/* * Copyright 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <hardware/hwvulkan.h> #include <errno.h> #include <inttypes.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <algorithm> #include <array> #include <log/log.h> #include "null_driver_gen.h" using namespace null_driver; struct VkPhysicalDevice_T { hwvulkan_dispatch_t dispatch; }; struct VkInstance_T { hwvulkan_dispatch_t dispatch; VkAllocationCallbacks allocator; VkPhysicalDevice_T physical_device; uint64_t next_callback_handle; }; struct VkQueue_T { hwvulkan_dispatch_t dispatch; }; struct VkCommandBuffer_T { hwvulkan_dispatch_t dispatch; }; namespace { // Handles for non-dispatchable objects are either pointers, or arbitrary // 64-bit non-zero values. We only use pointers when we need to keep state for // the object even in a null driver. For the rest, we form a handle as: // [63:63] = 1 to distinguish from pointer handles* // [62:56] = non-zero handle type enum value // [55: 0] = per-handle-type incrementing counter // * This works because virtual addresses with the high bit set are reserved // for kernel data in all ABIs we run on. // // We never reclaim handles on vkDestroy*. It's not even necessary for us to // have distinct handles for live objects, and practically speaking we won't // ever create 2^56 objects of the same type from a single VkDevice in a null // driver. // // Using a namespace here instead of 'enum class' since we want scoped // constants but also want implicit conversions to integral types. namespace HandleType { enum Enum { kBufferView, kDebugReportCallbackEXT, kDescriptorPool, kDescriptorSet, kDescriptorSetLayout, kEvent, kFence, kFramebuffer, kImageView, kPipeline, kPipelineCache, kPipelineLayout, kQueryPool, kRenderPass, kSampler, kSemaphore, kShaderModule, kNumTypes }; } // namespace HandleType const VkDeviceSize kMaxDeviceMemory = 0x10000000; // 256 MiB, arbitrary } // anonymous namespace struct VkDevice_T { hwvulkan_dispatch_t dispatch; VkAllocationCallbacks allocator; VkInstance_T* instance; VkQueue_T queue; std::array<uint64_t, HandleType::kNumTypes> next_handle; }; // ----------------------------------------------------------------------------- // Declare HAL_MODULE_INFO_SYM early so it can be referenced by nulldrv_device // later. namespace { int OpenDevice(const hw_module_t* module, const char* id, hw_device_t** device); hw_module_methods_t nulldrv_module_methods = {.open = OpenDevice}; } // namespace #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wmissing-variable-declarations" __attribute__((visibility("default"))) hwvulkan_module_t HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = HWVULKAN_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = HWVULKAN_HARDWARE_MODULE_ID, .name = "Null Vulkan Driver", .author = "The Android Open Source Project", .methods = &nulldrv_module_methods, }, }; #pragma clang diagnostic pop // ----------------------------------------------------------------------------- namespace { int CloseDevice(struct hw_device_t* /*device*/) { // nothing to do - opening a device doesn't allocate any resources return 0; } hwvulkan_device_t nulldrv_device = { .common = { .tag = HARDWARE_DEVICE_TAG, .version = HWVULKAN_DEVICE_API_VERSION_0_1, .module = &HAL_MODULE_INFO_SYM.common, .close = CloseDevice, }, .EnumerateInstanceExtensionProperties = EnumerateInstanceExtensionProperties, .CreateInstance = CreateInstance, .GetInstanceProcAddr = GetInstanceProcAddr}; int OpenDevice(const hw_module_t* /*module*/, const char* id, hw_device_t** device) { if (strcmp(id, HWVULKAN_DEVICE_0) == 0) { *device = &nulldrv_device.common; return 0; } return -ENOENT; } VkInstance_T* GetInstanceFromPhysicalDevice( VkPhysicalDevice_T* physical_device) { return reinterpret_cast<VkInstance_T*>( reinterpret_cast<uintptr_t>(physical_device) - offsetof(VkInstance_T, physical_device)); } uint64_t AllocHandle(uint64_t type, uint64_t* next_handle) { const uint64_t kHandleMask = (UINT64_C(1) << 56) - 1; ALOGE_IF(*next_handle == kHandleMask, "non-dispatchable handles of type=%" PRIu64 " are about to overflow", type); return (UINT64_C(1) << 63) | ((type & 0x7) << 56) | ((*next_handle)++ & kHandleMask); } template <class Handle> Handle AllocHandle(VkInstance instance, HandleType::Enum type) { return reinterpret_cast<Handle>( AllocHandle(type, &instance->next_callback_handle)); } template <class Handle> Handle AllocHandle(VkDevice device, HandleType::Enum type) { return reinterpret_cast<Handle>( AllocHandle(type, &device->next_handle[type])); } VKAPI_ATTR void* DefaultAllocate(void*, size_t size, size_t alignment, VkSystemAllocationScope) { void* ptr = nullptr; // Vulkan requires 'alignment' to be a power of two, but posix_memalign // additionally requires that it be at least sizeof(void*). int ret = posix_memalign(&ptr, std::max(alignment, sizeof(void*)), size); return ret == 0 ? ptr : nullptr; } VKAPI_ATTR void* DefaultReallocate(void*, void* ptr, size_t size, size_t alignment, VkSystemAllocationScope) { if (size == 0) { free(ptr); return nullptr; } // TODO(jessehall): Right now we never shrink allocations; if the new // request is smaller than the existing chunk, we just continue using it. // The null driver never reallocs, so this doesn't matter. If that changes, // or if this code is copied into some other project, this should probably // have a heuristic to allocate-copy-free when doing so will save "enough" // space. size_t old_size = ptr ? malloc_usable_size(ptr) : 0; if (size <= old_size) return ptr; void* new_ptr = nullptr; if (posix_memalign(&new_ptr, std::max(alignment, sizeof(void*)), size) != 0) return nullptr; if (ptr) { memcpy(new_ptr, ptr, std::min(old_size, size)); free(ptr); } return new_ptr; } VKAPI_ATTR void DefaultFree(void*, void* ptr) { free(ptr); } const VkAllocationCallbacks kDefaultAllocCallbacks = { .pUserData = nullptr, .pfnAllocation = DefaultAllocate, .pfnReallocation = DefaultReallocate, .pfnFree = DefaultFree, }; } // namespace namespace null_driver { #define DEFINE_OBJECT_HANDLE_CONVERSION(T) \ T* Get##T##FromHandle(Vk##T h); \ T* Get##T##FromHandle(Vk##T h) { \ return