/* * Copyright 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "LibSurfaceFlingerUnittests" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <log/log.h> #include <utils/String16.h> #include <utils/Vector.h> #include <random> #include <unordered_set> #include "TimeStats/TimeStats.h" #include "libsurfaceflinger_unittest_main.h" using namespace android::surfaceflinger; using namespace google::protobuf; namespace android { namespace { using testing::Contains; using testing::SizeIs; using testing::UnorderedElementsAre; // clang-format off #define FMT_PROTO true #define FMT_STRING false #define LAYER_ID_0 0 #define LAYER_ID_1 1 #define LAYER_ID_INVALID -1 #define NUM_LAYERS 1 #define NUM_LAYERS_INVALID "INVALID" enum InputCommand : int32_t { ENABLE = 0, DISABLE = 1, CLEAR = 2, DUMP_ALL = 3, DUMP_MAXLAYERS_1 = 4, DUMP_MAXLAYERS_INVALID = 5, INPUT_COMMAND_BEGIN = ENABLE, INPUT_COMMAND_END = DUMP_MAXLAYERS_INVALID, INPUT_COMMAND_RANGE = INPUT_COMMAND_END - INPUT_COMMAND_BEGIN + 1, }; enum TimeStamp : int32_t { POST = 0, ACQUIRE = 1, ACQUIRE_FENCE = 2, LATCH = 3, DESIRED = 4, PRESENT = 5, PRESENT_FENCE = 6, TIME_STAMP_BEGIN = POST, TIME_STAMP_END = PRESENT, TIME_STAMP_RANGE = TIME_STAMP_END - TIME_STAMP_BEGIN + 1, }; static const TimeStamp NORMAL_SEQUENCE[] = { TimeStamp::POST, TimeStamp::ACQUIRE, TimeStamp::LATCH, TimeStamp::DESIRED, TimeStamp::PRESENT, }; static const TimeStamp NORMAL_SEQUENCE_2[] = { TimeStamp::POST, TimeStamp::ACQUIRE_FENCE, TimeStamp::LATCH, TimeStamp::DESIRED, TimeStamp::PRESENT_FENCE, }; static const TimeStamp UNORDERED_SEQUENCE[] = { TimeStamp::ACQUIRE, TimeStamp::LATCH, TimeStamp::POST, TimeStamp::DESIRED, TimeStamp::PRESENT, }; static const TimeStamp INCOMPLETE_SEQUENCE[] = { TimeStamp::POST, }; // clang-format on class TimeStatsTest : public testing::Test { public: TimeStatsTest() { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGD("**** Setting up for %s.%s\n", test_info->test_case_name(), test_info->name()); } ~TimeStatsTest() { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGD("**** Tearing down after %s.%s\n", test_info->test_case_name(), test_info->name()); } std::string inputCommand(InputCommand cmd, bool useProto); void setTimeStamp(TimeStamp type, int32_t id, uint64_t frameNumber, nsecs_t ts); int32_t genRandomInt32(int32_t begin, int32_t end); template <size_t N> void insertTimeRecord(const TimeStamp (&sequence)[N], int32_t id, uint64_t frameNumber, nsecs_t ts) { for (size_t i = 0; i < N; i++, ts += 1000000) { setTimeStamp(sequence[i], id, frameNumber, ts); } } std::mt19937 mRandomEngine = std::mt19937(std::random_device()()); std::unique_ptr<TimeStats> mTimeStats = std::make_unique<impl::TimeStats>(); }; std::string TimeStatsTest::inputCommand(InputCommand cmd, bool useProto) { std::string result; Vector<String16> args; switch (cmd) { case InputCommand::ENABLE: args.push_back(String16("-enable")); break; case InputCommand::DISABLE: args.push_back(String16("-disable")); break; case InputCommand::CLEAR: args.push_back(String16("-clear")); break; case InputCommand::DUMP_ALL: args.push_back(String16("-dump")); break; case InputCommand::DUMP_MAXLAYERS_1: args.push_back(String16("-dump")); args.push_back(String16("-maxlayers")); args.push_back(String16(std::to_string(NUM_LAYERS).c_str())); break; case InputCommand::DUMP_MAXLAYERS_INVALID: args.push_back(String16("-dump")); args.push_back(String16("-maxlayers")); args.push_back(String16(NUM_LAYERS_INVALID)); break; default: ALOGD("Invalid control command"); } EXPECT_NO_FATAL_FAILURE(mTimeStats->parseArgs(useProto, args, result)); return result; } static std::string genLayerName(int32_t layerID) { return (layerID < 0 ? "invalid.dummy" : "com.dummy#") + std::to_string(layerID); } void TimeStatsTest::setTimeStamp(TimeStamp type, int32_t id, uint64_t frameNumber, nsecs_t ts) { switch (type) { case TimeStamp::POST: ASSERT_NO_FATAL_FAILURE(mTimeStats->setPostTime(id, frameNumber, genLayerName(id), ts)); break; case TimeStamp::ACQUIRE: ASSERT_NO_FATAL_FAILURE(mTimeStats->setAcquireTime(id, frameNumber, ts)); break; case