/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #undef LOG_TAG #define LOG_TAG "LibSurfaceFlingerUnittests" #include <type_traits> #include <compositionengine/Display.h> #include <compositionengine/DisplayColorProfile.h> #include <compositionengine/mock/DisplaySurface.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <log/log.h> #include <renderengine/mock/RenderEngine.h> #include <ui/DebugUtils.h> #include "DisplayIdentificationTest.h" #include "TestableScheduler.h" #include "TestableSurfaceFlinger.h" #include "mock/DisplayHardware/MockComposer.h" #include "mock/MockDispSync.h" #include "mock/MockEventControlThread.h" #include "mock/MockEventThread.h" #include "mock/MockMessageQueue.h" #include "mock/MockNativeWindowSurface.h" #include "mock/MockSurfaceInterceptor.h" #include "mock/gui/MockGraphicBufferConsumer.h" #include "mock/gui/MockGraphicBufferProducer.h" #include "mock/system/window/MockNativeWindow.h" namespace android { namespace { using testing::_; using testing::DoAll; using testing::Mock; using testing::ResultOf; using testing::Return; using testing::SetArgPointee; using android::Hwc2::ColorMode; using android::Hwc2::Error; using android::Hwc2::Hdr; using android::Hwc2::IComposer; using android::Hwc2::IComposerClient; using android::Hwc2::PerFrameMetadataKey; using android::Hwc2::RenderIntent; using FakeDisplayDeviceInjector = TestableSurfaceFlinger::FakeDisplayDeviceInjector; using FakeHwcDisplayInjector = TestableSurfaceFlinger::FakeHwcDisplayInjector; using HotplugEvent = TestableSurfaceFlinger::HotplugEvent; using HWC2Display = TestableSurfaceFlinger::HWC2Display; constexpr int32_t DEFAULT_REFRESH_RATE = 16'666'666; constexpr int32_t DEFAULT_DPI = 320; constexpr int DEFAULT_VIRTUAL_DISPLAY_SURFACE_FORMAT = HAL_PIXEL_FORMAT_RGB_565; constexpr int HWC_POWER_MODE_LEET = 1337; // An out of range power mode value /* ------------------------------------------------------------------------ * Boolean avoidance * * To make calls and template instantiations more readable, we define some * local enums along with an implicit bool conversion. */ #define BOOL_SUBSTITUTE(TYPENAME) enum class TYPENAME : bool { FALSE = false, TRUE = true }; BOOL_SUBSTITUTE(Async); BOOL_SUBSTITUTE(Critical); BOOL_SUBSTITUTE(Primary); BOOL_SUBSTITUTE(Secure); BOOL_SUBSTITUTE(Virtual); /* ------------------------------------------------------------------------ * */ class DisplayTransactionTest : public testing::Test { public: DisplayTransactionTest(); ~DisplayTransactionTest() override; void setupScheduler(); // -------------------------------------------------------------------- // Mock/Fake injection void injectMockComposer(int virtualDisplayCount); void injectFakeBufferQueueFactory(); void injectFakeNativeWindowSurfaceFactory(); // -------------------------------------------------------------------- // Postcondition helpers bool hasPhysicalHwcDisplay(hwc2_display_t hwcDisplayId); bool hasTransactionFlagSet(int flag); bool hasDisplayDevice(sp<IBinder> displayToken); sp<DisplayDevice> getDisplayDevice(sp<IBinder> displayToken); bool hasCurrentDisplayState(sp<IBinder> displayToken); const DisplayDeviceState& getCurrentDisplayState(sp<IBinder> displayToken); bool hasDrawingDisplayState(sp<IBinder> displayToken); const DisplayDeviceState& getDrawingDisplayState(sp<IBinder> displayToken); // -------------------------------------------------------------------- // Test instances TestableScheduler* mScheduler; TestableSurfaceFlinger mFlinger; mock::EventThread* mEventThread = new mock::EventThread(); mock::EventThread* mSFEventThread = new mock::EventThread(); mock::EventControlThread* mEventControlThread = new mock::EventControlThread(); sp<mock::NativeWindow> mNativeWindow = new mock::NativeWindow(); sp<GraphicBuffer> mBuffer = new GraphicBuffer(); // These mocks are created by the test, but are destroyed by SurfaceFlinger // by virtue of being stored into a std::unique_ptr. However we still need // to keep a reference to them for use in setting up call expectations. renderengine::mock::RenderEngine* mRenderEngine = new renderengine::mock::RenderEngine(); Hwc2::mock::Composer* mComposer = nullptr; mock::MessageQueue* mMessageQueue = new mock::MessageQueue(); mock::SurfaceInterceptor* mSurfaceInterceptor = new mock::SurfaceInterceptor(); mock::DispSync* mPrimaryDispSync = new mock::DispSync(); // These mocks are created only when expected to be created via a factory. sp<mock::GraphicBufferConsumer> mConsumer; sp<mock::GraphicBufferProducer> mProducer; surfaceflinger::mock::NativeWindowSurface* mNativeWindowSurface = nullptr; }; DisplayTransactionTest::DisplayTransactionTest() { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGD("**** Setting up for %s.%s\n", test_info->test_case_name(), test_info->name()); // Default to no wide color display support configured mFlinger.mutableHasWideColorDisplay() = false; mFlinger.mutableUseColorManagement() = false; mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED; // Default to using HWC virtual displays mFlinger.mutableUseHwcVirtualDisplays() = true; mFlinger.setCreateBufferQueueFunction([](auto, auto, auto) { ADD_FAILURE() << "Unexpected request to create a buffer queue."; }); mFlinger.setCreateNativeWindowSurface([](auto) { ADD_FAILURE() << "Unexpected request to create a native window surface."; return nullptr; }); setupScheduler(); mFlinger.mutableEventQueue().reset(mMessageQueue); mFlinger.setupRenderEngine(std::unique_ptr<renderengine::RenderEngine>(mRenderEngine)); mFlinger.mutableInterceptor().reset(mSurfaceInterceptor); injectMockComposer(0); } DisplayTransactionTest::~DisplayTransactionTest() { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); ALOGD("**** Tearing down after %s.%s\n", test_info->test_case_name(), test_info->name()); } void DisplayTransactionTest::setupScheduler() { mScheduler = new TestableScheduler(mFlinger.mutableRefreshRateConfigs()); mScheduler->mutableEventControlThread().reset(mEventControlThread); mScheduler->mutablePrimaryDispSync().reset(mPrimaryDispSync); EXPECT_CALL(*mEventThread, registerDisplayEventConnection(_)); EXPECT_CALL(*mSFEventThread, registerDisplayEventConnection(_)); sp<Scheduler::ConnectionHandle> sfConnectionHandle = mScheduler->addConnection(std::unique_ptr<EventThread>(mSFEventThread)); mFlinger.mutableSfConnectionHandle() = std::move(sfConnectionHandle); sp<Scheduler::ConnectionHandle> appConnectionHandle = mScheduler->addConnection(std::unique_ptr<EventThread>(mEventThread)); mFlinger.mutableAppConnectionHandle() = std::move(appConnectionHandle); mFlinger.mutableScheduler().reset(mScheduler); } void DisplayTransactionTest::injectMockComposer(int virtualDisplayCount) { mComposer = new Hwc2::mock::Composer(); EXPECT_CALL(*mComposer, getCapabilities()) .WillOnce(Return(std::vector<IComposer::Capability>())); EXPECT_CALL(*mComposer, getMaxVirtualDisplayCount()).WillOnce(Return(virtualDisplayCount)); mFlinger.setupComposer(std::unique_ptr<Hwc2::Composer>(mComposer)); Mock::VerifyAndClear(mComposer); } void DisplayTransactionTest::injectFakeBufferQueueFactory() { // This setup is only expected once per test. ASSERT_TRUE(mConsumer == nullptr && mProducer == nullptr); mConsumer = new mock::GraphicBufferConsumer(); mProducer = new mock::GraphicBufferProducer(); mFlinger.setCreateBufferQueueFunction([this](auto outProducer, auto outConsumer, bool) { *outProducer = mProducer; *outConsumer = mConsumer; }); } void DisplayTransactionTest::injectFakeNativeWindowSurfaceFactory() { // This setup is only expected once per test. ASSERT_TRUE(mNativeWindowSurface == nullptr); mNativeWindowSurface = new surfaceflinger::mock::NativeWindowSurface(); mFlinger.setCreateNativeWindowSurface([this](auto) { return std::unique_ptr<surfaceflinger::NativeWindowSurface>(mNativeWindowSurface); }); } bool DisplayTransactionTest::hasPhysicalHwcDisplay(hwc2_display_t hwcDisplayId) { return mFlinger.mutableHwcPhysicalDisplayIdMap().count(hwcDisplayId) == 1; } bool DisplayTransactionTest::hasTransactionFlagSet(int flag) { return mFlinger.mutableTransactionFlags() & flag; } bool DisplayTransactionTest::hasDisplayDevice(sp<IBinder> displayToken) { return mFlinger.mutableDisplays().count(displayToken) == 1; } sp<DisplayDevice> DisplayTransactionTest::getDisplayDevice(sp<IBinder> displayToken) { return mFlinger.mutableDisplays()[displayToken]; } bool DisplayTransactionTest::hasCurrentDisplayState(sp<IBinder> displayToken) { return mFlinger.mutableCurrentState().displays.indexOfKey(displayToken) >= 0; } const DisplayDeviceState& DisplayTransactionTest::getCurrentDisplayState(sp<IBinder> displayToken) { return mFlinger.mutableCurrentState().displays.valueFor(displayToken); } bool DisplayTransactionTest::hasDrawingDisplayState(sp<IBinder> displayToken) { return mFlinger.mutableDrawingState().displays.indexOfKey(displayToken) >= 0; } const DisplayDeviceState& DisplayTransactionTest::getDrawingDisplayState(sp<IBinder> displayToken) { return mFlinger.mutableDrawingState().displays.valueFor(displayToken); } /* ------------------------------------------------------------------------ * */ template <typename PhysicalDisplay> struct PhysicalDisplayId {}; template <DisplayId::Type displayId> using VirtualDisplayId = std::integral_constant<DisplayId::Type, displayId>; struct NoDisplayId {}; template <typename> struct IsPhysicalDisplayId : std::bool_constant<false> {}; template <typename PhysicalDisplay> struct IsPhysicalDisplayId<PhysicalDisplayId<PhysicalDisplay>> : std::bool_constant<true> {}; template <typename> struct DisplayIdGetter; template <typename PhysicalDisplay> struct DisplayIdGetter<PhysicalDisplayId<PhysicalDisplay>> { static std::optional<DisplayId> get() { if (!PhysicalDisplay::HAS_IDENTIFICATION_DATA) { return getFallbackDisplayId(static_cast<bool>(PhysicalDisplay::PRIMARY) ? HWC_DISPLAY_PRIMARY : HWC_DISPLAY_EXTERNAL); } const auto info = parseDisplayIdentificationData(PhysicalDisplay::PORT, PhysicalDisplay::GET_IDENTIFICATION_DATA()); return info ? std::make_optional(info->id) : std::nullopt; } }; template <DisplayId::Type displayId> struct DisplayIdGetter<VirtualDisplayId<displayId>> { static std::optional<DisplayId> get() { return DisplayId{displayId}; } }; template <> struct DisplayIdGetter<NoDisplayId> { static std::optional<DisplayId> get() { return {}; } }; // DisplayIdType can be: // 1) PhysicalDisplayId<...> for generated ID of physical display backed by HWC. // 2) VirtualDisplayId<...> for hard-coded ID of virtual display backed by HWC. // 3) NoDisplayId for virtual display without HWC backing. template <typename DisplayIdType, int width, int height, Critical critical, Async async, Secure secure, Primary primary, int grallocUsage> struct DisplayVariant { using DISPLAY_ID = DisplayIdGetter<DisplayIdType>; // The display width and height static constexpr int WIDTH = width; static constexpr int HEIGHT = height; static constexpr int GRALLOC_USAGE = grallocUsage; // Whether the display is virtual or physical static constexpr Virtual VIRTUAL = IsPhysicalDisplayId<DisplayIdType>{} ? Virtual::FALSE : Virtual::TRUE; // When creating native window surfaces for the framebuffer, whether those should be critical static constexpr Critical CRITICAL = critical; // When creating native window surfaces for the framebuffer, whether those should be async static constexpr Async ASYNC = async; // Whether the display should be treated as secure static constexpr Secure SECURE = secure; // Whether the display is primary static constexpr Primary PRIMARY = primary; static auto makeFakeExistingDisplayInjector(DisplayTransactionTest* test) { auto injector = FakeDisplayDeviceInjector(test->mFlinger, DISPLAY_ID::get(), static_cast<bool>(VIRTUAL), static_cast<bool>(PRIMARY)); injector.setSecure(static_cast<bool>(SECURE)); injector.setNativeWindow(test->mNativeWindow); // Creating a DisplayDevice requires getting default dimensions from the // native window along with some other initial setup. EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_WIDTH, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(WIDTH), Return(0))); EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(HEIGHT), Return(0))); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_DISCONNECT)) .WillRepeatedly(Return(0)); return injector; } // Called by tests to set up any native window creation call expectations. static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mNativeWindowSurface, getNativeWindow()) .WillOnce(Return(test->mNativeWindow)); EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_WIDTH, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(WIDTH), Return(0))); EXPECT_CALL(*test->mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(HEIGHT), Return(0))); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)) .WillRepeatedly(Return(0)); EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_API_DISCONNECT)) .WillRepeatedly(Return(0)); } static void setupFramebufferConsumerBufferQueueCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mConsumer, consumerConnect(_, false)).WillOnce(Return(NO_ERROR)); EXPECT_CALL(*test->mConsumer, setConsumerName(_)).WillRepeatedly(Return(NO_ERROR)); EXPECT_CALL(*test->mConsumer, setConsumerUsageBits(GRALLOC_USAGE)) .WillRepeatedly(Return(NO_ERROR)); EXPECT_CALL(*test->mConsumer, setDefaultBufferSize(WIDTH, HEIGHT)) .WillRepeatedly(Return(NO_ERROR)); EXPECT_CALL(*test->mConsumer, setMaxAcquiredBufferCount(_)) .WillRepeatedly(Return(NO_ERROR)); } static void setupFramebufferProducerBufferQueueCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mProducer, allocateBuffers(0, 0, 0, 0)).WillRepeatedly(Return()); } }; template <hwc2_display_t hwcDisplayId, HWC2::DisplayType hwcDisplayType, typename DisplayVariant, typename PhysicalDisplay = void> struct HwcDisplayVariant { // The display id supplied by the HWC static constexpr hwc2_display_t HWC_DISPLAY_ID = hwcDisplayId; // The HWC display type static constexpr HWC2::DisplayType HWC_DISPLAY_TYPE = hwcDisplayType; // The HWC active configuration id static constexpr int HWC_ACTIVE_CONFIG_ID = 2001; static constexpr int INIT_POWER_MODE = HWC_POWER_MODE_NORMAL; static void injectPendingHotplugEvent(DisplayTransactionTest* test, HWC2::Connection connection) { test->mFlinger.mutablePendingHotplugEvents().emplace_back( HotplugEvent{HWC_DISPLAY_ID, connection}); } // Called by tests to inject a HWC display setup static void injectHwcDisplayWithNoDefaultCapabilities(DisplayTransactionTest* test) { const auto displayId = DisplayVariant::DISPLAY_ID::get(); ASSERT_TRUE(displayId); FakeHwcDisplayInjector(*displayId, HWC_DISPLAY_TYPE, static_cast<bool>(DisplayVariant::PRIMARY)) .setHwcDisplayId(HWC_DISPLAY_ID) .setWidth(DisplayVariant::WIDTH) .setHeight(DisplayVariant::HEIGHT) .setActiveConfig(HWC_ACTIVE_CONFIG_ID) .setPowerMode(INIT_POWER_MODE) .inject(&test->mFlinger, test->mComposer); } // Called by tests to inject a HWC display setup static void injectHwcDisplay(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getDisplayCapabilities(HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setPowerMode(HWC_DISPLAY_ID, static_cast<Hwc2::IComposerClient::PowerMode>(INIT_POWER_MODE))) .WillOnce(Return(Error::NONE)); injectHwcDisplayWithNoDefaultCapabilities(test); } static void setupHwcHotplugCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getDisplayType(HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(static_cast<IComposerClient::DisplayType>( HWC_DISPLAY_TYPE)), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setClientTargetSlotCount(_)).WillOnce(Return(Error::NONE)); EXPECT_CALL(*test->mComposer, getDisplayConfigs(HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<unsigned>{HWC_ACTIVE_CONFIG_ID}), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID, IComposerClient::Attribute::WIDTH, _)) .WillOnce(DoAll(SetArgPointee<3>(DisplayVariant::WIDTH), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID, IComposerClient::Attribute::HEIGHT, _)) .WillOnce(DoAll(SetArgPointee<3>(DisplayVariant::HEIGHT), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID, IComposerClient::Attribute::VSYNC_PERIOD, _)) .WillOnce(DoAll(SetArgPointee<3>(DEFAULT_REFRESH_RATE), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID, IComposerClient::Attribute::DPI_X, _)) .WillOnce(DoAll(SetArgPointee<3>(DEFAULT_DPI), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getDisplayAttribute(HWC_DISPLAY_ID, HWC_ACTIVE_CONFIG_ID, IComposerClient::Attribute::DPI_Y, _)) .WillOnce(DoAll(SetArgPointee<3>(DEFAULT_DPI), Return(Error::NONE))); if (PhysicalDisplay::HAS_IDENTIFICATION_DATA) { EXPECT_CALL(*test->mComposer, getDisplayIdentificationData(HWC_DISPLAY_ID, _, _)) .WillOnce(DoAll(SetArgPointee<1>(PhysicalDisplay::PORT), SetArgPointee<2>(PhysicalDisplay::GET_IDENTIFICATION_DATA()), Return(Error::NONE))); } else { EXPECT_CALL(*test->mComposer, getDisplayIdentificationData(HWC_DISPLAY_ID, _, _)) .WillOnce(Return(Error::UNSUPPORTED)); } } // Called by tests to set up HWC call expectations static void setupHwcGetActiveConfigCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getActiveConfig(HWC_DISPLAY_ID, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(HWC_ACTIVE_CONFIG_ID), Return(Error::NONE))); } }; // Physical displays are expected to be synchronous, secure, and have a HWC display for output. constexpr uint32_t GRALLOC_USAGE_PHYSICAL_DISPLAY = GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_COMPOSER | GRALLOC_USAGE_HW_FB; template <hwc2_display_t hwcDisplayId, typename PhysicalDisplay, int width, int height, Critical critical> struct PhysicalDisplayVariant : DisplayVariant<PhysicalDisplayId<PhysicalDisplay>, width, height, critical, Async::FALSE, Secure::TRUE, PhysicalDisplay::PRIMARY, GRALLOC_USAGE_PHYSICAL_DISPLAY>, HwcDisplayVariant<hwcDisplayId, HWC2::DisplayType::Physical, DisplayVariant<PhysicalDisplayId<PhysicalDisplay>, width, height, critical, Async::FALSE, Secure::TRUE, PhysicalDisplay::PRIMARY, GRALLOC_USAGE_PHYSICAL_DISPLAY>, PhysicalDisplay> {}; template <bool hasIdentificationData> struct PrimaryDisplay { static constexpr Primary PRIMARY = Primary::TRUE; static constexpr uint8_t PORT = 255; static constexpr bool HAS_IDENTIFICATION_DATA = hasIdentificationData; static constexpr auto GET_IDENTIFICATION_DATA = getInternalEdid; }; template <bool hasIdentificationData> struct ExternalDisplay { static constexpr Primary PRIMARY = Primary::FALSE; static constexpr uint8_t PORT = 254; static constexpr bool HAS_IDENTIFICATION_DATA = hasIdentificationData; static constexpr auto GET_IDENTIFICATION_DATA = getExternalEdid; }; struct TertiaryDisplay { static constexpr Primary PRIMARY = Primary::FALSE; static constexpr uint8_t PORT = 253; static constexpr auto GET_IDENTIFICATION_DATA = getExternalEdid; }; // A primary display is a physical display that is critical using PrimaryDisplayVariant = PhysicalDisplayVariant<1001, PrimaryDisplay<false>, 3840, 2160, Critical::TRUE>; // An external display is physical display that is not critical. using ExternalDisplayVariant = PhysicalDisplayVariant<1002, ExternalDisplay<false>, 1920, 1280, Critical::FALSE>; using TertiaryDisplayVariant = PhysicalDisplayVariant<1003, TertiaryDisplay, 1600, 1200, Critical::FALSE>; // A virtual display not supported by the HWC. constexpr uint32_t GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY = 0; template <int width, int height, Secure secure> struct NonHwcVirtualDisplayVariant : DisplayVariant<NoDisplayId, width, height, Critical::FALSE, Async::TRUE, secure, Primary::FALSE, GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY> { using Base = DisplayVariant<NoDisplayId, width, height, Critical::FALSE, Async::TRUE, secure, Primary::FALSE, GRALLOC_USAGE_NONHWC_VIRTUAL_DISPLAY>; static void injectHwcDisplay(DisplayTransactionTest*) {} static void setupHwcGetActiveConfigCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getActiveConfig(_, _)).Times(0); } static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) { Base::setupNativeWindowSurfaceCreationCallExpectations(test); EXPECT_CALL(*test->mNativeWindow, setSwapInterval(0)).Times(1); } }; // A virtual display supported by the HWC. constexpr uint32_t GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY = GRALLOC_USAGE_HW_COMPOSER; template <int width, int height, Secure secure> struct HwcVirtualDisplayVariant : DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE, secure, Primary::FALSE, GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY>, HwcDisplayVariant< 1010, HWC2::DisplayType::Virtual, DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE, secure, Primary::FALSE, GRALLOC_USAGE_HWC_VIRTUAL_DISPLAY>> { using Base = DisplayVariant<VirtualDisplayId<42>, width, height, Critical::FALSE, Async::TRUE, secure, Primary::FALSE, GRALLOC_USAGE_HW_COMPOSER>; using Self = HwcVirtualDisplayVariant<width, height, secure>; static void setupNativeWindowSurfaceCreationCallExpectations(DisplayTransactionTest* test) { Base::setupNativeWindowSurfaceCreationCallExpectations(test); EXPECT_CALL(*test->mNativeWindow, setSwapInterval(0)).Times(1); } static void setupHwcVirtualDisplayCreationCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, createVirtualDisplay(Base::WIDTH, Base::HEIGHT, _, _)) .WillOnce(DoAll(SetArgPointee<3>(Self::HWC_DISPLAY_ID), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setClientTargetSlotCount(_)).WillOnce(Return(Error::NONE)); } }; // For this variant, SurfaceFlinger should not configure itself with wide // display support, so the display should not be configured for wide-color // support. struct WideColorSupportNotConfiguredVariant { static constexpr bool WIDE_COLOR_SUPPORTED = false; static void injectConfigChange(DisplayTransactionTest* test) { test->mFlinger.mutableHasWideColorDisplay() = false; test->mFlinger.mutableUseColorManagement() = false; test->mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED; } static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getColorModes(_, _)).Times(0); EXPECT_CALL(*test->mComposer, getRenderIntents(_, _, _)).Times(0); EXPECT_CALL(*test->mComposer, setColorMode(_, _, _)).Times(0); } }; // For this variant, SurfaceFlinger should configure itself with wide display // support, and the display should respond with an non-empty list of supported // color modes. Wide-color support should be configured. template <typename Display> struct WideColorP3ColorimetricSupportedVariant { static constexpr bool WIDE_COLOR_SUPPORTED = true; static void injectConfigChange(DisplayTransactionTest* test) { test->mFlinger.mutableUseColorManagement() = true; test->mFlinger.mutableHasWideColorDisplay() = true; test->mFlinger.mutableDisplayColorSetting() = DisplayColorSetting::UNMANAGED; } static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_DATASPACE)).Times(1); EXPECT_CALL(*test->mComposer, getColorModes(Display::HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<ColorMode>({ColorMode::DISPLAY_P3})), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, getRenderIntents(Display::HWC_DISPLAY_ID, ColorMode::DISPLAY_P3, _)) .WillOnce(DoAll(SetArgPointee<2>( std::vector<RenderIntent>({RenderIntent::COLORIMETRIC})), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setColorMode(Display::HWC_DISPLAY_ID, ColorMode::SRGB, RenderIntent::COLORIMETRIC)) .WillOnce(Return(Error::NONE)); } }; // For this variant, SurfaceFlinger should configure itself with wide display // support, but the display should respond with an empty list of supported color // modes. Wide-color support for the display should not be configured. template <typename Display> struct WideColorNotSupportedVariant { static constexpr bool WIDE_COLOR_SUPPORTED = false; static void injectConfigChange(DisplayTransactionTest* test) { test->mFlinger.mutableUseColorManagement() = true; test->mFlinger.mutableHasWideColorDisplay() = true; } static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getColorModes(Display::HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<ColorMode>()), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setColorMode(_, _, _)).Times(0); } }; // For this variant, the display is not a HWC display, so no HDR support should // be configured. struct NonHwcDisplayHdrSupportVariant { static constexpr bool HDR10_PLUS_SUPPORTED = false; static constexpr bool HDR10_SUPPORTED = false; static constexpr bool HDR_HLG_SUPPORTED = false; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(_, _, _, _, _)).Times(0); } }; template <typename Display> struct Hdr10PlusSupportedVariant { static constexpr bool HDR10_PLUS_SUPPORTED = true; static constexpr bool HDR10_SUPPORTED = true; static constexpr bool HDR_HLG_SUPPORTED = false; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(_, _, _, _, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({ Hdr::HDR10_PLUS, Hdr::HDR10, })), Return(Error::NONE))); } }; // For this variant, the composer should respond with a non-empty list of HDR // modes containing HDR10, so HDR10 support should be configured. template <typename Display> struct Hdr10SupportedVariant { static constexpr bool HDR10_PLUS_SUPPORTED = false; static constexpr bool HDR10_SUPPORTED = true; static constexpr bool HDR_HLG_SUPPORTED = false; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::HDR10})), Return(Error::NONE))); } }; // For this variant, the composer should respond with a non-empty list of HDR // modes containing HLG, so HLG support should be configured. template <typename Display> struct HdrHlgSupportedVariant { static constexpr bool HDR10_PLUS_SUPPORTED = false; static constexpr bool HDR10_SUPPORTED = false; static constexpr bool HDR_HLG_SUPPORTED = true; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _)) .WillOnce( DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::HLG})), Return(Error::NONE))); } }; // For this variant, the composer should respond with a non-empty list of HDR // modes containing DOLBY_VISION, so DOLBY_VISION support should be configured. template <typename Display> struct HdrDolbyVisionSupportedVariant { static constexpr bool HDR10_PLUS_SUPPORTED = false; static constexpr bool HDR10_SUPPORTED = false; static constexpr bool HDR_HLG_SUPPORTED = false; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = true; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>({Hdr::DOLBY_VISION})), Return(Error::NONE))); } }; // For this variant, the composer should respond with am empty list of HDR // modes, so no HDR support should be configured. template <typename Display> struct HdrNotSupportedVariant { static constexpr bool HDR10_PLUS_SUPPORTED = false; static constexpr bool HDR10_SUPPORTED = false; static constexpr bool HDR_HLG_SUPPORTED = false; static constexpr bool HDR_DOLBY_VISION_SUPPORTED = false; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getHdrCapabilities(Display::HWC_DISPLAY_ID, _, _, _, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hdr>()), Return(Error::NONE))); } }; struct NonHwcPerFrameMetadataSupportVariant { static constexpr int PER_FRAME_METADATA_KEYS = 0; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(_)).Times(0); } }; template <typename Display> struct NoPerFrameMetadataSupportVariant { static constexpr int PER_FRAME_METADATA_KEYS = 0; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID)) .WillOnce(Return(std::vector<PerFrameMetadataKey>())); } }; template <typename Display> struct Smpte2086PerFrameMetadataSupportVariant { static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::SMPTE2086; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID)) .WillOnce(Return(std::vector<PerFrameMetadataKey>({ PerFrameMetadataKey::DISPLAY_RED_PRIMARY_X, PerFrameMetadataKey::DISPLAY_RED_PRIMARY_Y, PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_X, PerFrameMetadataKey::DISPLAY_GREEN_PRIMARY_Y, PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_X, PerFrameMetadataKey::DISPLAY_BLUE_PRIMARY_Y, PerFrameMetadataKey::WHITE_POINT_X, PerFrameMetadataKey::WHITE_POINT_Y, PerFrameMetadataKey::MAX_LUMINANCE, PerFrameMetadataKey::MIN_LUMINANCE, }))); } }; template <typename Display> struct Cta861_3_PerFrameMetadataSupportVariant { static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::CTA861_3; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID)) .WillOnce(Return(std::vector<PerFrameMetadataKey>({ PerFrameMetadataKey::MAX_CONTENT_LIGHT_LEVEL, PerFrameMetadataKey::MAX_FRAME_AVERAGE_LIGHT_LEVEL, }))); } }; template <typename Display> struct Hdr10_Plus_PerFrameMetadataSupportVariant { static constexpr int PER_FRAME_METADATA_KEYS = HdrMetadata::Type::HDR10PLUS; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getPerFrameMetadataKeys(Display::HWC_DISPLAY_ID)) .WillOnce(Return(std::vector<PerFrameMetadataKey>({ PerFrameMetadataKey::HDR10_PLUS_SEI, }))); } }; /* ------------------------------------------------------------------------ * Typical display configurations to test */ template <typename DisplayPolicy, typename WideColorSupportPolicy, typename HdrSupportPolicy, typename PerFrameMetadataSupportPolicy> struct Case { using Display = DisplayPolicy; using WideColorSupport = WideColorSupportPolicy; using HdrSupport = HdrSupportPolicy; using PerFrameMetadataSupport = PerFrameMetadataSupportPolicy; }; using SimplePrimaryDisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, HdrNotSupportedVariant<PrimaryDisplayVariant>, NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using SimpleExternalDisplayCase = Case<ExternalDisplayVariant, WideColorNotSupportedVariant<ExternalDisplayVariant>, HdrNotSupportedVariant<ExternalDisplayVariant>, NoPerFrameMetadataSupportVariant<ExternalDisplayVariant>>; using SimpleTertiaryDisplayCase = Case<TertiaryDisplayVariant, WideColorNotSupportedVariant<TertiaryDisplayVariant>, HdrNotSupportedVariant<TertiaryDisplayVariant>, NoPerFrameMetadataSupportVariant<TertiaryDisplayVariant>>; using NonHwcVirtualDisplayCase = Case<NonHwcVirtualDisplayVariant<1024, 768, Secure::FALSE>, WideColorSupportNotConfiguredVariant, NonHwcDisplayHdrSupportVariant, NonHwcPerFrameMetadataSupportVariant>; using SimpleHwcVirtualDisplayVariant = HwcVirtualDisplayVariant<1024, 768, Secure::TRUE>; using HwcVirtualDisplayCase = Case<SimpleHwcVirtualDisplayVariant, WideColorSupportNotConfiguredVariant, HdrNotSupportedVariant<SimpleHwcVirtualDisplayVariant>, NoPerFrameMetadataSupportVariant<SimpleHwcVirtualDisplayVariant>>; using WideColorP3ColorimetricDisplayCase = Case<PrimaryDisplayVariant, WideColorP3ColorimetricSupportedVariant<PrimaryDisplayVariant>, HdrNotSupportedVariant<PrimaryDisplayVariant>, NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using Hdr10PlusDisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, Hdr10SupportedVariant<PrimaryDisplayVariant>, Hdr10_Plus_PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using Hdr10DisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, Hdr10SupportedVariant<PrimaryDisplayVariant>, NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using HdrHlgDisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, HdrHlgSupportedVariant<PrimaryDisplayVariant>, NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using HdrDolbyVisionDisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, HdrDolbyVisionSupportedVariant<PrimaryDisplayVariant>, NoPerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using HdrSmpte2086DisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, HdrNotSupportedVariant<PrimaryDisplayVariant>, Smpte2086PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; using HdrCta861_3_DisplayCase = Case<PrimaryDisplayVariant, WideColorNotSupportedVariant<PrimaryDisplayVariant>, HdrNotSupportedVariant<PrimaryDisplayVariant>, Cta861_3_PerFrameMetadataSupportVariant<PrimaryDisplayVariant>>; /* ------------------------------------------------------------------------ * * SurfaceFlinger::onHotplugReceived */ TEST_F(DisplayTransactionTest, hotplugEnqueuesEventsForDisplayTransaction) { constexpr int currentSequenceId = 123; constexpr hwc2_display_t hwcDisplayId1 = 456; constexpr hwc2_display_t hwcDisplayId2 = 654; // -------------------------------------------------------------------- // Preconditions // Set the current sequence id for accepted events mFlinger.mutableComposerSequenceId() = currentSequenceId; // Set the main thread id so that the current thread does not appear to be // the main thread. mFlinger.mutableMainThreadId() = std::thread::id(); // -------------------------------------------------------------------- // Call Expectations // We expect invalidate() to be invoked once to trigger display transaction // processing. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); // -------------------------------------------------------------------- // Invocation // Simulate two hotplug events (a connect and a disconnect) mFlinger.onHotplugReceived(currentSequenceId, hwcDisplayId1, HWC2::Connection::Connected); mFlinger.onHotplugReceived(currentSequenceId, hwcDisplayId2, HWC2::Connection::Disconnected); // -------------------------------------------------------------------- // Postconditions // The display transaction needed flag should be set. EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded)); // All events should be in the pending event queue. const auto& pendingEvents = mFlinger.mutablePendingHotplugEvents(); ASSERT_EQ(2u, pendingEvents.size()); EXPECT_EQ(hwcDisplayId1, pendingEvents[0].hwcDisplayId); EXPECT_EQ(HWC2::Connection::Connected, pendingEvents[0].connection); EXPECT_EQ(hwcDisplayId2, pendingEvents[1].hwcDisplayId); EXPECT_EQ(HWC2::Connection::Disconnected, pendingEvents[1].connection); } TEST_F(DisplayTransactionTest, hotplugDiscardsUnexpectedEvents) { constexpr int currentSequenceId = 123; constexpr int otherSequenceId = 321; constexpr hwc2_display_t displayId = 456; // -------------------------------------------------------------------- // Preconditions // Set the current sequence id for accepted events mFlinger.mutableComposerSequenceId() = currentSequenceId; // Set the main thread id so that the current thread does not appear to be // the main thread. mFlinger.mutableMainThreadId() = std::thread::id(); // -------------------------------------------------------------------- // Call Expectations // We do not expect any calls to invalidate(). EXPECT_CALL(*mMessageQueue, invalidate()).Times(0); // -------------------------------------------------------------------- // Invocation // Call with an unexpected sequence id mFlinger.onHotplugReceived(otherSequenceId, displayId, HWC2::Connection::Invalid); // -------------------------------------------------------------------- // Postconditions // The display transaction needed flag should not be set EXPECT_FALSE(hasTransactionFlagSet(eDisplayTransactionNeeded)); // There should be no pending events EXPECT_TRUE(mFlinger.mutablePendingHotplugEvents().empty()); } TEST_F(DisplayTransactionTest, hotplugProcessesEnqueuedEventsIfCalledOnMainThread) { constexpr int currentSequenceId = 123; constexpr hwc2_display_t displayId1 = 456; // -------------------------------------------------------------------- // Note: // -------------------------------------------------------------------- // This test case is a bit tricky. We want to verify that // onHotplugReceived() calls processDisplayHotplugEventsLocked(), but we // don't really want to provide coverage for everything the later function // does as there are specific tests for it. // -------------------------------------------------------------------- // -------------------------------------------------------------------- // Preconditions // Set the current sequence id for accepted events mFlinger.mutableComposerSequenceId() = currentSequenceId; // Set the main thread id so that the current thread does appear to be the // main thread. mFlinger.mutableMainThreadId() = std::this_thread::get_id(); // -------------------------------------------------------------------- // Call Expectations // We expect invalidate() to be invoked once to trigger display transaction // processing. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); // -------------------------------------------------------------------- // Invocation // Simulate a disconnect on a display id that is not connected. This should // be enqueued by onHotplugReceived(), and dequeued by // processDisplayHotplugEventsLocked(), but then ignored as invalid. mFlinger.onHotplugReceived(currentSequenceId, displayId1, HWC2::Connection::Disconnected); // -------------------------------------------------------------------- // Postconditions // The display transaction needed flag should be set. EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded)); // There should be no event queued on return, as it should have been // processed. EXPECT_TRUE(mFlinger.mutablePendingHotplugEvents().empty()); } /* ------------------------------------------------------------------------ * SurfaceFlinger::createDisplay */ TEST_F(DisplayTransactionTest, createDisplaySetsCurrentStateForNonsecureDisplay) { const String8 name("virtual.test"); // -------------------------------------------------------------------- // Call Expectations // The call should notify the interceptor that a display was created. EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1); // -------------------------------------------------------------------- // Invocation sp<IBinder> displayToken = mFlinger.createDisplay(name, false); // -------------------------------------------------------------------- // Postconditions // The display should have been added to the current state ASSERT_TRUE(hasCurrentDisplayState(displayToken)); const auto& display = getCurrentDisplayState(displayToken); EXPECT_TRUE(display.isVirtual()); EXPECT_FALSE(display.isSecure); EXPECT_EQ(name.string(), display.displayName); // -------------------------------------------------------------------- // Cleanup conditions // Destroying the display invalidates the display state. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); } TEST_F(DisplayTransactionTest, createDisplaySetsCurrentStateForSecureDisplay) { const String8 name("virtual.test"); // -------------------------------------------------------------------- // Call Expectations // The call should notify the interceptor that a display was created. EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1); // -------------------------------------------------------------------- // Invocation sp<IBinder> displayToken = mFlinger.createDisplay(name, true); // -------------------------------------------------------------------- // Postconditions // The display should have been added to the current state ASSERT_TRUE(hasCurrentDisplayState(displayToken)); const auto& display = getCurrentDisplayState(displayToken); EXPECT_TRUE(display.isVirtual()); EXPECT_TRUE(display.isSecure); EXPECT_EQ(name.string(), display.displayName); // -------------------------------------------------------------------- // Cleanup conditions // Destroying the display invalidates the display state. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); } /* ------------------------------------------------------------------------ * SurfaceFlinger::destroyDisplay */ TEST_F(DisplayTransactionTest, destroyDisplayClearsCurrentStateForDisplay) { using Case = NonHwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // A virtual display exists auto existing = Case::Display::makeFakeExistingDisplayInjector(this); existing.inject(); // -------------------------------------------------------------------- // Call Expectations // The call should notify the interceptor that a display was created. EXPECT_CALL(*mSurfaceInterceptor, saveDisplayDeletion(_)).Times(1); // Destroying the display invalidates the display state. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); // -------------------------------------------------------------------- // Invocation mFlinger.destroyDisplay(existing.token()); // -------------------------------------------------------------------- // Postconditions // The display should have been removed from the current state EXPECT_FALSE(hasCurrentDisplayState(existing.token())); // Ths display should still exist in the drawing state EXPECT_TRUE(hasDrawingDisplayState(existing.token())); // The display transaction needed flasg should be set EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded)); } TEST_F(DisplayTransactionTest, destroyDisplayHandlesUnknownDisplay) { // -------------------------------------------------------------------- // Preconditions sp<BBinder> displayToken = new BBinder(); // -------------------------------------------------------------------- // Invocation mFlinger.destroyDisplay(displayToken); } /* ------------------------------------------------------------------------ * SurfaceFlinger::resetDisplayState */ TEST_F(DisplayTransactionTest, resetDisplayStateClearsState) { using Case = NonHwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // vsync is enabled and available mScheduler->mutablePrimaryHWVsyncEnabled() = true; mScheduler->mutableHWVsyncAvailable() = true; // A display exists auto existing = Case::Display::makeFakeExistingDisplayInjector(this); existing.inject(); // -------------------------------------------------------------------- // Call Expectations // The call disable vsyncs EXPECT_CALL(*mEventControlThread, setVsyncEnabled(false)).Times(1); // The call ends any display resyncs EXPECT_CALL(*mPrimaryDispSync, endResync()).Times(1); // -------------------------------------------------------------------- // Invocation mFlinger.resetDisplayState(); // -------------------------------------------------------------------- // Postconditions // vsyncs should be off and not available. EXPECT_FALSE(mScheduler->mutablePrimaryHWVsyncEnabled()); EXPECT_FALSE(mScheduler->mutableHWVsyncAvailable()); // The display should have been removed from the display map. EXPECT_FALSE(hasDisplayDevice(existing.token())); // The display should still exist in the current state EXPECT_TRUE(hasCurrentDisplayState(existing.token())); // The display should have been removed from the drawing state EXPECT_FALSE(hasDrawingDisplayState(existing.token())); } /* ------------------------------------------------------------------------ * DisplayDevice::GetBestColorMode */ class GetBestColorModeTest : public DisplayTransactionTest { public: static constexpr DisplayId DEFAULT_DISPLAY_ID = DisplayId{777}; GetBestColorModeTest() : DisplayTransactionTest(), mInjector(FakeDisplayDeviceInjector(mFlinger, DEFAULT_DISPLAY_ID, false /* isVirtual */, true /* isPrimary */)) {} void setHasWideColorGamut(bool hasWideColorGamut) { mHasWideColorGamut = hasWideColorGamut; } void addHwcColorModesMapping(ui::ColorMode colorMode, std::vector<ui::RenderIntent> renderIntents) { mHwcColorModes[colorMode] = renderIntents; } void setInputDataspace(ui::Dataspace dataspace) { mInputDataspace = dataspace; } void setInputRenderIntent(ui::RenderIntent renderIntent) { mInputRenderIntent = renderIntent; } void getBestColorMode() { mInjector.setHwcColorModes(mHwcColorModes); mInjector.setHasWideColorGamut(mHasWideColorGamut); mInjector.setNativeWindow(mNativeWindow); // Creating a DisplayDevice requires getting default dimensions from the // native window. EXPECT_CALL(*mNativeWindow, query(NATIVE_WINDOW_WIDTH, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(1080 /* arbitrary */), Return(0))); EXPECT_CALL(*mNativeWindow, query(NATIVE_WINDOW_HEIGHT, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(1920 /* arbitrary */), Return(0))); EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1); EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1); EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1); EXPECT_CALL(*mNativeWindow, perform(NATIVE_WINDOW_API_DISCONNECT)).Times(1); auto displayDevice = mInjector.inject(); displayDevice->getCompositionDisplay() ->getDisplayColorProfile() ->getBestColorMode(mInputDataspace, mInputRenderIntent, &mOutDataspace, &mOutColorMode, &mOutRenderIntent); } ui::Dataspace mOutDataspace; ui::ColorMode mOutColorMode; ui::RenderIntent mOutRenderIntent; private: ui::Dataspace mInputDataspace; ui::RenderIntent mInputRenderIntent; bool mHasWideColorGamut = false; std::unordered_map<ui::ColorMode, std::vector<ui::RenderIntent>> mHwcColorModes; FakeDisplayDeviceInjector mInjector; }; TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeSRGB) { addHwcColorModesMapping(ui::ColorMode::SRGB, std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC)); setInputDataspace(ui::Dataspace::DISPLAY_P3); setInputRenderIntent(ui::RenderIntent::COLORIMETRIC); setHasWideColorGamut(true); getBestColorMode(); ASSERT_EQ(ui::Dataspace::V0_SRGB, mOutDataspace); ASSERT_EQ(ui::ColorMode::SRGB, mOutColorMode); ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent); } TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeDisplayP3) { addHwcColorModesMapping(ui::ColorMode::DISPLAY_P3, std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC)); addHwcColorModesMapping(ui::ColorMode::SRGB, std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC)); addHwcColorModesMapping(ui::ColorMode::DISPLAY_BT2020, std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC)); setInputDataspace(ui::Dataspace::DISPLAY_P3); setInputRenderIntent(ui::RenderIntent::COLORIMETRIC); setHasWideColorGamut(true); getBestColorMode(); ASSERT_EQ(ui::Dataspace::DISPLAY_P3, mOutDataspace); ASSERT_EQ(ui::ColorMode::DISPLAY_P3, mOutColorMode); ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent); } TEST_F(GetBestColorModeTest, DataspaceDisplayP3_ColorModeDISPLAY_BT2020) { addHwcColorModesMapping(ui::ColorMode::DISPLAY_BT2020, std::vector<ui::RenderIntent>(1, RenderIntent::COLORIMETRIC)); setInputDataspace(ui::Dataspace::DISPLAY_P3); setInputRenderIntent(ui::RenderIntent::COLORIMETRIC); setHasWideColorGamut(true); getBestColorMode(); ASSERT_EQ(ui::Dataspace::DISPLAY_BT2020, mOutDataspace); ASSERT_EQ(ui::ColorMode::DISPLAY_BT2020, mOutColorMode); ASSERT_EQ(ui::RenderIntent::COLORIMETRIC, mOutRenderIntent); } /* ------------------------------------------------------------------------ * SurfaceFlinger::getDisplayNativePrimaries */ class GetDisplayNativePrimaries : public DisplayTransactionTest { public: GetDisplayNativePrimaries(); void populateDummyDisplayNativePrimaries(ui::DisplayPrimaries& primaries); void checkDummyDisplayNativePrimaries(const ui::DisplayPrimaries& primaries); private: static constexpr float mStartingTestValue = 1.0f; }; GetDisplayNativePrimaries::GetDisplayNativePrimaries() { SimplePrimaryDisplayCase::Display::injectHwcDisplay(this); injectFakeNativeWindowSurfaceFactory(); } void GetDisplayNativePrimaries::populateDummyDisplayNativePrimaries( ui::DisplayPrimaries& primaries) { float startingVal = mStartingTestValue; primaries.red.X = startingVal++; primaries.red.Y = startingVal++; primaries.red.Z = startingVal++; primaries.green.X = startingVal++; primaries.green.Y = startingVal++; primaries.green.Z = startingVal++; primaries.blue.X = startingVal++; primaries.blue.Y = startingVal++; primaries.blue.Z = startingVal++; primaries.white.X = startingVal++; primaries.white.Y = startingVal++; primaries.white.Z = startingVal++; } void GetDisplayNativePrimaries::checkDummyDisplayNativePrimaries( const ui::DisplayPrimaries& primaries) { float startingVal = mStartingTestValue; EXPECT_EQ(primaries.red.X, startingVal++); EXPECT_EQ(primaries.red.Y, startingVal++); EXPECT_EQ(primaries.red.Z, startingVal++); EXPECT_EQ(primaries.green.X, startingVal++); EXPECT_EQ(primaries.green.Y, startingVal++); EXPECT_EQ(primaries.green.Z, startingVal++); EXPECT_EQ(primaries.blue.X, startingVal++); EXPECT_EQ(primaries.blue.Y, startingVal++); EXPECT_EQ(primaries.blue.Z, startingVal++); EXPECT_EQ(primaries.white.X, startingVal++); EXPECT_EQ(primaries.white.Y, startingVal++); EXPECT_EQ(primaries.white.Z, startingVal++); } TEST_F(GetDisplayNativePrimaries, nullDisplayToken) { ui::DisplayPrimaries primaries; EXPECT_EQ(BAD_VALUE, mFlinger.getDisplayNativePrimaries(nullptr, primaries)); } TEST_F(GetDisplayNativePrimaries, internalDisplayWithPrimariesData) { auto injector = SimplePrimaryDisplayCase::Display::makeFakeExistingDisplayInjector(this); injector.inject(); auto internalDisplayToken = injector.token(); ui::DisplayPrimaries expectedPrimaries; populateDummyDisplayNativePrimaries(expectedPrimaries); mFlinger.setInternalDisplayPrimaries(expectedPrimaries); ui::DisplayPrimaries primaries; EXPECT_EQ(NO_ERROR, mFlinger.getDisplayNativePrimaries(internalDisplayToken, primaries)); checkDummyDisplayNativePrimaries(primaries); } TEST_F(GetDisplayNativePrimaries, notInternalDisplayToken) { sp<BBinder> notInternalDisplayToken = new BBinder(); ui::DisplayPrimaries primaries; populateDummyDisplayNativePrimaries(primaries); EXPECT_EQ(BAD_VALUE, mFlinger.getDisplayNativePrimaries(notInternalDisplayToken, primaries)); // Check primaries argument wasn't modified in case of failure checkDummyDisplayNativePrimaries(primaries); } /* ------------------------------------------------------------------------ * SurfaceFlinger::setupNewDisplayDeviceInternal */ class SetupNewDisplayDeviceInternalTest : public DisplayTransactionTest { public: template <typename T> void setupNewDisplayDeviceInternalTest(); }; template <typename Case> void SetupNewDisplayDeviceInternalTest::setupNewDisplayDeviceInternalTest() { const sp<BBinder> displayToken = new BBinder(); const sp<compositionengine::mock::DisplaySurface> displaySurface = new compositionengine::mock::DisplaySurface(); const sp<mock::GraphicBufferProducer> producer = new mock::GraphicBufferProducer(); // -------------------------------------------------------------------- // Preconditions // Wide color displays support is configured appropriately Case::WideColorSupport::injectConfigChange(this); // The display is setup with the HWC. Case::Display::injectHwcDisplay(this); // SurfaceFlinger will use a test-controlled factory for native window // surfaces. injectFakeNativeWindowSurfaceFactory(); // -------------------------------------------------------------------- // Call Expectations // Various native window calls will be made. Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this); Case::Display::setupHwcGetActiveConfigCallExpectations(this); Case::WideColorSupport::setupComposerCallExpectations(this); Case::HdrSupport::setupComposerCallExpectations(this); Case::PerFrameMetadataSupport::setupComposerCallExpectations(this); // -------------------------------------------------------------------- // Invocation DisplayDeviceState state; state.displayId = static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt : Case::Display::DISPLAY_ID::get(); state.isSecure = static_cast<bool>(Case::Display::SECURE); auto device = mFlinger.setupNewDisplayDeviceInternal(displayToken, Case::Display::DISPLAY_ID::get(), state, displaySurface, producer); // -------------------------------------------------------------------- // Postconditions ASSERT_TRUE(device != nullptr); EXPECT_EQ(Case::Display::DISPLAY_ID::get(), device->getId()); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), device->isVirtual()); EXPECT_EQ(static_cast<bool>(Case::Display::SECURE), device->isSecure()); EXPECT_EQ(static_cast<bool>(Case::Display::PRIMARY), device->isPrimary()); EXPECT_EQ(Case::Display::WIDTH, device->getWidth()); EXPECT_EQ(Case::Display::HEIGHT, device->getHeight()); EXPECT_EQ(Case::WideColorSupport::WIDE_COLOR_SUPPORTED, device->hasWideColorGamut()); EXPECT_EQ(Case::HdrSupport::HDR10_PLUS_SUPPORTED, device->hasHDR10PlusSupport()); EXPECT_EQ(Case::HdrSupport::HDR10_SUPPORTED, device->hasHDR10Support()); EXPECT_EQ(Case::HdrSupport::HDR_HLG_SUPPORTED, device->hasHLGSupport()); EXPECT_EQ(Case::HdrSupport::HDR_DOLBY_VISION_SUPPORTED, device->hasDolbyVisionSupport()); // Note: This is not Case::Display::HWC_ACTIVE_CONFIG_ID as the ids are // remapped, and the test only ever sets up one config. If there were an error // looking up the remapped index, device->getActiveConfig() would be -1 instead. EXPECT_EQ(0, device->getActiveConfig()); EXPECT_EQ(Case::PerFrameMetadataSupport::PER_FRAME_METADATA_KEYS, device->getSupportedPerFrameMetadata()); } TEST_F(SetupNewDisplayDeviceInternalTest, createSimplePrimaryDisplay) { setupNewDisplayDeviceInternalTest<SimplePrimaryDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createSimpleExternalDisplay) { setupNewDisplayDeviceInternalTest<SimpleExternalDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createNonHwcVirtualDisplay) { setupNewDisplayDeviceInternalTest<NonHwcVirtualDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHwcVirtualDisplay) { using Case = HwcVirtualDisplayCase; // Insert display data so that the HWC thinks it created the virtual display. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); mFlinger.mutableHwcDisplayData().try_emplace(*displayId); setupNewDisplayDeviceInternalTest<Case>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createWideColorP3Display) { setupNewDisplayDeviceInternalTest<WideColorP3ColorimetricDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdr10PlusDisplay) { setupNewDisplayDeviceInternalTest<Hdr10PlusDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdr10Display) { setupNewDisplayDeviceInternalTest<Hdr10DisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdrHlgDisplay) { setupNewDisplayDeviceInternalTest<HdrHlgDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdrDolbyVisionDisplay) { setupNewDisplayDeviceInternalTest<HdrDolbyVisionDisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdrSmpte2086DisplayCase) { setupNewDisplayDeviceInternalTest<HdrSmpte2086DisplayCase>(); } TEST_F(SetupNewDisplayDeviceInternalTest, createHdrCta816_3_DisplayCase) { setupNewDisplayDeviceInternalTest<HdrCta861_3_DisplayCase>(); } /* ------------------------------------------------------------------------ * SurfaceFlinger::handleTransactionLocked(eDisplayTransactionNeeded) */ class HandleTransactionLockedTest : public DisplayTransactionTest { public: template <typename Case> void setupCommonPreconditions(); template <typename Case, bool connected> static void expectHotplugReceived(mock::EventThread*); template <typename Case> void setupCommonCallExpectationsForConnectProcessing(); template <typename Case> void setupCommonCallExpectationsForDisconnectProcessing(); template <typename Case> void processesHotplugConnectCommon(); template <typename Case> void ignoresHotplugConnectCommon(); template <typename Case> void processesHotplugDisconnectCommon(); template <typename Case> void verifyDisplayIsConnected(const sp<IBinder>& displayToken); template <typename Case> void verifyPhysicalDisplayIsConnected(); void verifyDisplayIsNotConnected(const sp<IBinder>& displayToken); }; template <typename Case> void HandleTransactionLockedTest::setupCommonPreconditions() { // Wide color displays support is configured appropriately Case::WideColorSupport::injectConfigChange(this); // SurfaceFlinger will use a test-controlled factory for BufferQueues injectFakeBufferQueueFactory(); // SurfaceFlinger will use a test-controlled factory for native window // surfaces. injectFakeNativeWindowSurfaceFactory(); } template <typename Case, bool connected> void HandleTransactionLockedTest::expectHotplugReceived(mock::EventThread* eventThread) { const auto convert = [](auto physicalDisplayId) { return std::make_optional(DisplayId{physicalDisplayId}); }; EXPECT_CALL(*eventThread, onHotplugReceived(ResultOf(convert, Case::Display::DISPLAY_ID::get()), connected)) .Times(1); } template <typename Case> void HandleTransactionLockedTest::setupCommonCallExpectationsForConnectProcessing() { Case::Display::setupHwcHotplugCallExpectations(this); Case::Display::setupFramebufferConsumerBufferQueueCallExpectations(this); Case::Display::setupFramebufferProducerBufferQueueCallExpectations(this); Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this); Case::Display::setupHwcGetActiveConfigCallExpectations(this); Case::WideColorSupport::setupComposerCallExpectations(this); Case::HdrSupport::setupComposerCallExpectations(this); Case::PerFrameMetadataSupport::setupComposerCallExpectations(this); EXPECT_CALL(*mSurfaceInterceptor, saveDisplayCreation(_)).Times(1); expectHotplugReceived<Case, true>(mEventThread); expectHotplugReceived<Case, true>(mSFEventThread); } template <typename Case> void HandleTransactionLockedTest::setupCommonCallExpectationsForDisconnectProcessing() { EXPECT_CALL(*mSurfaceInterceptor, saveDisplayDeletion(_)).Times(1); expectHotplugReceived<Case, false>(mEventThread); expectHotplugReceived<Case, false>(mSFEventThread); } template <typename Case> void HandleTransactionLockedTest::verifyDisplayIsConnected(const sp<IBinder>& displayToken) { // The display device should have been set up in the list of displays. ASSERT_TRUE(hasDisplayDevice(displayToken)); const auto& device = getDisplayDevice(displayToken); EXPECT_EQ(static_cast<bool>(Case::Display::SECURE), device->isSecure()); EXPECT_EQ(static_cast<bool>(Case::Display::PRIMARY), device->isPrimary()); // The display should have been set up in the current display state ASSERT_TRUE(hasCurrentDisplayState(displayToken)); const auto& current = getCurrentDisplayState(displayToken); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), current.isVirtual()); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt : Case::Display::DISPLAY_ID::get(), current.displayId); // The display should have been set up in the drawing display state ASSERT_TRUE(hasDrawingDisplayState(displayToken)); const auto& draw = getDrawingDisplayState(displayToken); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), draw.isVirtual()); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL) ? std::nullopt : Case::Display::DISPLAY_ID::get(), draw.displayId); } template <typename Case> void HandleTransactionLockedTest::verifyPhysicalDisplayIsConnected() { // HWComposer should have an entry for the display EXPECT_TRUE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID)); // SF should have a display token. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 1); auto& displayToken = mFlinger.mutablePhysicalDisplayTokens()[*displayId]; verifyDisplayIsConnected<Case>(displayToken); } void HandleTransactionLockedTest::verifyDisplayIsNotConnected(const sp<IBinder>& displayToken) { EXPECT_FALSE(hasDisplayDevice(displayToken)); EXPECT_FALSE(hasCurrentDisplayState(displayToken)); EXPECT_FALSE(hasDrawingDisplayState(displayToken)); } template <typename Case> void HandleTransactionLockedTest::processesHotplugConnectCommon() { // -------------------------------------------------------------------- // Preconditions setupCommonPreconditions<Case>(); // A hotplug connect event is enqueued for a display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected); // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*mComposer, isUsingVrComposer()).WillOnce(Return(false)); setupCommonCallExpectationsForConnectProcessing<Case>(); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions verifyPhysicalDisplayIsConnected<Case>(); // -------------------------------------------------------------------- // Cleanup conditions EXPECT_CALL(*mComposer, setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE)) .WillOnce(Return(Error::NONE)); EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR)); } template <typename Case> void HandleTransactionLockedTest::ignoresHotplugConnectCommon() { // -------------------------------------------------------------------- // Preconditions setupCommonPreconditions<Case>(); // A hotplug connect event is enqueued for a display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // HWComposer should not have an entry for the display EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID)); } template <typename Case> void HandleTransactionLockedTest::processesHotplugDisconnectCommon() { // -------------------------------------------------------------------- // Preconditions setupCommonPreconditions<Case>(); // A hotplug disconnect event is enqueued for a display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected); // The display is already completely set up. Case::Display::injectHwcDisplay(this); auto existing = Case::Display::makeFakeExistingDisplayInjector(this); existing.inject(); // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false)); EXPECT_CALL(*mComposer, getDisplayIdentificationData(Case::Display::HWC_DISPLAY_ID, _, _)) .Times(0); setupCommonCallExpectationsForDisconnectProcessing<Case>(); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // HWComposer should not have an entry for the display EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID)); // SF should not have a display token. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 0); // The existing token should have been removed verifyDisplayIsNotConnected(existing.token()); } TEST_F(HandleTransactionLockedTest, processesHotplugConnectPrimaryDisplay) { processesHotplugConnectCommon<SimplePrimaryDisplayCase>(); } TEST_F(HandleTransactionLockedTest, processesHotplugConnectPrimaryDisplayWithExternalAlreadyConnected) { // Inject an external display. ExternalDisplayVariant::injectHwcDisplay(this); processesHotplugConnectCommon<SimplePrimaryDisplayCase>(); } TEST_F(HandleTransactionLockedTest, processesHotplugConnectExternalDisplay) { // Inject a primary display. PrimaryDisplayVariant::injectHwcDisplay(this); processesHotplugConnectCommon<SimpleExternalDisplayCase>(); } TEST_F(HandleTransactionLockedTest, ignoresHotplugConnectIfPrimaryAndExternalAlreadyConnected) { // Inject both a primary and external display. PrimaryDisplayVariant::injectHwcDisplay(this); ExternalDisplayVariant::injectHwcDisplay(this); // TODO: This is an unnecessary call. EXPECT_CALL(*mComposer, getDisplayIdentificationData(TertiaryDisplayVariant::HWC_DISPLAY_ID, _, _)) .WillOnce(DoAll(SetArgPointee<1>(TertiaryDisplay::PORT), SetArgPointee<2>(TertiaryDisplay::GET_IDENTIFICATION_DATA()), Return(Error::NONE))); EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false)); ignoresHotplugConnectCommon<SimpleTertiaryDisplayCase>(); } TEST_F(HandleTransactionLockedTest, ignoresHotplugConnectIfExternalForVrComposer) { // Inject a primary display. PrimaryDisplayVariant::injectHwcDisplay(this); EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(true)); ignoresHotplugConnectCommon<SimpleExternalDisplayCase>(); } TEST_F(HandleTransactionLockedTest, processHotplugDisconnectPrimaryDisplay) { processesHotplugDisconnectCommon<SimplePrimaryDisplayCase>(); } TEST_F(HandleTransactionLockedTest, processHotplugDisconnectExternalDisplay) { processesHotplugDisconnectCommon<SimpleExternalDisplayCase>(); } TEST_F(HandleTransactionLockedTest, processesHotplugConnectThenDisconnectPrimary) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions setupCommonPreconditions<Case>(); // A hotplug connect event is enqueued for a display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected); // A hotplug disconnect event is also enqueued for the same display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected); // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false)); setupCommonCallExpectationsForConnectProcessing<Case>(); setupCommonCallExpectationsForDisconnectProcessing<Case>(); EXPECT_CALL(*mComposer, setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE)) .WillOnce(Return(Error::NONE)); EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR)); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // HWComposer should not have an entry for the display EXPECT_FALSE(hasPhysicalHwcDisplay(Case::Display::HWC_DISPLAY_ID)); // SF should not have a display token. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 0); } TEST_F(HandleTransactionLockedTest, processesHotplugDisconnectThenConnectPrimary) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions setupCommonPreconditions<Case>(); // The display is already completely set up. Case::Display::injectHwcDisplay(this); auto existing = Case::Display::makeFakeExistingDisplayInjector(this); existing.inject(); // A hotplug disconnect event is enqueued for a display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Disconnected); // A hotplug connect event is also enqueued for the same display Case::Display::injectPendingHotplugEvent(this, HWC2::Connection::Connected); // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false)); setupCommonCallExpectationsForConnectProcessing<Case>(); setupCommonCallExpectationsForDisconnectProcessing<Case>(); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // The existing token should have been removed verifyDisplayIsNotConnected(existing.token()); const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); ASSERT_TRUE(mFlinger.mutablePhysicalDisplayTokens().count(*displayId) == 1); EXPECT_NE(existing.token(), mFlinger.mutablePhysicalDisplayTokens()[*displayId]); // A new display should be connected in its place verifyPhysicalDisplayIsConnected<Case>(); // -------------------------------------------------------------------- // Cleanup conditions EXPECT_CALL(*mComposer, setVsyncEnabled(Case::Display::HWC_DISPLAY_ID, IComposerClient::Vsync::DISABLE)) .WillOnce(Return(Error::NONE)); EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR)); } TEST_F(HandleTransactionLockedTest, processesVirtualDisplayAdded) { using Case = HwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // The HWC supports at least one virtual display injectMockComposer(1); setupCommonPreconditions<Case>(); // A virtual display was added to the current state, and it has a // surface(producer) sp<BBinder> displayToken = new BBinder(); DisplayDeviceState state; state.isSecure = static_cast<bool>(Case::Display::SECURE); sp<mock::GraphicBufferProducer> surface{new mock::GraphicBufferProducer()}; state.surface = surface; mFlinger.mutableCurrentState().displays.add(displayToken, state); // -------------------------------------------------------------------- // Call Expectations Case::Display::setupFramebufferConsumerBufferQueueCallExpectations(this); Case::Display::setupNativeWindowSurfaceCreationCallExpectations(this); EXPECT_CALL(*surface, query(NATIVE_WINDOW_WIDTH, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(Case::Display::WIDTH), Return(NO_ERROR))); EXPECT_CALL(*surface, query(NATIVE_WINDOW_HEIGHT, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(Case::Display::HEIGHT), Return(NO_ERROR))); EXPECT_CALL(*surface, query(NATIVE_WINDOW_FORMAT, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(DEFAULT_VIRTUAL_DISPLAY_SURFACE_FORMAT), Return(NO_ERROR))); EXPECT_CALL(*surface, query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(0), Return(NO_ERROR))); EXPECT_CALL(*surface, setAsyncMode(true)).Times(1); EXPECT_CALL(*mProducer, connect(_, NATIVE_WINDOW_API_EGL, false, _)).Times(1); EXPECT_CALL(*mProducer, disconnect(_, _)).Times(1); Case::Display::setupHwcVirtualDisplayCreationCallExpectations(this); Case::WideColorSupport::setupComposerCallExpectations(this); Case::HdrSupport::setupComposerCallExpectations(this); Case::PerFrameMetadataSupport::setupComposerCallExpectations(this); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // The display device should have been set up in the list of displays. verifyDisplayIsConnected<Case>(displayToken); // -------------------------------------------------------------------- // Cleanup conditions EXPECT_CALL(*mComposer, destroyVirtualDisplay(Case::Display::HWC_DISPLAY_ID)) .WillOnce(Return(Error::NONE)); EXPECT_CALL(*mConsumer, consumerDisconnect()).WillOnce(Return(NO_ERROR)); // Cleanup mFlinger.mutableCurrentState().displays.removeItem(displayToken); mFlinger.mutableDrawingState().displays.removeItem(displayToken); } TEST_F(HandleTransactionLockedTest, processesVirtualDisplayAddedWithNoSurface) { using Case = HwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // The HWC supports at least one virtual display injectMockComposer(1); setupCommonPreconditions<Case>(); // A virtual display was added to the current state, but it does not have a // surface. sp<BBinder> displayToken = new BBinder(); DisplayDeviceState state; state.isSecure = static_cast<bool>(Case::Display::SECURE); mFlinger.mutableCurrentState().displays.add(displayToken, state); // -------------------------------------------------------------------- // Call Expectations // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // There will not be a display device set up. EXPECT_FALSE(hasDisplayDevice(displayToken)); // The drawing display state will be set from the current display state. ASSERT_TRUE(hasDrawingDisplayState(displayToken)); const auto& draw = getDrawingDisplayState(displayToken); EXPECT_EQ(static_cast<bool>(Case::Display::VIRTUAL), draw.isVirtual()); } TEST_F(HandleTransactionLockedTest, processesVirtualDisplayRemoval) { using Case = HwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // A virtual display is set up but is removed from the current state. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); mFlinger.mutableHwcDisplayData().try_emplace(*displayId); Case::Display::injectHwcDisplay(this); auto existing = Case::Display::makeFakeExistingDisplayInjector(this); existing.inject(); mFlinger.mutableCurrentState().displays.removeItem(existing.token()); // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*mComposer, isUsingVrComposer()).WillRepeatedly(Return(false)); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions // The existing token should have been removed verifyDisplayIsNotConnected(existing.token()); } TEST_F(HandleTransactionLockedTest, processesDisplayLayerStackChanges) { using Case = NonHwcVirtualDisplayCase; constexpr uint32_t oldLayerStack = 0u; constexpr uint32_t newLayerStack = 123u; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a change to the layerStack state display.mutableDrawingDisplayState().layerStack = oldLayerStack; display.mutableCurrentDisplayState().layerStack = newLayerStack; // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(newLayerStack, display.mutableDisplayDevice()->getLayerStack()); } TEST_F(HandleTransactionLockedTest, processesDisplayTransformChanges) { using Case = NonHwcVirtualDisplayCase; constexpr int oldTransform = 0; constexpr int newTransform = 2; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a change to the orientation state display.mutableDrawingDisplayState().orientation = oldTransform; display.mutableCurrentDisplayState().orientation = newTransform; // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(newTransform, display.mutableDisplayDevice()->getOrientation()); } TEST_F(HandleTransactionLockedTest, processesDisplayViewportChanges) { using Case = NonHwcVirtualDisplayCase; const Rect oldViewport(0, 0, 0, 0); const Rect newViewport(0, 0, 123, 456); // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a change to the viewport state display.mutableDrawingDisplayState().viewport = oldViewport; display.mutableCurrentDisplayState().viewport = newViewport; // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(newViewport, display.mutableDisplayDevice()->getViewport()); } TEST_F(HandleTransactionLockedTest, processesDisplayFrameChanges) { using Case = NonHwcVirtualDisplayCase; const Rect oldFrame(0, 0, 0, 0); const Rect newFrame(0, 0, 123, 456); // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a change to the viewport state display.mutableDrawingDisplayState().frame = oldFrame; display.mutableCurrentDisplayState().frame = newFrame; // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(newFrame, display.mutableDisplayDevice()->getFrame()); } TEST_F(HandleTransactionLockedTest, processesDisplayWidthChanges) { using Case = NonHwcVirtualDisplayCase; constexpr int oldWidth = 0; constexpr int oldHeight = 10; constexpr int newWidth = 123; // -------------------------------------------------------------------- // Preconditions // A display is set up auto nativeWindow = new mock::NativeWindow(); auto displaySurface = new compositionengine::mock::DisplaySurface(); sp<GraphicBuffer> buf = new GraphicBuffer(); auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.setNativeWindow(nativeWindow); display.setDisplaySurface(displaySurface); // Setup injection expections EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_WIDTH, _)) .WillOnce(DoAll(SetArgPointee<1>(oldWidth), Return(0))); EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_HEIGHT, _)) .WillOnce(DoAll(SetArgPointee<1>(oldHeight), Return(0))); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_DISCONNECT)).Times(1); display.inject(); // There is a change to the viewport state display.mutableDrawingDisplayState().width = oldWidth; display.mutableDrawingDisplayState().height = oldHeight; display.mutableCurrentDisplayState().width = newWidth; display.mutableCurrentDisplayState().height = oldHeight; // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*displaySurface, resizeBuffers(newWidth, oldHeight)).Times(1); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); } TEST_F(HandleTransactionLockedTest, processesDisplayHeightChanges) { using Case = NonHwcVirtualDisplayCase; constexpr int oldWidth = 0; constexpr int oldHeight = 10; constexpr int newHeight = 123; // -------------------------------------------------------------------- // Preconditions // A display is set up auto nativeWindow = new mock::NativeWindow(); auto displaySurface = new compositionengine::mock::DisplaySurface(); sp<GraphicBuffer> buf = new GraphicBuffer(); auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.setNativeWindow(nativeWindow); display.setDisplaySurface(displaySurface); // Setup injection expections EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_WIDTH, _)) .WillOnce(DoAll(SetArgPointee<1>(oldWidth), Return(0))); EXPECT_CALL(*nativeWindow, query(NATIVE_WINDOW_HEIGHT, _)) .WillOnce(DoAll(SetArgPointee<1>(oldHeight), Return(0))); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_BUFFERS_FORMAT)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_CONNECT)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_SET_USAGE64)).Times(1); EXPECT_CALL(*nativeWindow, perform(NATIVE_WINDOW_API_DISCONNECT)).Times(1); display.inject(); // There is a change to the viewport state display.mutableDrawingDisplayState().width = oldWidth; display.mutableDrawingDisplayState().height = oldHeight; display.mutableCurrentDisplayState().width = oldWidth; display.mutableCurrentDisplayState().height = newHeight; // -------------------------------------------------------------------- // Call Expectations EXPECT_CALL(*displaySurface, resizeBuffers(oldWidth, newHeight)).Times(1); // -------------------------------------------------------------------- // Invocation mFlinger.handleTransactionLocked(eDisplayTransactionNeeded); } /* ------------------------------------------------------------------------ * SurfaceFlinger::setDisplayStateLocked */ TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingWithUnknownDisplay) { // -------------------------------------------------------------------- // Preconditions // We have an unknown display token not associated with a known display sp<BBinder> displayToken = new BBinder(); // The requested display state references the unknown display. DisplayState state; state.what = DisplayState::eLayerStackChanged; state.token = displayToken; state.layerStack = 456; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); // The display token still doesn't match anything known. EXPECT_FALSE(hasCurrentDisplayState(displayToken)); } TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingWhenNoChanges) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A display is already set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // No changes are made to the display DisplayState state; state.what = 0; state.token = display.token(); // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); } TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfSurfaceDidNotChange) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A display is already set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a surface that can be set. sp<mock::GraphicBufferProducer> surface = new mock::GraphicBufferProducer(); // The current display state has the surface set display.mutableCurrentDisplayState().surface = surface; // The incoming request sets the same surface DisplayState state; state.what = DisplayState::eSurfaceChanged; state.token = display.token(); state.surface = surface; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); // The current display state is unchanged. EXPECT_EQ(surface.get(), display.getCurrentDisplayState().surface.get()); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfSurfaceChanged) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A display is already set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // There is a surface that can be set. sp<mock::GraphicBufferProducer> surface = new mock::GraphicBufferProducer(); // The current display state does not have a surface display.mutableCurrentDisplayState().surface = nullptr; // The incoming request sets a surface DisplayState state; state.what = DisplayState::eSurfaceChanged; state.token = display.token(); state.surface = surface; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display layer stack state is set to the new value EXPECT_EQ(surface.get(), display.getCurrentDisplayState().surface.get()); } TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfLayerStackDidNotChange) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A display is already set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display has a layer stack set display.mutableCurrentDisplayState().layerStack = 456u; // The incoming request sets the same layer stack DisplayState state; state.what = DisplayState::eLayerStackChanged; state.token = display.token(); state.layerStack = 456u; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); // The current display state is unchanged