reinterpret_cast<T*>(uintptr_t(h)); \ } \ Vk##T GetHandleTo##T(const T* obj); \ Vk##T GetHandleTo##T(const T* obj) { \ return Vk##T(reinterpret_cast<uintptr_t>(obj)); \ } // ----------------------------------------------------------------------------- // Global VKAPI_ATTR VkResult EnumerateInstanceVersion(uint32_t* pApiVersion) { *pApiVersion = VK_API_VERSION_1_1; return VK_SUCCESS; } VKAPI_ATTR VkResult EnumerateInstanceExtensionProperties( const char* layer_name, uint32_t* count, VkExtensionProperties* properties) { if (layer_name) { ALOGW( "Driver vkEnumerateInstanceExtensionProperties shouldn't be called " "with a layer name ('%s')", layer_name); } const VkExtensionProperties kExtensions[] = { {VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_SPEC_VERSION}}; const uint32_t kExtensionsCount = sizeof(kExtensions) / sizeof(kExtensions[0]); if (!properties || *count > kExtensionsCount) *count = kExtensionsCount; if (properties) std::copy(kExtensions, kExtensions + *count, properties); return *count < kExtensionsCount ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult CreateInstance(const VkInstanceCreateInfo* create_info, const VkAllocationCallbacks* allocator, VkInstance* out_instance) { if (!allocator) allocator = &kDefaultAllocCallbacks; VkInstance_T* instance = static_cast<VkInstance_T*>(allocator->pfnAllocation( allocator->pUserData, sizeof(VkInstance_T), alignof(VkInstance_T), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE)); if (!instance) return VK_ERROR_OUT_OF_HOST_MEMORY; instance->dispatch.magic = HWVULKAN_DISPATCH_MAGIC; instance->allocator = *allocator; instance->physical_device.dispatch.magic = HWVULKAN_DISPATCH_MAGIC; instance->next_callback_handle = 0; for (uint32_t i = 0; i < create_info->enabledExtensionCount; i++) { if (strcmp(create_info->ppEnabledExtensionNames[i], VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) == 0) { ALOGV("instance extension '%s' requested", create_info->ppEnabledExtensionNames[i]); } else if (strcmp(create_info->ppEnabledExtensionNames[i], VK_EXT_DEBUG_REPORT_EXTENSION_NAME) == 0) { ALOGV("instance extension '%s' requested", create_info->ppEnabledExtensionNames[i]); } else { ALOGW("unsupported extension '%s' requested", create_info->ppEnabledExtensionNames[i]); } } *out_instance = instance; return VK_SUCCESS; } VKAPI_ATTR PFN_vkVoidFunction GetInstanceProcAddr(VkInstance instance, const char* name) { return instance ? GetInstanceProcAddr(name) : GetGlobalProcAddr(name); } VKAPI_ATTR PFN_vkVoidFunction GetDeviceProcAddr(VkDevice, const char* name) { return GetInstanceProcAddr(name); } // ----------------------------------------------------------------------------- // Instance void DestroyInstance(VkInstance instance, const VkAllocationCallbacks* /*allocator*/) { instance->allocator.pfnFree(instance->allocator.pUserData, instance); } // ----------------------------------------------------------------------------- // PhysicalDevice VkResult EnumeratePhysicalDevices(VkInstance instance, uint32_t* physical_device_count, VkPhysicalDevice* physical_devices) { if (!physical_devices) *physical_device_count = 1; else if (*physical_device_count == 0) return VK_INCOMPLETE; else { physical_devices[0] = &instance->physical_device; *physical_device_count = 1; } return VK_SUCCESS; } VkResult EnumerateDeviceLayerProperties(VkPhysicalDevice /*gpu*/, uint32_t* count, VkLayerProperties* /*properties*/) { ALOGW("Driver vkEnumerateDeviceLayerProperties shouldn't be called"); *count = 0; return VK_SUCCESS; } VkResult EnumerateDeviceExtensionProperties(VkPhysicalDevice /*gpu*/, const char* layer_name, uint32_t* count, VkExtensionProperties* properties) { if (layer_name) { ALOGW( "Driver vkEnumerateDeviceExtensionProperties shouldn't be called " "with a layer name ('%s')", layer_name); *count = 0; return VK_SUCCESS; } const VkExtensionProperties kExtensions[] = { {VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME, VK_ANDROID_NATIVE_BUFFER_SPEC_VERSION}}; const uint32_t kExtensionsCount = sizeof(kExtensions) / sizeof(kExtensions[0]); if (!properties || *count > kExtensionsCount) *count = kExtensionsCount; if (properties) std::copy(kExtensions, kExtensions + *count, properties); return *count < kExtensionsCount ? VK_INCOMPLETE : VK_SUCCESS; } void GetPhysicalDeviceProperties(VkPhysicalDevice, VkPhysicalDeviceProperties* properties) { properties->apiVersion = VK_MAKE_VERSION(1, 0, VK_HEADER_VERSION); properties->driverVersion = VK_MAKE_VERSION(0, 0, 1); properties->vendorID = 0; properties->deviceID = 0; properties->deviceType = VK_PHYSICAL_DEVICE_TYPE_OTHER; strcpy(properties->deviceName, "Android Vulkan Null Driver"); memset(properties->pipelineCacheUUID, 0, sizeof(properties->pipelineCacheUUID)); properties->limits = VkPhysicalDeviceLimits{ 4096, // maxImageDimension1D 4096, // maxImageDimension2D 256, // maxImageDimension3D 4096, // maxImageDimensionCube 256, // maxImageArrayLayers 65536, // maxTexelBufferElements 16384, // maxUniformBufferRange 1 << 27, // maxStorageBufferRange 128, // maxPushConstantsSize 4096, // maxMemoryAllocationCount 4000, // maxSamplerAllocationCount 1, // bufferImageGranularity 0, // sparseAddressSpaceSize 4, // maxBoundDescriptorSets 16, // maxPerStageDescriptorSamplers 12, // maxPerStageDescriptorUniformBuffers 4, // maxPerStageDescriptorStorageBuffers 16, // maxPerStageDescriptorSampledImages 4, // maxPerStageDescriptorStorageImages 4, // maxPerStageDescriptorInputAttachments 128, // maxPerStageResources 96, // maxDescriptorSetSamplers 72, // maxDescriptorSetUniformBuffers 8, // maxDescriptorSetUniformBuffersDynamic 24, // maxDescriptorSetStorageBuffers 4, // maxDescriptorSetStorageBuffersDynamic 96, // maxDescriptorSetSampledImages 24, // maxDescriptorSetStorageImages 4, // maxDescriptorSetInputAttachments 16, // maxVertexInputAttributes 16, // maxVertexInputBindings 2047, // maxVertexInputAttributeOffset 2048, // maxVertexInputBindingStride 64, // maxVertexOutputComponents 0, // maxTessellationGenerationLevel 0, // maxTessellationPatchSize 0, // maxTessellationControlPerVertexInputComponents 0, // maxTessellationControlPerVertexOutputComponents 