TimeStamp::ACQUIRE_FENCE: ASSERT_NO_FATAL_FAILURE( mTimeStats->setAcquireFence(id, frameNumber, std::make_shared<FenceTime>(ts))); break; case TimeStamp::LATCH: ASSERT_NO_FATAL_FAILURE(mTimeStats->setLatchTime(id, frameNumber, ts)); break; case TimeStamp::DESIRED: ASSERT_NO_FATAL_FAILURE(mTimeStats->setDesiredTime(id, frameNumber, ts)); break; case TimeStamp::PRESENT: ASSERT_NO_FATAL_FAILURE(mTimeStats->setPresentTime(id, frameNumber, ts)); break; case TimeStamp::PRESENT_FENCE: ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFence(id, frameNumber, std::make_shared<FenceTime>(ts))); break; default: ALOGD("Invalid timestamp type"); } } int32_t TimeStatsTest::genRandomInt32(int32_t begin, int32_t end) { std::uniform_int_distribution<int32_t> distr(begin, end); return distr(mRandomEngine); } TEST_F(TimeStatsTest, canEnableAndDisableTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); ASSERT_TRUE(mTimeStats->isEnabled()); EXPECT_TRUE(inputCommand(InputCommand::DISABLE, FMT_STRING).empty()); ASSERT_FALSE(mTimeStats->isEnabled()); } TEST_F(TimeStatsTest, canIncreaseGlobalStats) { constexpr size_t TOTAL_FRAMES = 5; constexpr size_t MISSED_FRAMES = 4; constexpr size_t CLIENT_COMPOSITION_FRAMES = 3; EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); for (size_t i = 0; i < TOTAL_FRAMES; i++) { ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementTotalFrames()); } for (size_t i = 0; i < MISSED_FRAMES; i++) { ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementMissedFrames()); } for (size_t i = 0; i < CLIENT_COMPOSITION_FRAMES; i++) { ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementClientCompositionFrames()); } SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_TRUE(globalProto.has_total_frames()); EXPECT_EQ(TOTAL_FRAMES, globalProto.total_frames()); ASSERT_TRUE(globalProto.has_missed_frames()); EXPECT_EQ(MISSED_FRAMES, globalProto.missed_frames()); ASSERT_TRUE(globalProto.has_client_composition_frames()); EXPECT_EQ(CLIENT_COMPOSITION_FRAMES, globalProto.client_composition_frames()); } TEST_F(TimeStatsTest, canInsertGlobalPresentToPresent) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(1000000))); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(2000000))); ASSERT_NO_FATAL_FAILURE(mTimeStats->setPowerMode(HWC_POWER_MODE_NORMAL)); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(3000000))); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(5000000))); ASSERT_NO_FATAL_FAILURE(mTimeStats->setPowerMode(HWC_POWER_MODE_OFF)); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(6000000))); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(8000000))); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.present_to_present_size()); const SFTimeStatsHistogramBucketProto& histogramProto = globalProto.present_to_present().Get(0); EXPECT_EQ(1, histogramProto.frame_count()); EXPECT_EQ(2, histogramProto.time_millis()); } TEST_F(TimeStatsTest, canInsertOneLayerTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE_2, LAYER_ID_0, 2, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_layer_name()); EXPECT_EQ(genLayerName(LAYER_ID_0), layerProto.layer_name()); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(1, layerProto.total_frames()); ASSERT_EQ(6, layerProto.deltas_size()); for (const SFTimeStatsDeltaProto& deltaProto : layerProto.deltas()) { ASSERT_EQ(1, deltaProto.histograms_size()); const SFTimeStatsHistogramBucketProto& histogramProto = deltaProto.histograms().Get(0); EXPECT_EQ(1, histogramProto.frame_count()); if ("post2acquire" == deltaProto.delta_name()) { EXPECT_EQ(1, histogramProto.time_millis()); } else if ("post2present" == deltaProto.delta_name()) { EXPECT_EQ(4, histogramProto.time_millis()); } else if ("acquire2present" == deltaProto.delta_name()) { EXPECT_EQ(3, histogramProto.time_millis()); } else if ("latch2present" == deltaProto.delta_name()) { EXPECT_EQ(2, histogramProto.time_millis()); } else if ("desired2present" == deltaProto.delta_name()) { EXPECT_EQ(1, histogramProto.time_millis()); } else