY(); K = A.getType().getX(); } if (TransB != NO_TRANSPOSE) { N = B.getType().getY(); } else { N = B.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zgemm, TransA, TransB, 0, 0, 0, M, N, K, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * SSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d7/d42/ssymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32}. */ public void SSYMM(@Side int Side, @Uplo int Uplo, float alpha, Allocation A, Allocation B, float beta, Allocation C) { validateSide(Side); validateUplo(Uplo); //For SYMM, Matrix A should be symmetric if (A.getType().getX() != A.getType().getY()) { throw new RSRuntimeException("Matrix A is not symmetric"); } validateL3(Element.F32(mRS), 0, 0, Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * DSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d8/db0/dsymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64}. */ public void DSYMM(@Side int Side, @Uplo int Uplo, double alpha, Allocation A, Allocation B, double beta, Allocation C) { validateSide(Side); validateUplo(Uplo); if (A.getType().getX() != A.getType().getY()) { throw new RSRuntimeException("Matrix A is not symmetric"); } validateL3(Element.F64(mRS), 0, 0, Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * CSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/db/d59/csymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CSYMM(@Side int Side, @Uplo int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) { validateSide(Side); validateUplo(Uplo); if (A.getType().getX() != A.getType().getY()) { throw new RSRuntimeException("Matrix A is not symmetric"); } validateL3(Element.F32_2(mRS), 0, 0, Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZSYMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d51/zsymm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZSYMM(@Side int Side, @Uplo int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) { validateSide(Side); validateUplo(Uplo); if (A.getType().getX() != A.getType().getY()) { throw new RSRuntimeException("Matrix A is not symmetric"); } validateL3(Element.F64_2(mRS), 0, 0, Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsymm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * SSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d0/d40/ssyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32}. */ public void SSYRK(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, float beta, Allocation C) { validateTranspose(Trans); validateUplo(Uplo); validateL3(Element.F32(mRS), Trans, 0, 0, A, null, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, aID, 0, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * DSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/dc/d05/dsyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64}. */ public void DSYRK(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, double beta, Allocation C) { validateTranspose(Trans); validateUplo(Uplo); validateL3(Element.F64(mRS), Trans, 0, 0, A, null, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, aID, 0, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * CSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d3/d6a/csyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CSYRK(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Float2 beta, Allocation C) { validateTranspose(Trans); validateUplo(Uplo); validateL3(Element.F32_2(mRS), Trans, 0, 0, A, null, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, aID, 0, beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0, mUseIncSupp); } /** * ZSYRK performs one of the symmetric rank k operations * C := alpha*A*A**T + beta*C or C := alpha*A**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/de/d54/zsyrk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZSYRK(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Double2 beta, Allocation C) { validateTranspose(Trans); validateUplo(Uplo); validateL3(Element.F64_2(mRS), Trans, 0, 0, A, null, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsyrk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, aID, 0, beta.x, beta.y, C.getID(mRS), 0, 0, 0, 0, mUseIncSupp); } static void validateSYR2K(Element e, @Transpose int Trans, Allocation A, Allocation B, Allocation C) { validateTranspose(Trans); if (!A.getType().getElement().isCompatible(e) || !B.getType().getElement().isCompatible(e) || !C.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } int Cdim = -1; // A is n x k if no transpose, k x n if transpose // C is n x n if (Trans == TRANSPOSE) { // check columns versus C Cdim = A.getType().getX(); } else { // check rows versus C Cdim = A.getType().getY(); } if (C.getType().getX() != Cdim || C.getType().getY() != Cdim) { throw new RSRuntimeException("Invalid symmetric matrix in SYR2K"); } // A dims == B dims if (A.getType().getX() != B.getType().getX() || A.getType().getY() != B.getType().getY()) { throw new RSRuntimeException("Invalid A and B in SYR2K"); } } /** * SSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d3d/ssyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32}. */ public void SSYR2K(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, Allocation B, float beta, Allocation