0, // maxTessellationControlPerPatchOutputComponents 0, // maxTessellationControlTotalOutputComponents 0, // maxTessellationEvaluationInputComponents 0, // maxTessellationEvaluationOutputComponents 0, // maxGeometryShaderInvocations 0, // maxGeometryInputComponents 0, // maxGeometryOutputComponents 0, // maxGeometryOutputVertices 0, // maxGeometryTotalOutputComponents 64, // maxFragmentInputComponents 4, // maxFragmentOutputAttachments 0, // maxFragmentDualSrcAttachments 4, // maxFragmentCombinedOutputResources 16384, // maxComputeSharedMemorySize {65536, 65536, 65536}, // maxComputeWorkGroupCount[3] 128, // maxComputeWorkGroupInvocations {128, 128, 64}, // maxComputeWorkGroupSize[3] 4, // subPixelPrecisionBits 4, // subTexelPrecisionBits 4, // mipmapPrecisionBits UINT32_MAX, // maxDrawIndexedIndexValue 1, // maxDrawIndirectCount 2, // maxSamplerLodBias 1, // maxSamplerAnisotropy 1, // maxViewports {4096, 4096}, // maxViewportDimensions[2] {-8192.0f, 8191.0f}, // viewportBoundsRange[2] 0, // viewportSubPixelBits 64, // minMemoryMapAlignment 256, // minTexelBufferOffsetAlignment 256, // minUniformBufferOffsetAlignment 256, // minStorageBufferOffsetAlignment -8, // minTexelOffset 7, // maxTexelOffset 0, // minTexelGatherOffset 0, // maxTexelGatherOffset 0.0f, // minInterpolationOffset 0.0f, // maxInterpolationOffset 0, // subPixelInterpolationOffsetBits 4096, // maxFramebufferWidth 4096, // maxFramebufferHeight 256, // maxFramebufferLayers VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // framebufferColorSampleCounts VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // framebufferDepthSampleCounts VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // framebufferStencilSampleCounts VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // framebufferNoAttachmentsSampleCounts 4, // maxColorAttachments VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // sampledImageColorSampleCounts VK_SAMPLE_COUNT_1_BIT, // sampledImageIntegerSampleCounts VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // sampledImageDepthSampleCounts VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_4_BIT, // sampledImageStencilSampleCounts VK_SAMPLE_COUNT_1_BIT, // storageImageSampleCounts 1, // maxSampleMaskWords VK_TRUE, // timestampComputeAndGraphics 1, // timestampPeriod 0, // maxClipDistances 0, // maxCullDistances 0, // maxCombinedClipAndCullDistances 2, // discreteQueuePriorities {1.0f, 1.0f}, // pointSizeRange[2] {1.0f, 1.0f}, // lineWidthRange[2] 0.0f, // pointSizeGranularity 0.0f, // lineWidthGranularity VK_TRUE, // strictLines VK_TRUE, // standardSampleLocations 1, // optimalBufferCopyOffsetAlignment 1, // optimalBufferCopyRowPitchAlignment 64, // nonCoherentAtomSize }; } void GetPhysicalDeviceProperties2KHR(VkPhysicalDevice physical_device, VkPhysicalDeviceProperties2KHR* properties) { GetPhysicalDeviceProperties(physical_device, &properties->properties); while (properties->pNext) { properties = reinterpret_cast<VkPhysicalDeviceProperties2KHR *>(properties->pNext); #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wold-style-cast" switch ((VkFlags)properties->sType) { case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: { VkPhysicalDevicePresentationPropertiesANDROID *presentation_properties = reinterpret_cast<VkPhysicalDevicePresentationPropertiesANDROID *>(properties); #pragma clang diagnostic pop // Claim that we do all the right things for the loader to // expose KHR_shared_presentable_image on our behalf. presentation_properties->sharedImage = VK_TRUE; } break; default: // Silently ignore other extension query structs break; } } } void GetPhysicalDeviceQueueFamilyProperties( VkPhysicalDevice, uint32_t* count, VkQueueFamilyProperties* properties) { if (!properties || *count > 1) *count = 1; if (properties && *count == 1) { properties->queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT; properties->queueCount = 1; properties->timestampValidBits = 64; properties->minImageTransferGranularity = VkExtent3D{1, 1, 1}; } } void GetPhysicalDeviceQueueFamilyProperties2KHR(VkPhysicalDevice physical_device, uint32_t* count, VkQueueFamilyProperties2KHR* properties) { // note: even though multiple structures, this is safe to forward in this // case since we only expose one queue family. GetPhysicalDeviceQueueFamilyProperties(physical_device, count, properties ? &properties->queueFamilyProperties : nullptr); } void GetPhysicalDeviceMemoryProperties( VkPhysicalDevice, VkPhysicalDeviceMemoryProperties* properties) { properties->memoryTypeCount = 1; properties->memoryTypes[0].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; properties->memoryTypes[0].heapIndex = 0; properties->memoryHeapCount = 1; properties->memoryHeaps[0].size = kMaxDeviceMemory; properties->memoryHeaps[0].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT; } void GetPhysicalDeviceMemoryProperties2KHR(VkPhysicalDevice physical_device, VkPhysicalDeviceMemoryProperties2KHR* properties) { GetPhysicalDeviceMemoryProperties(physical_device, &properties->memoryProperties); } void GetPhysicalDeviceFeatures(VkPhysicalDevice /*gpu*/, VkPhysicalDeviceFeatures* features) { *features = VkPhysicalDeviceFeatures{ VK_TRUE, // robustBufferAccess VK_FALSE, // fullDrawIndexUint32 VK_FALSE, // imageCubeArray VK_FALSE, // independentBlend VK_FALSE, // geometryShader VK_FALSE, // tessellationShader VK_FALSE, // sampleRateShading VK_FALSE, // dualSrcBlend VK_FALSE, // logicOp VK_FALSE, // multiDrawIndirect VK_FALSE, // drawIndirectFirstInstance VK_FALSE, // depthClamp VK_FALSE, // depthBiasClamp VK_FALSE, // fillModeNonSolid VK_FALSE, // depthBounds VK_FALSE, // wideLines VK_FALSE, // largePoints VK_FALSE, // alphaToOne VK_FALSE, // multiViewport VK_FALSE, // samplerAnisotropy VK_FALSE, // textureCompressionETC2 VK_FALSE, // textureCompressionASTC_LDR VK_FALSE, // textureCompressionBC VK_FALSE, // occlusionQueryPrecise VK_FALSE, // pipelineStatisticsQuery VK_FALSE, // vertexPipelineStoresAndAtomics VK_FALSE, // fragmentStoresAndAtomics VK_FALSE, // shaderTessellationAndGeometryPointSize VK_FALSE, // shaderImageGatherExtended