/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_LAYER_H #define ANDROID_LAYER_H #include <sys/types.h> #include <compositionengine/LayerFE.h> #include <gui/BufferQueue.h> #include <gui/ISurfaceComposerClient.h> #include <gui/LayerState.h> #include <input/InputWindow.h> #include <layerproto/LayerProtoHeader.h> #include <math/vec4.h> #include <renderengine/Mesh.h> #include <renderengine/Texture.h> #include <ui/FloatRect.h> #include <ui/FrameStats.h> #include <ui/GraphicBuffer.h> #include <ui/PixelFormat.h> #include <ui/Region.h> #include <ui/Transform.h> #include <utils/RefBase.h> #include <utils/String8.h> #include <utils/Timers.h> #include <cstdint> #include <list> #include <optional> #include <vector> #include "Client.h" #include "FrameTracker.h" #include "LayerVector.h" #include "MonitoredProducer.h" #include "SurfaceFlinger.h" #include "TransactionCompletedThread.h" #include "DisplayHardware/ComposerHal.h" #include "DisplayHardware/HWComposer.h" #include "RenderArea.h" using namespace android::surfaceflinger; namespace android { // --------------------------------------------------------------------------- class Client; class Colorizer; class DisplayDevice; class GraphicBuffer; class SurfaceFlinger; class LayerDebugInfo; namespace compositionengine { class Layer; class OutputLayer; struct LayerFECompositionState; } namespace impl { class SurfaceInterceptor; } // --------------------------------------------------------------------------- struct LayerCreationArgs { LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata) : flinger(flinger), client(client), name(name), w(w), h(h), flags(flags), metadata(std::move(metadata)) {} SurfaceFlinger* flinger; const sp<Client>& client; const String8& name; uint32_t w; uint32_t h; uint32_t flags; LayerMetadata metadata; }; class Layer : public virtual compositionengine::LayerFE { static std::atomic<int32_t> sSequence; public: mutable bool contentDirty{false}; // regions below are in window-manager space Region visibleRegion; Region coveredRegion; Region visibleNonTransparentRegion; Region surfaceDamageRegion; // Layer serial number. This gives layers an explicit ordering, so we // have a stable sort order when their layer stack and Z-order are // the same. int32_t sequence{sSequence++}; enum { // flags for doTransaction() eDontUpdateGeometryState = 0x00000001, eVisibleRegion = 0x00000002, eInputInfoChanged = 0x00000004 }; struct Geometry { uint32_t w; uint32_t h; ui::Transform transform; inline bool operator==(const Geometry& rhs) const { return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && (transform.ty() == rhs.transform.ty()); } inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } }; struct RoundedCornerState { RoundedCornerState() = default; RoundedCornerState(FloatRect cropRect, float radius) : cropRect(cropRect), radius(radius) {} // Rounded rectangle in local layer coordinate space. FloatRect cropRect = FloatRect(); // Radius of the rounded rectangle. float radius = 0.0f; }; struct State { Geometry active_legacy; Geometry requested_legacy; int32_t z; // The identifier of the layer stack this layer belongs to. A layer can // only be associated to a single layer stack. A layer stack is a // z-ordered group of layers which can be associated to one or more // displays. Using the same layer stack on different displays is a way // to achieve mirroring. uint32_t layerStack; uint8_t flags; uint8_t reserved[2]; int32_t sequence; // changes when visible regions can change bool modified; // Crop is expressed in layer space coordinate. Rect crop_legacy; Rect requestedCrop_legacy; // If set, defers this state update until the identified Layer // receives a frame with the given frameNumber wp<Layer> barrierLayer_legacy; uint64_t frameNumber_legacy; // the transparentRegion hint is a bit special, it's latched only // when we receive a buffer -- this is because it's "content" // dependent. Region activeTransparentRegion_legacy; Region requestedTransparentRegion_legacy; LayerMetadata metadata; // If non-null, a Surface this Surface's Z-order is interpreted relative to. wp<Layer> zOrderRelativeOf; // A list of surfaces whose Z-order is interpreted relative to ours. SortedVector<wp<Layer>> zOrderRelatives; half4 color; float cornerRadius; bool inputInfoChanged; InputWindowInfo inputInfo; wp<Layer> touchableRegionCrop; // dataspace is only used by BufferStateLayer and ColorLayer ui::Dataspace dataspace; // The fields below this point are only used by BufferStateLayer Geometry active; uint32_t transform; bool transformToDisplayInverse; Rect crop; Region transparentRegionHint; sp<GraphicBuffer> buffer; client_cache_t