C) { validateUplo(Uplo); validateSYR2K(Element.F32(mRS), Trans, A, B, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_ssyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * DSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/dec/dsyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64}. */ public void DSYR2K(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, Allocation B, double beta, Allocation C) { validateUplo(Uplo); validateSYR2K(Element.F64(mRS), Trans, A, B, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dsyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha, aID, bID, beta, cID, 0, 0, 0, 0, mUseIncSupp); } /** * CSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/de/d7e/csyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CSYR2K(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) { validateUplo(Uplo); validateSYR2K(Element.F32_2(mRS), Trans, A, B, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_csyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZSYR2K performs one of the symmetric rank 2k operations * C := alpha*A*B**T + alpha*B*A**T + beta*C or C := alpha*A**T*B + alpha*B**T*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/df/d20/zsyr2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZSYR2K(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) { validateUplo(Uplo); validateSYR2K(Element.F64_2(mRS), Trans, A, B, C); int K = -1; if (Trans != NO_TRANSPOSE) { K = A.getType().getY(); } else { K = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zsyr2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), K, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } static void validateTRMM(Element e, @Side int Side, @Transpose int TransA, Allocation A, Allocation B) { validateSide(Side); validateTranspose(TransA); int aM = -1, aN = -1, bM = -1, bN = -1; if (!A.getType().getElement().isCompatible(e) || !B.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } aM = A.getType().getY(); aN = A.getType().getX(); if (aM != aN) { throw new RSRuntimeException("Called TRMM with a non-symmetric matrix A"); } bM = B.getType().getY(); bN = B.getType().getX(); if (Side == LEFT) { if (aN != bM) { throw new RSRuntimeException("Called TRMM with invalid matrices"); } } else { if (bN != aM) { throw new RSRuntimeException("Called TRMM with invalid matrices"); } } } /** * STRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/df/d01/strmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32}. */ public void STRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, float alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRMM(Element.F32(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha, aID, bID, 0.f, 0, 0, 0, 0, 0, mUseIncSupp); } /** * DTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/dd/d19/dtrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64}. */ public void DTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, double alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRMM(Element.F64(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha, aID, bID, 0, 0, 0, 0, 0, 0, mUseIncSupp); } /** * CTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d4/d9b/ctrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. */ public void CTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Float2 alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRMM(Element.F32_2(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha.x, alpha.y, aID, bID, 0, 0, 0, 0, 0, 0, 0, mUseIncSupp); } /** * ZTRMM performs one of the matrix-matrix operations * B := alpha*op(A)*B or B := alpha*B*op(A) * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d8/de1/ztrmm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. */ public void ZTRMM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Double2 alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRMM(Element.F64_2(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrmm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha.x, alpha.y, aID, bID, 0, 0, 0, 0, 0, 0, 0, mUseIncSupp); } static void validateTRSM(Element e, @Side int Side, @Transpose int TransA, Allocation A, Allocation B) { int adim = -1, bM = -1, bN = -1; validateSide(Side); validateTranspose(TransA); if (!A.getType().getElement().isCompatible(e) || !B.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } adim = A.getType().getX(); if (adim != A.getType().getY()) { // this may be unnecessary, the restriction could potentially be relaxed // A needs to contain at least that symmetric matrix but could theoretically be larger // for now we assume adapters are sufficient, will reevaluate in the future throw new RSRuntimeException("Called TRSM with a non-symmetric matrix A"); } bM = B.getType().getY(); bN = B.getType().getX(); if (Side == LEFT) { // A is M*M if (adim != bM) { throw new RSRuntimeException("Called TRSM with invalid matrix dimensions"); } } else { // A is N*N if (adim != bN) { throw new RSRuntimeException("Called TRSM with invalid matrix dimensions"); } } } /** * STRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/d2/d8b/strsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32}. */ public void STRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, float alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRSM(Element.F32(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Single(getID(mRS), RsBlas_strsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha, aID, bID, 