EXPECT_EQ(456u, display.getCurrentDisplayState().layerStack); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfLayerStackChanged) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display has a layer stack set display.mutableCurrentDisplayState().layerStack = 654u; // The incoming request sets a different layer stack DisplayState state; state.what = DisplayState::eLayerStackChanged; state.token = display.token(); state.layerStack = 456u; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The desired display state has been set to the new value. EXPECT_EQ(456u, display.getCurrentDisplayState().layerStack); } TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfProjectionDidNotChange) { using Case = SimplePrimaryDisplayCase; constexpr int initialOrientation = 180; const Rect initialFrame = {1, 2, 3, 4}; const Rect initialViewport = {5, 6, 7, 8}; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The current display state projection state is all set display.mutableCurrentDisplayState().orientation = initialOrientation; display.mutableCurrentDisplayState().frame = initialFrame; display.mutableCurrentDisplayState().viewport = initialViewport; // The incoming request sets the same projection state DisplayState state; state.what = DisplayState::eDisplayProjectionChanged; state.token = display.token(); state.orientation = initialOrientation; state.frame = initialFrame; state.viewport = initialViewport; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); // The current display state is unchanged EXPECT_EQ(initialOrientation, display.getCurrentDisplayState().orientation); EXPECT_EQ(initialFrame, display.getCurrentDisplayState().frame); EXPECT_EQ(initialViewport, display.getCurrentDisplayState().viewport); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfOrientationChanged) { using Case = SimplePrimaryDisplayCase; constexpr int initialOrientation = 90; constexpr int desiredOrientation = 180; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The current display state has an orientation set display.mutableCurrentDisplayState().orientation = initialOrientation; // The incoming request sets a different orientation DisplayState state; state.what = DisplayState::eDisplayProjectionChanged; state.token = display.token(); state.orientation = desiredOrientation; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display state has the new value. EXPECT_EQ(desiredOrientation, display.getCurrentDisplayState().orientation); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfFrameChanged) { using Case = SimplePrimaryDisplayCase; const Rect initialFrame = {0, 0, 0, 0}; const Rect desiredFrame = {5, 6, 7, 8}; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The current display state does not have a frame display.mutableCurrentDisplayState().frame = initialFrame; // The incoming request sets a frame DisplayState state; state.what = DisplayState::eDisplayProjectionChanged; state.token = display.token(); state.frame = desiredFrame; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display state has the new value. EXPECT_EQ(desiredFrame, display.getCurrentDisplayState().frame); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfViewportChanged) { using Case = SimplePrimaryDisplayCase; const Rect initialViewport = {0, 0, 0, 0}; const Rect desiredViewport = {5, 6, 7, 8}; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The current display state does not have a viewport display.mutableCurrentDisplayState().viewport = initialViewport; // The incoming request sets a viewport DisplayState state; state.what = DisplayState::eDisplayProjectionChanged; state.token = display.token(); state.viewport = desiredViewport; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display state has the new value. EXPECT_EQ(desiredViewport, display.getCurrentDisplayState().viewport); } TEST_F(DisplayTransactionTest, setDisplayStateLockedDoesNothingIfSizeDidNotChange) { using Case = SimplePrimaryDisplayCase; constexpr uint32_t initialWidth = 1024; constexpr uint32_t initialHeight = 768; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The current display state has a size set display.mutableCurrentDisplayState().width = initialWidth; display.mutableCurrentDisplayState().height = initialHeight; // The incoming request sets the same display size DisplayState state; state.what = DisplayState::eDisplaySizeChanged; state.token = display.token(); state.width = initialWidth; state.height = initialHeight; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags are empty EXPECT_EQ(0u, flags); // The current display state is unchanged EXPECT_EQ(initialWidth, display.getCurrentDisplayState().width); EXPECT_EQ(initialHeight, display.getCurrentDisplayState().height); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfWidthChanged) { using Case = SimplePrimaryDisplayCase; constexpr uint32_t initialWidth = 0; constexpr uint32_t desiredWidth = 1024; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display does not yet have a width display.mutableCurrentDisplayState().width = initialWidth; // The incoming request sets a display width DisplayState state; state.what = DisplayState::eDisplaySizeChanged; state.token = display.token(); state.width = desiredWidth; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display state has the new value. EXPECT_EQ(desiredWidth, display.getCurrentDisplayState().width); } TEST_F(DisplayTransactionTest, setDisplayStateLockedRequestsUpdateIfHeightChanged) { using Case = SimplePrimaryDisplayCase; constexpr uint32_t initialHeight = 0; constexpr uint32_t desiredHeight = 768; // -------------------------------------------------------------------- // Preconditions // A display is set up auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display does not yet have a height display.mutableCurrentDisplayState().height = initialHeight; // The incoming request sets a display height DisplayState state; state.what = DisplayState::eDisplaySizeChanged; state.token = display.token(); state.height = desiredHeight; // -------------------------------------------------------------------- // Invocation uint32_t flags = mFlinger.setDisplayStateLocked(state); // -------------------------------------------------------------------- // Postconditions // The returned flags indicate a transaction is needed EXPECT_EQ(eDisplayTransactionNeeded, flags); // The current display state has the new value. EXPECT_EQ(desiredHeight, display.getCurrentDisplayState().height); } /* ------------------------------------------------------------------------ * SurfaceFlinger::onInitializeDisplays */ TEST_F(DisplayTransactionTest, onInitializeDisplaysSetsUpPrimaryDisplay) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A primary display is set up Case::Display::injectHwcDisplay(this); auto primaryDisplay = Case::Display::makeFakeExistingDisplayInjector(this); primaryDisplay.inject(); // -------------------------------------------------------------------- // Call Expectations // We expect the surface interceptor to possibly be used, but we treat it as // disabled since it is called as a side effect rather than directly by this // function. EXPECT_CALL(*mSurfaceInterceptor, isEnabled()).WillOnce(Return(false)); // We expect a call to get the active display config. Case::Display::setupHwcGetActiveConfigCallExpectations(this); // We expect invalidate() to be invoked once to trigger display transaction // processing. EXPECT_CALL(*mMessageQueue, invalidate()).Times(1); EXPECT_CALL(*mPrimaryDispSync, expectedPresentTime()).WillRepeatedly(Return(0)); // -------------------------------------------------------------------- // Invocation mFlinger.onInitializeDisplays(); // -------------------------------------------------------------------- // Postconditions // The primary display should have a current state ASSERT_TRUE(hasCurrentDisplayState(primaryDisplay.token())); const auto& primaryDisplayState = getCurrentDisplayState(primaryDisplay.token()); // The layer stack state should be set to zero EXPECT_EQ(0u, primaryDisplayState.layerStack); // The orientation state should be set to zero EXPECT_EQ(0, primaryDisplayState.orientation); // The frame state should be set to INVALID EXPECT_EQ(Rect::INVALID_RECT, primaryDisplayState.frame); // The viewport state should be set to INVALID EXPECT_EQ(Rect::INVALID_RECT, primaryDisplayState.viewport); // The width and height should both be zero EXPECT_EQ(0u, primaryDisplayState.width); EXPECT_EQ(0u, primaryDisplayState.height); // The display should be set to HWC_POWER_MODE_NORMAL ASSERT_TRUE(hasDisplayDevice(primaryDisplay.token())); auto displayDevice = primaryDisplay.mutableDisplayDevice(); EXPECT_EQ(HWC_POWER_MODE_NORMAL, displayDevice->getPowerMode()); // The display refresh period should be set in the frame tracker. FrameStats stats; mFlinger.getAnimFrameTracker().getStats(&stats); EXPECT_EQ(DEFAULT_REFRESH_RATE, stats.refreshPeriodNano); // The display transaction needed flag should be set. EXPECT_TRUE(hasTransactionFlagSet(eDisplayTransactionNeeded)); // The compositor timing should be set to default values const auto& compositorTiming = mFlinger.getCompositorTiming(); EXPECT_EQ(-DEFAULT_REFRESH_RATE, compositorTiming.deadline); EXPECT_EQ(DEFAULT_REFRESH_RATE, compositorTiming.interval); EXPECT_EQ(DEFAULT_REFRESH_RATE, compositorTiming.presentLatency); } /* ------------------------------------------------------------------------ * SurfaceFlinger::setPowerModeInternal */ // Used when we simulate a display that supports doze. template <typename Display> struct DozeIsSupportedVariant { static constexpr bool DOZE_SUPPORTED = true; static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE = IComposerClient::PowerMode::DOZE; static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND = IComposerClient::PowerMode::DOZE_SUSPEND; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getDisplayCapabilities(Display::HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>( {Hwc2::DisplayCapability::DOZE})), Return(Error::NONE))); } }; template <typename Display> // Used when we simulate a display that does not support doze. struct DozeNotSupportedVariant { static constexpr bool DOZE_SUPPORTED = false; static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE = IComposerClient::PowerMode::ON; static constexpr IComposerClient::PowerMode ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND = IComposerClient::PowerMode::ON; static void setupComposerCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, getDisplayCapabilities(Display::HWC_DISPLAY_ID, _)) .WillOnce(DoAll(SetArgPointee<1>(std::vector<Hwc2::DisplayCapability>({})), Return(Error::NONE))); } }; struct EventThreadBaseSupportedVariant { static void setupEventAndEventControlThreadNoCallExpectations(DisplayTransactionTest* test) { // The event control thread should not be notified. EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(_)).Times(0); // The event thread should not be notified. EXPECT_CALL(*test->mEventThread, onScreenReleased()).Times(0); EXPECT_CALL(*test->mEventThread, onScreenAcquired()).Times(0); } }; struct EventThreadNotSupportedVariant : public EventThreadBaseSupportedVariant { static void setupAcquireAndEnableVsyncCallExpectations(DisplayTransactionTest* test) { // These calls are only expected for the primary display. // Instead expect no calls. setupEventAndEventControlThreadNoCallExpectations(test); } static void setupReleaseAndDisableVsyncCallExpectations(DisplayTransactionTest* test) { // These calls are only expected for the primary display. // Instead expect no calls. setupEventAndEventControlThreadNoCallExpectations(test); } }; struct EventThreadIsSupportedVariant : public EventThreadBaseSupportedVariant { static void setupAcquireAndEnableVsyncCallExpectations(DisplayTransactionTest* test) { // The event control thread should be notified to enable vsyncs EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(true)).Times(1); // The event thread should be notified that the screen was acquired. EXPECT_CALL(*test->mEventThread, onScreenAcquired()).Times(1); } static void setupReleaseAndDisableVsyncCallExpectations(DisplayTransactionTest* test) { // There should be a call to setVsyncEnabled(false) EXPECT_CALL(*test->mEventControlThread, setVsyncEnabled(false)).Times(1); // The event thread should not be notified that the screen was released. EXPECT_CALL(*test->mEventThread, onScreenReleased()).Times(1); } }; struct DispSyncIsSupportedVariant { static void setupBeginResyncCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mPrimaryDispSync, setPeriod(DEFAULT_REFRESH_RATE)).Times(1); EXPECT_CALL(*test->mPrimaryDispSync, beginResync()).Times(1); } static void setupEndResyncCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mPrimaryDispSync, endResync()).Times(1); } }; struct DispSyncNotSupportedVariant { static void setupBeginResyncCallExpectations(DisplayTransactionTest* /* test */) {} static void setupEndResyncCallExpectations(DisplayTransactionTest* /* test */) {} }; // -------------------------------------------------------------------- // Note: // // There are a large number of transitions we could test, however we only test a // selected subset which provides complete test coverage of the implementation. // -------------------------------------------------------------------- template <int initialPowerMode, int targetPowerMode> struct TransitionVariantCommon { static constexpr auto INITIAL_POWER_MODE = initialPowerMode; static constexpr auto TARGET_POWER_MODE = targetPowerMode; static void verifyPostconditions(DisplayTransactionTest*) {} }; struct TransitionOffToOnVariant : public TransitionVariantCommon<HWC_POWER_MODE_OFF, HWC_POWER_MODE_NORMAL> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON); Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test); Case::DispSync::setupBeginResyncCallExpectations(test); Case::setupRepaintEverythingCallExpectations(test); } static void verifyPostconditions(DisplayTransactionTest* test) { EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty()); EXPECT_TRUE(test->mFlinger.getHasPoweredOff()); } }; struct TransitionOffToDozeSuspendVariant : public TransitionVariantCommon<HWC_POWER_MODE_OFF, HWC_POWER_MODE_DOZE_SUSPEND> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND); Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test); Case::setupRepaintEverythingCallExpectations(test); } static void verifyPostconditions(DisplayTransactionTest* test) { EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty()); EXPECT_TRUE(test->mFlinger.getHasPoweredOff()); } }; struct TransitionOnToOffVariant : public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_OFF> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupReleaseAndDisableVsyncCallExpectations(test); Case::DispSync::setupEndResyncCallExpectations(test); Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::OFF); } static void verifyPostconditions(DisplayTransactionTest* test) { EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty()); } }; struct TransitionDozeSuspendToOffVariant : public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_OFF> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test); Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::OFF); } static void verifyPostconditions(DisplayTransactionTest* test) { EXPECT_TRUE(test->mFlinger.getVisibleRegionsDirty()); } }; struct TransitionOnToDozeVariant : public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_DOZE> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test); Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE); } }; struct TransitionDozeSuspendToDozeVariant : public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_DOZE> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test); Case::DispSync::setupBeginResyncCallExpectations(test); Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE); } }; struct TransitionDozeToOnVariant : public TransitionVariantCommon<HWC_POWER_MODE_DOZE, HWC_POWER_MODE_NORMAL> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test); Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON); } }; struct TransitionDozeSuspendToOnVariant : public TransitionVariantCommon<HWC_POWER_MODE_DOZE_SUSPEND, HWC_POWER_MODE_NORMAL> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupAcquireAndEnableVsyncCallExpectations(test); Case::DispSync::setupBeginResyncCallExpectations(test); Case::setupComposerCallExpectations(test, IComposerClient::PowerMode::ON); } }; struct TransitionOnToDozeSuspendVariant : public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_DOZE_SUSPEND> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupReleaseAndDisableVsyncCallExpectations(test); Case::DispSync::setupEndResyncCallExpectations(test); Case::setupComposerCallExpectations(test, Case::Doze::ACTUAL_POWER_MODE_FOR_DOZE_SUSPEND); } }; struct TransitionOnToUnknownVariant : public TransitionVariantCommon<HWC_POWER_MODE_NORMAL, HWC_POWER_MODE_LEET> { template <typename Case> static void setupCallExpectations(DisplayTransactionTest* test) { Case::EventThread::setupEventAndEventControlThreadNoCallExpectations(test); Case::setupNoComposerPowerModeCallExpectations(test); } }; // -------------------------------------------------------------------- // Note: // // Rather than testing the cartesian product of of // DozeIsSupported/DozeNotSupported with all other options, we use one for one // display type, and the other for another display type. // -------------------------------------------------------------------- template <typename DisplayVariant, typename DozeVariant, typename EventThreadVariant, typename DispSyncVariant, typename TransitionVariant> struct DisplayPowerCase { using Display = DisplayVariant; using Doze = DozeVariant; using EventThread = EventThreadVariant; using DispSync = DispSyncVariant; using Transition = TransitionVariant; static auto injectDisplayWithInitialPowerMode(DisplayTransactionTest* test, int mode) { Display::injectHwcDisplayWithNoDefaultCapabilities(test); auto display = Display::makeFakeExistingDisplayInjector(test); display.inject(); display.mutableDisplayDevice()->setPowerMode(mode); return display; } static void setInitialPrimaryHWVsyncEnabled(DisplayTransactionTest* test, bool enabled) { test->mScheduler->mutablePrimaryHWVsyncEnabled() = enabled; } static void setupRepaintEverythingCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mMessageQueue, invalidate()).Times(1); } static void setupSurfaceInterceptorCallExpectations(DisplayTransactionTest* test, int mode) { EXPECT_CALL(*test->mSurfaceInterceptor, isEnabled()).WillOnce(Return(true)); EXPECT_CALL(*test->mSurfaceInterceptor, savePowerModeUpdate(_, mode)).Times(1); } static void setupComposerCallExpectations(DisplayTransactionTest* test, IComposerClient::PowerMode mode) { // Any calls to get the active config will return a default value. EXPECT_CALL(*test->mComposer, getActiveConfig(Display::HWC_DISPLAY_ID, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(Display::HWC_ACTIVE_CONFIG_ID), Return(Error::NONE))); // Any calls to get whether the display supports dozing will return the value set by the // policy variant. EXPECT_CALL(*test->mComposer, getDozeSupport(Display::HWC_DISPLAY_ID, _)) .WillRepeatedly(DoAll(SetArgPointee<1>(Doze::DOZE_SUPPORTED), Return(Error::NONE))); EXPECT_CALL(*test->mComposer, setPowerMode(Display::HWC_DISPLAY_ID, mode)).Times(1); } static void setupNoComposerPowerModeCallExpectations(DisplayTransactionTest* test) { EXPECT_CALL(*test->mComposer, setPowerMode(Display::HWC_DISPLAY_ID, _)).Times(0); } }; // A sample configuration for the primary display. // In addition to having event thread support, we emulate doze support. template <typename TransitionVariant> using PrimaryDisplayPowerCase = DisplayPowerCase<PrimaryDisplayVariant, DozeIsSupportedVariant<PrimaryDisplayVariant>, EventThreadIsSupportedVariant, DispSyncIsSupportedVariant, TransitionVariant>; // A sample configuration for the external display. // In addition to not having event thread support, we emulate not having doze // support. template <typename TransitionVariant> using ExternalDisplayPowerCase = DisplayPowerCase<ExternalDisplayVariant, DozeNotSupportedVariant<ExternalDisplayVariant>, EventThreadNotSupportedVariant, DispSyncNotSupportedVariant, TransitionVariant>; class SetPowerModeInternalTest : public DisplayTransactionTest { public: template <typename Case> void transitionDisplayCommon(); }; template <int PowerMode> struct PowerModeInitialVSyncEnabled : public std::false_type {}; template <> struct PowerModeInitialVSyncEnabled<HWC_POWER_MODE_NORMAL> : public std::true_type {}; template <> struct PowerModeInitialVSyncEnabled<HWC_POWER_MODE_DOZE> : public std::true_type {}; template <typename Case> void SetPowerModeInternalTest::transitionDisplayCommon() { // -------------------------------------------------------------------- // Preconditions Case::Doze::setupComposerCallExpectations(this); auto display = Case::injectDisplayWithInitialPowerMode(this, Case::Transition::INITIAL_POWER_MODE); Case::setInitialPrimaryHWVsyncEnabled(this, PowerModeInitialVSyncEnabled< Case::Transition::INITIAL_POWER_MODE>::value); // -------------------------------------------------------------------- // Call Expectations Case::setupSurfaceInterceptorCallExpectations(this, Case::Transition::TARGET_POWER_MODE); Case::Transition::template setupCallExpectations<Case>(this); // -------------------------------------------------------------------- // Invocation mFlinger.setPowerModeInternal(display.mutableDisplayDevice(), Case::Transition::TARGET_POWER_MODE); // -------------------------------------------------------------------- // Postconditions Case::Transition::verifyPostconditions(this); } TEST_F(SetPowerModeInternalTest, setPowerModeInternalDoesNothingIfNoChange) { using Case = SimplePrimaryDisplayCase; // -------------------------------------------------------------------- // Preconditions // A primary display device is set up Case::Display::injectHwcDisplay(this); auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display is already set to HWC_POWER_MODE_NORMAL display.mutableDisplayDevice()->setPowerMode(HWC_POWER_MODE_NORMAL); // -------------------------------------------------------------------- // Invocation mFlinger.setPowerModeInternal(display.mutableDisplayDevice(), HWC_POWER_MODE_NORMAL); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(HWC_POWER_MODE_NORMAL, display.mutableDisplayDevice()->getPowerMode()); } TEST_F(SetPowerModeInternalTest, setPowerModeInternalDoesNothingIfVirtualDisplay) { using Case = HwcVirtualDisplayCase; // -------------------------------------------------------------------- // Preconditions // Insert display data so that the HWC thinks it created the virtual display. const auto displayId = Case::Display::DISPLAY_ID::get(); ASSERT_TRUE(displayId); mFlinger.mutableHwcDisplayData().try_emplace(*displayId); // A virtual display device is set up Case::Display::injectHwcDisplay(this); auto display = Case::Display::makeFakeExistingDisplayInjector(this); display.inject(); // The display is set to HWC_POWER_MODE_NORMAL getDisplayDevice(display.token())->setPowerMode(HWC_POWER_MODE_NORMAL); // -------------------------------------------------------------------- // Invocation mFlinger.setPowerModeInternal(display.mutableDisplayDevice(), HWC_POWER_MODE_OFF); // -------------------------------------------------------------------- // Postconditions EXPECT_EQ(HWC_POWER_MODE_NORMAL, display.mutableDisplayDevice()->getPowerMode()); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToOnPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOffToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToDozeSuspendPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOffToDozeSuspendVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToOffPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToOffVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOffPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToOffVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozePrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToDozeVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToDozePrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToDozeVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeToOnPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOnPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionDozeSuspendToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeSuspendPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToDozeSuspendVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToUnknownPrimaryDisplay) { transitionDisplayCommon<PrimaryDisplayPowerCase<TransitionOnToUnknownVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToOnExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOffToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOffToDozeSuspendExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOffToDozeSuspendVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToOffExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToOffVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOffExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToOffVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToDozeVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToDozeExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToDozeVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeToOnExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromDozeSuspendToOnExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionDozeSuspendToOnVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToDozeSuspendExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToDozeSuspendVariant>>(); } TEST_F(SetPowerModeInternalTest, transitionsDisplayFromOnToUnknownExternalDisplay) { transitionDisplayCommon<ExternalDisplayPowerCase<TransitionOnToUnknownVariant>>(); } } // namespace } // namespace android