clientCacheId; sp<Fence> acquireFence; HdrMetadata hdrMetadata; Region surfaceDamageRegion; int32_t api; sp<NativeHandle> sidebandStream; mat4 colorTransform; bool hasColorTransform; // pointer to background color layer that, if set, appears below the buffer state layer // and the buffer state layer's children. Z order will be set to // INT_MIN sp<Layer> bgColorLayer; // The deque of callback handles for this frame. The back of the deque contains the most // recent callback handle. std::deque<sp<CallbackHandle>> callbackHandles; bool colorSpaceAgnostic; }; explicit Layer(const LayerCreationArgs& args); virtual ~Layer(); void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; } // ------------------------------------------------------------------------ // Geometry setting functions. // // The following group of functions are used to specify the layers // bounds, and the mapping of the texture on to those bounds. According // to various settings changes to them may apply immediately, or be delayed until // a pending resize is completed by the producer submitting a buffer. For example // if we were to change the buffer size, and update the matrix ahead of the // new buffer arriving, then we would be stretching the buffer to a different // aspect before and after the buffer arriving, which probably isn't what we wanted. // // The first set of geometry functions are controlled by the scaling mode, described // in window.h. The scaling mode may be set by the client, as it submits buffers. // This value may be overriden through SurfaceControl, with setOverrideScalingMode. // // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then // matrix updates will not be applied while a resize is pending // and the size and transform will remain in their previous state // until a new buffer is submitted. If the scaling mode is another value // then the old-buffer will immediately be scaled to the pending size // and the new matrix will be immediately applied following this scaling // transformation. // Set the default buffer size for the assosciated Producer, in pixels. This is // also the rendered size of the layer prior to any transformations. Parent // or local matrix transformations will not affect the size of the buffer, // but may affect it's on-screen size or clipping. virtual bool setSize(uint32_t w, uint32_t h); // Set a 2x2 transformation matrix on the layer. This transform // will be applied after parent transforms, but before any final // producer specified transform. virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, bool allowNonRectPreservingTransforms); // This second set of geometry attributes are controlled by // setGeometryAppliesWithResize, and their default mode is to be // immediate. If setGeometryAppliesWithResize is specified // while a resize is pending, then update of these attributes will // be delayed until the resize completes. // setPosition operates in parent buffer space (pre parent-transform) or display // space for top-level layers. virtual bool setPosition(float x, float y, bool immediate); // Buffer space virtual bool setCrop_legacy(const Rect& crop, bool immediate); // TODO(b/38182121): Could we eliminate the various latching modes by // using the layer hierarchy? // ----------------------------------------------------------------------- virtual bool setLayer(int32_t z); virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); virtual bool setAlpha(float alpha); virtual bool setColor(const half3& /*color*/) { return false; }; // Set rounded corner radius for this layer and its children. // // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer // from which we inferred the rounded corner radius. virtual bool setCornerRadius(float cornerRadius); virtual bool setTransparentRegionHint(const Region& transparent); virtual bool setFlags(uint8_t flags, uint8_t mask); virtual bool setLayerStack(uint32_t layerStack); virtual uint32_t getLayerStack() const; virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, uint64_t frameNumber); virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber); virtual bool setOverrideScalingMode(int32_t overrideScalingMode); virtual bool setMetadata(const LayerMetadata& data); virtual bool reparentChildren(const sp<IBinder>& layer); virtual void setChildrenDrawingParent(const sp<Layer>& layer); virtual bool reparent(const sp<IBinder>& newParentHandle); virtual bool detachChildren(); bool attachChildren(); bool isLayerDetached() const { return mLayerDetached; } virtual bool setColorTransform(const mat4& matrix); virtual mat4 getColorTransform() const; virtual