0, 0, 0, 0, 0, 0, mUseIncSupp); } /** * DTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T * * Details: http://www.netlib.org/lapack/explore-html/de/da7/dtrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64}. */ public void DTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, double alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRSM(Element.F64(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Double(getID(mRS), RsBlas_dtrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha, aID, bID, 0, 0, 0, 0, 0, 0, mUseIncSupp); } /** * CTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/de/d30/ctrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. */ public void CTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Float2 alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRSM(Element.F32_2(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_ctrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha.x, alpha.y, aID, bID, 0, 0, 0, 0, 0, 0, 0, mUseIncSupp); } /** * ZTRSM solves one of the matrix equations * op(A)*X := alpha*B or X*op(A) := alpha*B * op(A) is one of op(A) = A or op(A) = A**T or op(A) = A**H * * Details: http://www.netlib.org/lapack/explore-html/d1/d39/ztrsm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether matrix A is upper or lower triangular. * @param TransA The type of transpose applied to matrix A. * @param Diag Specifies whether or not A is unit triangular. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. */ public void ZTRSM(@Side int Side, @Uplo int Uplo, @Transpose int TransA, @Diag int Diag, Double2 alpha, Allocation A, Allocation B) { validateUplo(Uplo); validateDiag(Diag); validateTRSM(Element.F64_2(mRS), Side, TransA, A, B); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_ztrsm, TransA, 0, Side, Uplo, Diag, B.getType().getY(), B.getType().getX(), 0, alpha.x, alpha.y, aID, bID, 0, 0, 0, 0, 0, 0, 0, mUseIncSupp); } static void validateHEMM(Element e, @Side int Side, Allocation A, Allocation B, Allocation C) { validateSide(Side); if (!A.getType().getElement().isCompatible(e) || !B.getType().getElement().isCompatible(e) || !C.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } // A must be square; can potentially be relaxed similar to TRSM int adim = A.getType().getX(); if (adim != A.getType().getY()) { throw new RSRuntimeException("Called HEMM with non-square A"); } if ((Side == LEFT && adim != B.getType().getY()) || (Side == RIGHT && adim != B.getType().getX())) { throw new RSRuntimeException("Called HEMM with invalid B"); } if (B.getType().getX() != C.getType().getX() || B.getType().getY() != C.getType().getY()) { throw new RSRuntimeException("Called HEMM with mismatched B and C"); } } /** * CHEMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d3/d66/chemm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CHEMM(@Side int Side, @Uplo int Uplo, Float2 alpha, Allocation A, Allocation B, Float2 beta, Allocation C) { validateUplo(Uplo); validateHEMM(Element.F32_2(mRS), Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_chemm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZHEMM performs one of the matrix-matrix operations * C := alpha*A*B + beta*C or C := alpha*B*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d6/d3e/zhemm_8f.html * * @param Side Specifies whether the symmetric matrix A appears on the left or right. * @param Uplo Specifies whether the upper or lower triangular part is to be referenced. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZHEMM(@Side int Side, @Uplo int Uplo, Double2 alpha, Allocation A, Allocation B, Double2 beta, Allocation C) { validateUplo(Uplo); validateHEMM(Element.F64_2(mRS), Side, A, B, C); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zhemm, 0, 0, Side, Uplo, 0, C.getType().getY(), C.getType().getX(), 0, alpha.x, alpha.y, aID, bID, beta.x, beta.y, cID, 0, 0, 0, 0, mUseIncSupp); } static void validateHERK(Element e, @Transpose int Trans, Allocation A, Allocation C) { if (!A.getType().getElement().isCompatible(e) || !C.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } validateConjTranspose(Trans); int cdim = C.getType().getX(); if (cdim != C.getType().getY()) { throw new RSRuntimeException("Called HERK with non-square C"); } if (Trans == NO_TRANSPOSE) { if (cdim != A.getType().getY()) { throw new RSRuntimeException("Called HERK with invalid A"); } } else { if (cdim != A.getType().getX()) { throw new RSRuntimeException("Called HERK with invalid A"); } } } /** * CHERK performs one of the hermitian rank k operations * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d8/d52/cherk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CHERK(@Uplo int Uplo, @Transpose int Trans, float alpha, Allocation A, float beta, Allocation C) { validateUplo(Uplo); validateHERK(Element.F32_2(mRS), Trans, A, C); int k = 0; if (Trans == CONJ_TRANSPOSE) { k = A.getType().getY(); } else { k = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cherk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha, 0, aID, 0, beta, 0, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZHERK performs one of the hermitian rank k operations * C := alpha*A*A**H + beta*C or C := alpha*A**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/db1/zherk_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZHERK(@Uplo