VK_FALSE, // shaderStorageImageExtendedFormats VK_FALSE, // shaderStorageImageMultisample VK_FALSE, // shaderStorageImageReadWithoutFormat VK_FALSE, // shaderStorageImageWriteWithoutFormat VK_FALSE, // shaderUniformBufferArrayDynamicIndexing VK_FALSE, // shaderSampledImageArrayDynamicIndexing VK_FALSE, // shaderStorageBufferArrayDynamicIndexing VK_FALSE, // shaderStorageImageArrayDynamicIndexing VK_FALSE, // shaderClipDistance VK_FALSE, // shaderCullDistance VK_FALSE, // shaderFloat64 VK_FALSE, // shaderInt64 VK_FALSE, // shaderInt16 VK_FALSE, // shaderResourceResidency VK_FALSE, // shaderResourceMinLod VK_FALSE, // sparseBinding VK_FALSE, // sparseResidencyBuffer VK_FALSE, // sparseResidencyImage2D VK_FALSE, // sparseResidencyImage3D VK_FALSE, // sparseResidency2Samples VK_FALSE, // sparseResidency4Samples VK_FALSE, // sparseResidency8Samples VK_FALSE, // sparseResidency16Samples VK_FALSE, // sparseResidencyAliased VK_FALSE, // variableMultisampleRate VK_FALSE, // inheritedQueries }; } void GetPhysicalDeviceFeatures2KHR(VkPhysicalDevice physical_device, VkPhysicalDeviceFeatures2KHR* features) { GetPhysicalDeviceFeatures(physical_device, &features->features); } // ----------------------------------------------------------------------------- // Device VkResult CreateDevice(VkPhysicalDevice physical_device, const VkDeviceCreateInfo* create_info, const VkAllocationCallbacks* allocator, VkDevice* out_device) { VkInstance_T* instance = GetInstanceFromPhysicalDevice(physical_device); if (!allocator) allocator = &instance->allocator; VkDevice_T* device = static_cast<VkDevice_T*>(allocator->pfnAllocation( allocator->pUserData, sizeof(VkDevice_T), alignof(VkDevice_T), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE)); if (!device) return VK_ERROR_OUT_OF_HOST_MEMORY; device->dispatch.magic = HWVULKAN_DISPATCH_MAGIC; device->allocator = *allocator; device->instance = instance; device->queue.dispatch.magic = HWVULKAN_DISPATCH_MAGIC; std::fill(device->next_handle.begin(), device->next_handle.end(), UINT64_C(0)); for (uint32_t i = 0; i < create_info->enabledExtensionCount; i++) { if (strcmp(create_info->ppEnabledExtensionNames[i], VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME) == 0) { ALOGV("Enabling " VK_ANDROID_NATIVE_BUFFER_EXTENSION_NAME); } } *out_device = device; return VK_SUCCESS; } void DestroyDevice(VkDevice device, const VkAllocationCallbacks* /*allocator*/) { if (!device) return; device->allocator.pfnFree(device->allocator.pUserData, device); } void GetDeviceQueue(VkDevice device, uint32_t, uint32_t, VkQueue* queue) { *queue = &device->queue; } // ----------------------------------------------------------------------------- // CommandPool struct CommandPool { typedef VkCommandPool HandleType; VkAllocationCallbacks allocator; }; DEFINE_OBJECT_HANDLE_CONVERSION(CommandPool) VkResult CreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* /*create_info*/, const VkAllocationCallbacks* allocator, VkCommandPool* cmd_pool) { if (!allocator) allocator = &device->allocator; CommandPool* pool = static_cast<CommandPool*>(allocator->pfnAllocation( allocator->pUserData, sizeof(CommandPool), alignof(CommandPool), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)); if (!pool) return VK_ERROR_OUT_OF_HOST_MEMORY; pool->allocator = *allocator; *cmd_pool = GetHandleToCommandPool(pool); return VK_SUCCESS; } void DestroyCommandPool(VkDevice /*device*/, VkCommandPool cmd_pool, const VkAllocationCallbacks* /*allocator*/) { CommandPool* pool = GetCommandPoolFromHandle(cmd_pool); pool->allocator.pfnFree(pool->allocator.pUserData, pool); } // ----------------------------------------------------------------------------- // CmdBuffer VkResult AllocateCommandBuffers(VkDevice /*device*/, const VkCommandBufferAllocateInfo* alloc_info, VkCommandBuffer* cmdbufs) { VkResult result = VK_SUCCESS; CommandPool& pool = *GetCommandPoolFromHandle(alloc_info->commandPool); std::fill(cmdbufs, cmdbufs + alloc_info->commandBufferCount, nullptr); for (uint32_t i = 0; i < alloc_info->commandBufferCount; i++) { cmdbufs[i] = static_cast<VkCommandBuffer_T*>(pool.allocator.pfnAllocation( pool.allocator.pUserData, sizeof(VkCommandBuffer_T), alignof(VkCommandBuffer_T), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)); if (!cmdbufs[i]) { result = VK_ERROR_OUT_OF_HOST_MEMORY; break; } cmdbufs[i]->dispatch.magic = HWVULKAN_DISPATCH_MAGIC; } if (result != VK_SUCCESS) { for (uint32_t i = 0; i < alloc_info->commandBufferCount; i++) { if (!cmdbufs[i]) break; pool.allocator.pfnFree(pool.allocator.pUserData, cmdbufs[i]); } } return result; } void FreeCommandBuffers(VkDevice /*device*/, VkCommandPool cmd_pool, uint32_t count, const VkCommandBuffer* cmdbufs) { CommandPool& pool = *GetCommandPoolFromHandle(cmd_pool); for (uint32_t i = 0; i < count; i++) pool.allocator.pfnFree(pool.allocator.pUserData, cmdbufs[i]); } // ----------------------------------------------------------------------------- // DeviceMemory struct DeviceMemory { typedef VkDeviceMemory HandleType; VkDeviceSize size; alignas(16) uint8_t data[0]; }; DEFINE_OBJECT_HANDLE_CONVERSION(DeviceMemory) VkResult AllocateMemory(VkDevice device, const VkMemoryAllocateInfo* alloc_info, const VkAllocationCallbacks* allocator, VkDeviceMemory* mem_handle) { if (SIZE_MAX - sizeof(DeviceMemory) <= alloc_info->allocationSize) return VK_ERROR_OUT_OF_HOST_MEMORY; if (!allocator) allocator = &device->allocator; size_t size = sizeof(DeviceMemory) + size_t(alloc_info->allocationSize); DeviceMemory* mem = static_cast<DeviceMemory*>(allocator->pfnAllocation( allocator->pUserData, size, alignof(DeviceMemory), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)); if (!mem) return VK_ERROR_OUT_OF_HOST_MEMORY; mem->size = size; *mem_handle = GetHandleToDeviceMemory(mem); return VK_SUCCESS; } void FreeMemory(VkDevice device, VkDeviceMemory mem_handle, const VkAllocationCallbacks* allocator) { if (!allocator) allocator = &device->allocator; DeviceMemory* mem = GetDeviceMemoryFromHandle(mem_handle); allocator->pfnFree(allocator->pUserData, mem); } VkResult MapMemory(VkDevice, VkDeviceMemory