if ("present2present" == deltaProto.delta_name()) { EXPECT_EQ(1, histogramProto.time_millis()); } else { FAIL() << "Unknown delta_name: " << deltaProto.delta_name(); } } } TEST_F(TimeStatsTest, canNotInsertInvalidLayerNameTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_INVALID, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE_2, LAYER_ID_INVALID, 2, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(0, globalProto.stats_size()); } TEST_F(TimeStatsTest, canInsertMultipleLayersTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_1, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 2, 2000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_1, 2, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); EXPECT_EQ(2, globalProto.stats_size()); } TEST_F(TimeStatsTest, canInsertUnorderedLayerTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(UNORDERED_SEQUENCE, LAYER_ID_0, 2, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_layer_name()); EXPECT_EQ(genLayerName(LAYER_ID_0), layerProto.layer_name()); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(1, layerProto.total_frames()); ASSERT_EQ(6, layerProto.deltas_size()); for (const SFTimeStatsDeltaProto& deltaProto : layerProto.deltas()) { ASSERT_EQ(1, deltaProto.histograms_size()); const SFTimeStatsHistogramBucketProto& histogramProto = deltaProto.histograms().Get(0); EXPECT_EQ(1, histogramProto.frame_count()); if ("post2acquire" == deltaProto.delta_name()) { EXPECT_EQ(0, histogramProto.time_millis()); } else if ("post2present" == deltaProto.delta_name()) { EXPECT_EQ(2, histogramProto.time_millis()); } else if ("acquire2present" == deltaProto.delta_name()) { EXPECT_EQ(2, histogramProto.time_millis()); } else if ("latch2present" == deltaProto.delta_name()) { EXPECT_EQ(2, histogramProto.time_millis()); } else if ("desired2present" == deltaProto.delta_name()) { EXPECT_EQ(1, histogramProto.time_millis()); } else if ("present2present" == deltaProto.delta_name()) { EXPECT_EQ(1, histogramProto.time_millis()); } else { FAIL() << "Unknown delta_name: " << deltaProto.delta_name(); } } } TEST_F(TimeStatsTest, recordRefreshRateNewConfigs) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); uint32_t fpsOne = 30; uint32_t fpsTwo = 90; uint64_t millisOne = 5000; uint64_t millisTwo = 7000; mTimeStats->recordRefreshRate(fpsOne, ms2ns(millisOne)); mTimeStats->recordRefreshRate(fpsTwo, ms2ns(millisTwo)); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); SFTimeStatsDisplayConfigBucketProto expectedBucketOne; SFTimeStatsDisplayConfigProto* expectedConfigOne = expectedBucketOne.mutable_config(); expectedConfigOne->set_fps(fpsOne); expectedBucketOne.set_duration_millis(millisOne); SFTimeStatsDisplayConfigBucketProto expectedBucketTwo; SFTimeStatsDisplayConfigProto* expectedConfigTwo = expectedBucketTwo.mutable_config(); expectedConfigTwo->set_fps(fpsTwo); expectedBucketTwo.set_duration_millis(millisTwo); EXPECT_THAT(globalProto.display_config_stats(), SizeIs(2)); std::unordered_set<uint32_t> seen_fps; for (const auto& bucket : globalProto.display_config_stats()) { seen_fps.emplace(bucket.config().fps()); if (fpsOne == bucket.config().fps()) { EXPECT_EQ(millisOne, bucket.duration_millis()); } else if (fpsTwo == bucket.config().fps()) { EXPECT_EQ(millisTwo, bucket.duration_millis()); } else { FAIL() << "Unknown fps: " << bucket.config().fps(); } } EXPECT_THAT(seen_fps, UnorderedElementsAre(fpsOne, fpsTwo)); } TEST_F(TimeStatsTest, recordRefreshRateUpdatesConfig) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); uint32_t fps = 30; uint64_t millisOne = 5000; uint64_t millisTwo = 7000; mTimeStats->recordRefreshRate(fps, ms2ns(millisOne)); mTimeStats->recordRefreshRate(fps, ms2ns(millisTwo)); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); EXPECT_THAT(globalProto.display_config_stats(), SizeIs(1)); EXPECT_EQ(fps, globalProto.display_config_stats().Get(0).config().fps()); EXPECT_EQ(millisOne + millisTwo, globalProto.display_config_stats().Get(0).duration_millis()); } TEST_F(TimeStatsTest, canRemoveTimeRecord) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(INCOMPLETE_SEQUENCE, LAYER_ID_0, 