int Uplo, @Transpose int Trans, double alpha, Allocation A, double beta, Allocation C) { validateUplo(Uplo); validateHERK(Element.F64_2(mRS), Trans, A, C); int k = 0; if (Trans == CONJ_TRANSPOSE) { k = A.getType().getY(); } else { k = A.getType().getX(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zherk, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha, 0, aID, 0, beta, 0, cID, 0, 0, 0, 0, mUseIncSupp); } static void validateHER2K(Element e, @Transpose int Trans, Allocation A, Allocation B, Allocation C) { if (!A.getType().getElement().isCompatible(e) || !B.getType().getElement().isCompatible(e) || !C.getType().getElement().isCompatible(e)) { throw new RSRuntimeException("Called BLAS with wrong Element type"); } validateConjTranspose(Trans); int cdim = C.getType().getX(); if (cdim != C.getType().getY()) { throw new RSRuntimeException("Called HER2K with non-square C"); } if (Trans == NO_TRANSPOSE) { if (A.getType().getY() != cdim) { throw new RSRuntimeException("Called HER2K with invalid matrices"); } } else { if (A.getType().getX() != cdim) { throw new RSRuntimeException("Called HER2K with invalid matrices"); } } if (A.getType().getX() != B.getType().getX() || A.getType().getY() != B.getType().getY()) { throw new RSRuntimeException("Called HER2K with invalid A and B matrices"); } } /** * CHER2K performs one of the hermitian rank 2k operations * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d1/d82/cher2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F32_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F32_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F32_2}. */ public void CHER2K(@Uplo int Uplo, @Transpose int Trans, Float2 alpha, Allocation A, Allocation B, float beta, Allocation C) { validateUplo(Uplo); validateHER2K(Element.F32_2(mRS), Trans, A, B, C); int k = 0; if (Trans == NO_TRANSPOSE) { k = A.getType().getX(); } else { k = A.getType().getY(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Complex(getID(mRS), RsBlas_cher2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha.x, alpha.y, A.getID(mRS), bID, beta, 0, cID, 0, 0, 0, 0, mUseIncSupp); } /** * ZHER2K performs one of the hermitian rank 2k operations * C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C or C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C * * Details: http://www.netlib.org/lapack/explore-html/d7/dfa/zher2k_8f.html * * @param Uplo Specifies whether the upper or lower triangular part of C is to be referenced. * @param Trans The type of transpose applied to the operation. * @param alpha The scalar alpha. * @param A The input allocation contains matrix A, supported elements type {@link Element#F64_2}. * @param B The input allocation contains matrix B, supported elements type {@link Element#F64_2}. * @param beta The scalar beta. * @param C The input allocation contains matrix C, supported elements type {@link Element#F64_2}. */ public void ZHER2K(@Uplo int Uplo, @Transpose int Trans, Double2 alpha, Allocation A, Allocation B, double beta, Allocation C) { validateUplo(Uplo); validateHER2K(Element.F64_2(mRS), Trans, A, B, C); int k = 0; if (Trans == NO_TRANSPOSE) { k = A.getType().getX(); } else { k = A.getType().getY(); } boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_Z(getID(mRS), RsBlas_zher2k, Trans, 0, 0, Uplo, 0, 0, C.getType().getX(), k, alpha.x, alpha.y, A.getID(mRS), bID, beta, 0, cID, 0, 0, 0, 0, mUseIncSupp); } /** * 8-bit GEMM-like operation for neural networks: C = A * Transpose(B) * Calculations are done in 1.10.21 fixed-point format for the final output, * just before there's a shift down to drop the fractional parts. The output * values are gated to 0 to 255 to fit in a byte, but the 10-bit format * gives some headroom to avoid wrapping around on small overflows. * * @param A The input allocation contains matrix A, supported elements type {@link Element#U8}. * @param a_offset The offset for all values in matrix A, e.g A[i,j] = A[i,j] - a_offset. Value should be from 0 to 255. * @param B The input allocation contains matrix B, supported elements type {@link Element#U8}. * @param b_offset The offset for all values in matrix B, e.g B[i,j] = B[i,j] - b_offset. Value should be from 0 to 255. * @param C The input allocation contains matrix C, supported elements type {@link Element#U8}. * @param c_offset The offset for all values in matrix C. * @param c_mult The multiplier for all values in matrix C, e.g C[i,j] = (C[i,j] + c_offset) * c_mult. **/ public void BNNM(Allocation A, int a_offset, Allocation B, int b_offset, Allocation C, int c_offset, int c_mult) { validateL3(Element.U8(mRS), NO_TRANSPOSE, TRANSPOSE, 0, A, B, C); if (a_offset < 0 || a_offset > 255) { throw new RSRuntimeException("Invalid a_offset passed to BNNM"); } if (b_offset < 0 || b_offset > 255) { throw new RSRuntimeException("Invalid b_offset passed to BNNM"); } int M = -1, N = -1, K = -1; M = A.getType().getY(); N = B.getType().getY(); K = A.getType().getX(); boolean mUseIncSupp = isIncSupp(); long aID = A.getID(mRS); long bID = B.getID(mRS); long cID = C.getID(mRS); if (mUseIncSupp) { aID = getDummyAlloc(A); bID = getDummyAlloc(B); cID = getDummyAlloc(C); } mRS.nScriptIntrinsicBLAS_BNNM(getID(mRS), M, N, K, aID, a_offset, bID, b_offset, cID, c_offset, c_mult, mUseIncSupp); } }