mem_handle, VkDeviceSize offset, VkDeviceSize, VkMemoryMapFlags, void** out_ptr) { DeviceMemory* mem = GetDeviceMemoryFromHandle(mem_handle); *out_ptr = &mem->data[0] + offset; return VK_SUCCESS; } // ----------------------------------------------------------------------------- // Buffer struct Buffer { typedef VkBuffer HandleType; VkDeviceSize size; }; DEFINE_OBJECT_HANDLE_CONVERSION(Buffer) VkResult CreateBuffer(VkDevice device, const VkBufferCreateInfo* create_info, const VkAllocationCallbacks* allocator, VkBuffer* buffer_handle) { ALOGW_IF(create_info->size > kMaxDeviceMemory, "CreateBuffer: requested size 0x%" PRIx64 " exceeds max device memory size 0x%" PRIx64, create_info->size, kMaxDeviceMemory); if (!allocator) allocator = &device->allocator; Buffer* buffer = static_cast<Buffer*>(allocator->pfnAllocation( allocator->pUserData, sizeof(Buffer), alignof(Buffer), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)); if (!buffer) return VK_ERROR_OUT_OF_HOST_MEMORY; buffer->size = create_info->size; *buffer_handle = GetHandleToBuffer(buffer); return VK_SUCCESS; } void GetBufferMemoryRequirements(VkDevice, VkBuffer buffer_handle, VkMemoryRequirements* requirements) { Buffer* buffer = GetBufferFromHandle(buffer_handle); requirements->size = buffer->size; requirements->alignment = 16; // allow fast Neon/SSE memcpy requirements->memoryTypeBits = 0x1; } void DestroyBuffer(VkDevice device, VkBuffer buffer_handle, const VkAllocationCallbacks* allocator) { if (!allocator) allocator = &device->allocator; Buffer* buffer = GetBufferFromHandle(buffer_handle); allocator->pfnFree(allocator->pUserData, buffer); } // ----------------------------------------------------------------------------- // Image struct Image { typedef VkImage HandleType; VkDeviceSize size; }; DEFINE_OBJECT_HANDLE_CONVERSION(Image) VkResult CreateImage(VkDevice device, const VkImageCreateInfo* create_info, const VkAllocationCallbacks* allocator, VkImage* image_handle) { if (create_info->imageType != VK_IMAGE_TYPE_2D || create_info->format != VK_FORMAT_R8G8B8A8_UNORM || create_info->mipLevels != 1) { ALOGE("CreateImage: not yet implemented: type=%d format=%d mips=%u", create_info->imageType, create_info->format, create_info->mipLevels); return VK_ERROR_OUT_OF_HOST_MEMORY; } VkDeviceSize size = VkDeviceSize(create_info->extent.width * create_info->extent.height) * create_info->arrayLayers * create_info->samples * 4u; ALOGW_IF(size > kMaxDeviceMemory, "CreateImage: image size 0x%" PRIx64 " exceeds max device memory size 0x%" PRIx64, size, kMaxDeviceMemory); if (!allocator) allocator = &device->allocator; Image* image = static_cast<Image*>(allocator->pfnAllocation( allocator->pUserData, sizeof(Image), alignof(Image), VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)); if (!image) return VK_ERROR_OUT_OF_HOST_MEMORY; image->size = size; *image_handle = GetHandleToImage(image); return VK_SUCCESS; } void GetImageMemoryRequirements(VkDevice, VkImage image_handle, VkMemoryRequirements* requirements) { Image* image = GetImageFromHandle(image_handle); requirements->size = image->size; requirements->alignment = 16; // allow fast Neon/SSE memcpy requirements->memoryTypeBits = 0x1; } void DestroyImage(VkDevice device, VkImage image_handle, const VkAllocationCallbacks* allocator) { if (!allocator) allocator = &device->allocator; Image* image = GetImageFromHandle(image_handle); allocator->pfnFree(allocator->pUserData, image); } VkResult GetSwapchainGrallocUsageANDROID(VkDevice, VkFormat, VkImageUsageFlags, int* grallocUsage) { // The null driver never reads or writes the gralloc buffer *grallocUsage = 0; return VK_SUCCESS; } VkResult GetSwapchainGrallocUsage2ANDROID(VkDevice, VkFormat, VkImageUsageFlags, VkSwapchainImageUsageFlagsANDROID, uint64_t* grallocConsumerUsage, uint64_t* grallocProducerUsage) { // The null driver never reads or writes the gralloc buffer *grallocConsumerUsage = 0; *grallocProducerUsage = 0; return VK_SUCCESS; } VkResult AcquireImageANDROID(VkDevice, VkImage, int fence, VkSemaphore, VkFence) { close(fence); return VK_SUCCESS; } VkResult QueueSignalReleaseImageANDROID(VkQueue, uint32_t, const VkSemaphore*, VkImage, int* fence) { *fence = -1; return VK_SUCCESS; } // ----------------------------------------------------------------------------- // No-op types VkResult CreateBufferView(VkDevice device, const VkBufferViewCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkBufferView* view) { *view = AllocHandle<VkBufferView>(device, HandleType::kBufferView); return VK_SUCCESS; } VkResult CreateDescriptorPool(VkDevice device, const VkDescriptorPoolCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkDescriptorPool* pool) { *pool = AllocHandle<VkDescriptorPool>(device, HandleType::kDescriptorPool); return VK_SUCCESS; } VkResult AllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* alloc_info, VkDescriptorSet* descriptor_sets) { for (uint32_t i = 0; i < alloc_info->descriptorSetCount; i++) descriptor_sets[i] = AllocHandle<VkDescriptorSet>(device, HandleType::kDescriptorSet); return VK_SUCCESS; } VkResult CreateDescriptorSetLayout(VkDevice device, const VkDescriptorSetLayoutCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkDescriptorSetLayout* layout) { *layout = AllocHandle<VkDescriptorSetLayout>( device, HandleType::kDescriptorSetLayout); return VK_SUCCESS; } VkResult CreateEvent(VkDevice device, const VkEventCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkEvent* event) { *event = AllocHandle<VkEvent>(device, HandleType::kEvent); return VK_SUCCESS; } VkResult CreateFence(VkDevice device, const VkFenceCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkFence* fence) { *fence = AllocHandle<VkFence>(device, HandleType::kFence); return VK_SUCCESS; } VkResult CreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkFramebuffer* framebuffer) { *framebuffer = AllocHandle<VkFramebuffer>(device, HandleType::kFramebuffer); return VK_SUCCESS; } VkResult CreateImageView(VkDevice device, const VkImageViewCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkImageView* view) { *view = AllocHandle<VkImageView>(device, HandleType::kImageView); return VK_SUCCESS; } VkResult CreateGraphicsPipelines(VkDevice device, VkPipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkPipeline* pipelines) { for (uint32_t i = 0; i < count; i++) pipelines[i] = AllocHandle<VkPipeline>(device, HandleType::kPipeline); return VK_SUCCESS; } VkResult CreateComputePipelines(VkDevice device, VkPipelineCache, uint32_t count, const VkComputePipelineCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkPipeline* pipelines) { for (uint32_t i = 0; i < count; i++) pipelines[i] = AllocHandle<VkPipeline>(device, HandleType::kPipeline); return VK_SUCCESS; } VkResult CreatePipelineCache(VkDevice device, const VkPipelineCacheCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkPipelineCache* cache) { *cache = AllocHandle<VkPipelineCache>(device, HandleType::kPipelineCache); return VK_SUCCESS; } VkResult CreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkPipelineLayout* layout) { *layout = AllocHandle<VkPipelineLayout>(device, HandleType::kPipelineLayout); return VK_SUCCESS; } VkResult CreateQueryPool(VkDevice device, const VkQueryPoolCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkQueryPool* pool) { *pool = AllocHandle<VkQueryPool>(device, HandleType::kQueryPool); return VK_SUCCESS; } VkResult CreateRenderPass(VkDevice device, const VkRenderPassCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkRenderPass* renderpass) { *renderpass = AllocHandle<VkRenderPass>(device, HandleType::kRenderPass); return VK_SUCCESS; } VkResult CreateSampler(VkDevice device, const VkSamplerCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkSampler* sampler) { *sampler = AllocHandle<VkSampler>(device, HandleType::kSampler); return VK_SUCCESS; } VkResult CreateSemaphore(VkDevice device, const VkSemaphoreCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkSemaphore* semaphore) { *semaphore = AllocHandle<VkSemaphore>(device, HandleType::kSemaphore); return VK_SUCCESS; } VkResult CreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo*, const VkAllocationCallbacks* /*allocator*/, VkShaderModule* module) { *module = AllocHandle<VkShaderModule>(device, HandleType::kShaderModule); return VK_SUCCESS; } VkResult CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreateInfoEXT*, const VkAllocationCallbacks*, VkDebugReportCallbackEXT* callback) { *callback = AllocHandle<VkDebugReportCallbackEXT>( instance, HandleType::kDebugReportCallbackEXT); return VK_SUCCESS; } // ----------------------------------------------------------------------------- // No-op entrypoints // clang-format off #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" void GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties* pFormatProperties) { ALOGV("TODO: vk%s", __FUNCTION__); } void GetPhysicalDeviceFormatProperties2KHR(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2KHR* pFormatProperties) { ALOGV("TODO: vk%s", __FUNCTION__); } VkResult GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkImageTiling tiling, VkImageUsageFlags usage, VkImageCreateFlags flags, VkImageFormatProperties* pImageFormatProperties) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult GetPhysicalDeviceImageFormatProperties2KHR(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2KHR* pImageFormatInfo, VkImageFormatProperties2KHR* pImageFormatProperties) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult EnumerateInstanceLayerProperties(uint32_t* pCount, VkLayerProperties* pProperties) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult QueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmitInfo, VkFence fence) { return VK_SUCCESS; } VkResult QueueWaitIdle(VkQueue queue) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult DeviceWaitIdle(VkDevice device) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void UnmapMemory(VkDevice device, VkDeviceMemory mem) { } VkResult FlushMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult InvalidateMappedMemoryRanges(VkDevice device, uint32_t memRangeCount, const VkMappedMemoryRange* pMemRanges) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory, VkDeviceSize* pCommittedMemoryInBytes) { ALOGV("TODO: vk%s", __FUNCTION__); } VkResult BindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory mem, VkDeviceSize memOffset) { return VK_SUCCESS; } VkResult BindImageMemory(VkDevice device, VkImage image, VkDeviceMemory mem, VkDeviceSize memOffset) { return VK_SUCCESS; } void GetImageSparseMemoryRequirements(VkDevice device, VkImage image, uint32_t* pNumRequirements, VkSparseImageMemoryRequirements* pSparseMemoryRequirements) { ALOGV("TODO: vk%s", __FUNCTION__); } void GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format, VkImageType type, VkSampleCountFlagBits samples, VkImageUsageFlags usage, VkImageTiling tiling, uint32_t* pNumProperties, VkSparseImageFormatProperties* pProperties) { ALOGV("TODO: vk%s", __FUNCTION__); } void GetPhysicalDeviceSparseImageFormatProperties2KHR(VkPhysicalDevice physicalDevice, VkPhysicalDeviceSparseImageFormatInfo2KHR const* pInfo, unsigned int* pNumProperties, VkSparseImageFormatProperties2KHR* pProperties) { ALOGV("TODO: vk%s", __FUNCTION__); } VkResult QueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo, VkFence fence) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void DestroyFence(VkDevice device, VkFence fence, const VkAllocationCallbacks* allocator) { } VkResult ResetFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences) { return VK_SUCCESS; } VkResult GetFenceStatus(VkDevice device, VkFence fence) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult WaitForFences(VkDevice device, uint32_t fenceCount, const VkFence* pFences, VkBool32 waitAll, uint64_t timeout) { return VK_SUCCESS; } void DestroySemaphore(VkDevice device, VkSemaphore semaphore, const VkAllocationCallbacks* allocator) { } void DestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks* allocator) { } VkResult GetEventStatus(VkDevice device, VkEvent event) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult SetEvent(VkDevice device, VkEvent event) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult ResetEvent(VkDevice device, VkEvent event) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void DestroyQueryPool(VkDevice device, VkQueryPool queryPool, const VkAllocationCallbacks* allocator) { } VkResult GetQueryPoolResults(VkDevice device, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, size_t dataSize, void* pData, VkDeviceSize stride, VkQueryResultFlags flags) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void DestroyBufferView(VkDevice device, VkBufferView bufferView, const VkAllocationCallbacks* allocator) { } void GetImageSubresourceLayout(VkDevice device, VkImage image, const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) { ALOGV("TODO: vk%s", __FUNCTION__); } void DestroyImageView(VkDevice device, VkImageView imageView, const VkAllocationCallbacks* allocator) { } void DestroyShaderModule(VkDevice device, VkShaderModule shaderModule, const VkAllocationCallbacks* allocator) { } void DestroyPipelineCache(VkDevice device, VkPipelineCache pipelineCache, const VkAllocationCallbacks* allocator) { } VkResult GetPipelineCacheData(VkDevice device, VkPipelineCache pipelineCache, size_t* pDataSize, void* pData) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult MergePipelineCaches(VkDevice device, VkPipelineCache destCache, uint32_t srcCacheCount, const VkPipelineCache* pSrcCaches) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void DestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks* allocator) { } void DestroyPipelineLayout(VkDevice device, VkPipelineLayout pipelineLayout, const VkAllocationCallbacks* allocator) { } void DestroySampler(VkDevice device, VkSampler sampler, const VkAllocationCallbacks* allocator) { } void DestroyDescriptorSetLayout(VkDevice device, VkDescriptorSetLayout descriptorSetLayout, const VkAllocationCallbacks* allocator) { } void DestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks* allocator) { } VkResult ResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void UpdateDescriptorSets(VkDevice device, uint32_t writeCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t copyCount, const VkCopyDescriptorSet* pDescriptorCopies) { ALOGV("TODO: vk%s", __FUNCTION__); } VkResult FreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void DestroyFramebuffer(VkDevice device, VkFramebuffer framebuffer, const VkAllocationCallbacks* allocator) { } void DestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks* allocator) { } void GetRenderAreaGranularity(VkDevice device, VkRenderPass renderPass, VkExtent2D* pGranularity) { ALOGV("TODO: vk%s", __FUNCTION__); } VkResult ResetCommandPool(VkDevice device, VkCommandPool cmdPool, VkCommandPoolResetFlags flags) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } VkResult BeginCommandBuffer(VkCommandBuffer cmdBuffer, const VkCommandBufferBeginInfo* pBeginInfo) { return VK_SUCCESS; } VkResult EndCommandBuffer(VkCommandBuffer cmdBuffer) { return VK_SUCCESS; } VkResult ResetCommandBuffer(VkCommandBuffer cmdBuffer, VkCommandBufferResetFlags flags) { ALOGV("TODO: vk%s", __FUNCTION__); return VK_SUCCESS; } void CmdBindPipeline(VkCommandBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline pipeline) { } void CmdSetViewport(VkCommandBuffer cmdBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport* pViewports) { } void CmdSetScissor(VkCommandBuffer cmdBuffer, uint32_t firstScissor, uint32_t scissorCount, const VkRect2D* pScissors) { } void CmdSetLineWidth(VkCommandBuffer cmdBuffer, float lineWidth) { } void CmdSetDepthBias(VkCommandBuffer cmdBuffer, float depthBias, float depthBiasClamp, float slopeScaledDepthBias) { } void CmdSetBlendConstants(VkCommandBuffer cmdBuffer, const float blendConst[4]) { } void CmdSetDepthBounds(VkCommandBuffer cmdBuffer, float minDepthBounds, float maxDepthBounds) { } void CmdSetStencilCompareMask(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilCompareMask) { } void CmdSetStencilWriteMask(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilWriteMask) { } void CmdSetStencilReference(VkCommandBuffer cmdBuffer, VkStencilFaceFlags faceMask, uint32_t stencilReference) { } void CmdBindDescriptorSets(VkCommandBuffer cmdBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout layout, uint32_t firstSet, uint32_t setCount, const VkDescriptorSet* pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t* pDynamicOffsets) { } void CmdBindIndexBuffer(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) { } void CmdBindVertexBuffers(VkCommandBuffer cmdBuffer, uint32_t startBinding, uint32_t bindingCount, const VkBuffer* pBuffers, const VkDeviceSize* pOffsets) { } void CmdDraw(VkCommandBuffer cmdBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { } void CmdDrawIndexed(VkCommandBuffer cmdBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { } void CmdDrawIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) { } void CmdDrawIndexedIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) { } void CmdDispatch(VkCommandBuffer cmdBuffer, uint32_t x, uint32_t y, uint32_t z) { } void CmdDispatchIndirect(VkCommandBuffer cmdBuffer, VkBuffer buffer, VkDeviceSize offset) { } void CmdCopyBuffer(VkCommandBuffer cmdBuffer, VkBuffer srcBuffer, VkBuffer destBuffer, uint32_t regionCount, const VkBufferCopy* pRegions) { } void CmdCopyImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageCopy* pRegions) { } void CmdBlitImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageBlit* pRegions, VkFilter filter) { } void CmdCopyBufferToImage(VkCommandBuffer cmdBuffer, VkBuffer srcBuffer, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions) { } void CmdCopyImageToBuffer(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkBuffer destBuffer, uint32_t regionCount, const VkBufferImageCopy* pRegions) { } void CmdUpdateBuffer(VkCommandBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize dataSize, const void* pData) { } void CmdFillBuffer(VkCommandBuffer cmdBuffer, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize fillSize, uint32_t data) { } void CmdClearColorImage(VkCommandBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearColorValue* pColor, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { } void CmdClearDepthStencilImage(VkCommandBuffer cmdBuffer, VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue* pDepthStencil, uint32_t rangeCount, const VkImageSubresourceRange* pRanges) { } void CmdClearAttachments(VkCommandBuffer cmdBuffer, uint32_t attachmentCount, const VkClearAttachment* pAttachments, uint32_t rectCount, const VkClearRect* pRects) { } void CmdResolveImage(VkCommandBuffer cmdBuffer, VkImage srcImage, VkImageLayout srcImageLayout, VkImage destImage, VkImageLayout destImageLayout, uint32_t regionCount, const VkImageResolve* pRegions) { } void CmdSetEvent(VkCommandBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) { } void CmdResetEvent(VkCommandBuffer cmdBuffer, VkEvent event, VkPipelineStageFlags stageMask) { } void CmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { } void CmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers, uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier* pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier* pImageMemoryBarriers) { } void CmdBeginQuery(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot, VkQueryControlFlags flags) { } void CmdEndQuery(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t slot) { } void CmdResetQueryPool(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount) { } void CmdWriteTimestamp(VkCommandBuffer cmdBuffer, VkPipelineStageFlagBits pipelineStage, VkQueryPool queryPool, uint32_t slot) { } void CmdCopyQueryPoolResults(VkCommandBuffer cmdBuffer, VkQueryPool queryPool, uint32_t startQuery, uint32_t queryCount, VkBuffer destBuffer, VkDeviceSize destOffset, VkDeviceSize destStride, VkQueryResultFlags flags) { } void CmdPushConstants(VkCommandBuffer cmdBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t start, uint32_t length, const void* values) { } void CmdBeginRenderPass(VkCommandBuffer cmdBuffer, const VkRenderPassBeginInfo* pRenderPassBegin, VkSubpassContents contents) { } void CmdNextSubpass(VkCommandBuffer cmdBuffer, VkSubpassContents contents) { } void CmdEndRenderPass(VkCommandBuffer cmdBuffer) { } void CmdExecuteCommands(VkCommandBuffer cmdBuffer, uint32_t cmdBuffersCount, const VkCommandBuffer* pCmdBuffers) { } void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback, const VkAllocationCallbacks* pAllocator) { } void DebugReportMessageEXT(VkInstance instance, VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage) { } VkResult BindBufferMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindBufferMemoryInfo* pBindInfos) { return VK_SUCCESS; } VkResult BindImageMemory2(VkDevice device, uint32_t bindInfoCount, const VkBindImageMemoryInfo* pBindInfos) { return VK_SUCCESS; } void GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex, uint32_t localDeviceIndex, uint32_t remoteDeviceIndex, VkPeerMemoryFeatureFlags* pPeerMemoryFeatures) { } void CmdSetDeviceMask(VkCommandBuffer commandBuffer, uint32_t deviceMask) { } void CmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { } VkResult EnumeratePhysicalDeviceGroups(VkInstance instance, uint32_t* pPhysicalDeviceGroupCount, VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties) { return VK_SUCCESS; } void GetImageMemoryRequirements2(VkDevice device, const VkImageMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { } void GetBufferMemoryRequirements2(VkDevice device, const VkBufferMemoryRequirementsInfo2* pInfo, VkMemoryRequirements2* pMemoryRequirements) { } void GetImageSparseMemoryRequirements2(VkDevice device, const VkImageSparseMemoryRequirementsInfo2* pInfo, uint32_t* pSparseMemoryRequirementCount, VkSparseImageMemoryRequirements2* pSparseMemoryRequirements) { } void GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures2* pFeatures) { } void GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceProperties2* pProperties) { } void GetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format, VkFormatProperties2* pFormatProperties) { } VkResult GetPhysicalDeviceImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2* pImageFormatInfo, VkImageFormatProperties2* pImageFormatProperties) { return VK_SUCCESS; } void GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) { } void GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2* pMemoryProperties) { } void GetPhysicalDeviceSparseImageFormatProperties2(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2* pFormatInfo, uint32_t* pPropertyCount, VkSparseImageFormatProperties2* pProperties) { } void TrimCommandPool(VkDevice device, VkCommandPool commandPool, VkCommandPoolTrimFlags flags) { } void GetDeviceQueue2(VkDevice device, const VkDeviceQueueInfo2* pQueueInfo, VkQueue* pQueue) { } VkResult CreateSamplerYcbcrConversion(VkDevice device, const VkSamplerYcbcrConversionCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSamplerYcbcrConversion* pYcbcrConversion) { return VK_SUCCESS; } void DestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks* pAllocator) { } VkResult CreateDescriptorUpdateTemplate(VkDevice device, const VkDescriptorUpdateTemplateCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorUpdateTemplate* pDescriptorUpdateTemplate) { return VK_SUCCESS; } void DestroyDescriptorUpdateTemplate(VkDevice device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks* pAllocator) { } void UpdateDescriptorSetWithTemplate(VkDevice device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void* pData) { } void GetPhysicalDeviceExternalBufferProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo* pExternalBufferInfo, VkExternalBufferProperties* pExternalBufferProperties) { } void GetPhysicalDeviceExternalFenceProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo* pExternalFenceInfo, VkExternalFenceProperties* pExternalFenceProperties) { } void GetPhysicalDeviceExternalSemaphoreProperties(VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo* pExternalSemaphoreInfo, VkExternalSemaphoreProperties* pExternalSemaphoreProperties) { } void GetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport) { } #pragma clang diagnostic pop // clang-format on } // namespace null_driver