2, 2000000); ASSERT_NO_FATAL_FAILURE(mTimeStats->removeTimeRecord(0, 2)); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 3, 3000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(1, layerProto.total_frames()); } TEST_F(TimeStatsTest, canRecoverFromIncompleteTimeRecordError) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); uint64_t frameNumber = 1; nsecs_t ts = 1000000; insertTimeRecord(INCOMPLETE_SEQUENCE, LAYER_ID_0, 1, 1000000); for (size_t i = 0; i < impl::TimeStats::MAX_NUM_TIME_RECORDS + 2; i++) { frameNumber++; ts += 1000000; insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, frameNumber, ts); } SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(1, layerProto.total_frames()); } TEST_F(TimeStatsTest, layerTimeStatsOnDestroy) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 2, 2000000); ASSERT_NO_FATAL_FAILURE(mTimeStats->onDestroy(0)); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 3, 3000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(1, layerProto.total_frames()); } TEST_F(TimeStatsTest, canClearTimeStats) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementTotalFrames()); ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementMissedFrames()); ASSERT_NO_FATAL_FAILURE(mTimeStats->incrementClientCompositionFrames()); ASSERT_NO_FATAL_FAILURE(mTimeStats->setPowerMode(HWC_POWER_MODE_NORMAL)); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(1000000))); ASSERT_NO_FATAL_FAILURE( mTimeStats->setPresentFenceGlobal(std::make_shared<FenceTime>(2000000))); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 2, 2000000); EXPECT_TRUE(inputCommand(InputCommand::CLEAR, FMT_STRING).empty()); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString(inputCommand(InputCommand::DUMP_ALL, FMT_PROTO))); EXPECT_EQ(0, globalProto.total_frames()); EXPECT_EQ(0, globalProto.missed_frames()); EXPECT_EQ(0, globalProto.client_composition_frames()); EXPECT_EQ(0, globalProto.present_to_present_size()); EXPECT_EQ(0, globalProto.stats_size()); } TEST_F(TimeStatsTest, canDumpWithMaxLayers) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_1, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 2, 2000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_1, 2, 2000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_1, 3, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE( globalProto.ParseFromString(inputCommand(InputCommand::DUMP_MAXLAYERS_1, FMT_PROTO))); ASSERT_EQ(1, globalProto.stats_size()); const SFTimeStatsLayerProto& layerProto = globalProto.stats().Get(0); ASSERT_TRUE(layerProto.has_layer_name()); EXPECT_EQ(genLayerName(LAYER_ID_1), layerProto.layer_name()); ASSERT_TRUE(layerProto.has_total_frames()); EXPECT_EQ(2, layerProto.total_frames()); } TEST_F(TimeStatsTest, canDumpWithInvalidMaxLayers) { EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 1, 1000000); insertTimeRecord(NORMAL_SEQUENCE, LAYER_ID_0, 2, 2000000); SFTimeStatsGlobalProto globalProto; ASSERT_TRUE(globalProto.ParseFromString( inputCommand(InputCommand::DUMP_MAXLAYERS_INVALID, FMT_PROTO))); ASSERT_EQ(0, globalProto.stats_size()); } TEST_F(TimeStatsTest, canSurviveMonkey) { if (g_noSlowTests) { GTEST_SKIP(); } EXPECT_TRUE(inputCommand(InputCommand::ENABLE, FMT_STRING).empty()); for (size_t i = 0; i < 10000000; ++i) { const int32_t layerID = genRandomInt32(-1, 10); const int32_t frameNumber = genRandomInt32(1, 10); switch (genRandomInt32(0, 100)) { case 0: ALOGV("removeTimeRecord"); ASSERT_NO_FATAL_FAILURE(mTimeStats->removeTimeRecord(layerID, frameNumber)); continue; case 1: ALOGV("onDestroy"); ASSERT_NO_FATAL_FAILURE(mTimeStats->onDestroy(layerID)); continue; } TimeStamp type = static_cast<TimeStamp>(genRandomInt32(TIME_STAMP_BEGIN, TIME_STAMP_END)); const int32_t ts = genRandomInt32(1, 1000000000); ALOGV("type[%d], layerID[%d], frameNumber[%d], ts[%d]", type, layerID, frameNumber, ts); setTimeStamp(type, layerID, frameNumber, ts); } } } // namespace } // namespace android