bool hasColorTransform() const; virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } // Used only to set BufferStateLayer state virtual bool setTransform(uint32_t /*transform*/) { return false; }; virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; virtual bool setCrop(const Rect& /*crop*/) { return false; }; virtual bool setFrame(const Rect& /*frame*/) { return false; }; virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, nsecs_t /*postTime*/, nsecs_t /*desiredPresentTime*/, const client_cache_t& /*clientCacheId*/) { return false; }; virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; }; virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; virtual bool setApi(int32_t /*api*/) { return false; }; virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; }; virtual bool setTransactionCompletedListeners( const std::vector<sp<CallbackHandle>>& /*handles*/) { return false; }; virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace); virtual bool setColorSpaceAgnostic(const bool agnostic); ui::Dataspace getDataSpace() const { return mCurrentDataSpace; } // Before color management is introduced, contents on Android have to be // desaturated in order to match what they appears like visually. // With color management, these contents will appear desaturated, thus // needed to be saturated so that they match what they are designed for // visually. bool isLegacyDataSpace() const; virtual std::shared_ptr<compositionengine::Layer> getCompositionLayer() const; // If we have received a new buffer this frame, we will pass its surface // damage down to hardware composer. Otherwise, we must send a region with // one empty rect. virtual void useSurfaceDamage() {} virtual void useEmptyDamage() {} uint32_t getTransactionFlags() const { return mTransactionFlags; } uint32_t getTransactionFlags(uint32_t flags); uint32_t setTransactionFlags(uint32_t flags); // Deprecated, please use compositionengine::Output::belongsInOutput() // instead. // TODO(lpique): Move the remaining callers (screencap) to the new function. bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); } void computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh, bool useIdentityTransform) const; FloatRect getBounds(const Region& activeTransparentRegion) const; FloatRect getBounds() const; // Compute bounds for the layer and cache the results. void computeBounds(FloatRect parentBounds, ui::Transform parentTransform); // Returns the buffer scale transform if a scaling mode is set. ui::Transform getBufferScaleTransform() const; // Get effective layer transform, taking into account all its parent transform with any // scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE. ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const; // Returns the bounds of the layer without any buffer scaling. FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const; int32_t getSequence() const { return sequence; } // ----------------------------------------------------------------------- // Virtuals virtual const char* getTypeId() const = 0; /* * isOpaque - true if this surface is opaque * * This takes into account the buffer format (i.e. whether or not the * pixel format includes an alpha channel) and the "opaque" flag set * on the layer. It does not examine the current plane alpha value. */ virtual bool isOpaque(const Layer::State&) const { return false; } /* * isSecure - true if this surface is secure, that is if it prevents * screenshots or VNC servers. */ bool isSecure() const; /* * isVisible - true if this layer is visible, false otherwise */ virtual bool isVisible() const = 0; /* * isHiddenByPolicy - true if this layer has been forced invisible. * just because this is false, doesn't mean isVisible() is true. * For example if this layer has no active buffer, it may not be hidden by * policy, but it still can not be visible. */ bool isHiddenByPolicy() const; /* * Returns whether this layer can receive input. */ virtual bool canReceiveInput() const; /* * isProtected - true if the layer may contain protected content in the * GRALLOC_USAGE_PROTECTED sense. */ virtual bool isProtected() const { return false; } /* * isFixedSize - true if content has a fixed size */ virtual bool isFixedSize() const { return true; } /* * usesSourceCrop - true if content should use a source crop */ virtual bool usesSourceCrop() const { return false; } // Most layers aren't created from the main thread, and therefore need to // grab the SF state lock to access HWC, but ContainerLayer does, so we need // to avoid grabbing the lock again to avoid deadlock virtual bool isCreatedFromMainThread() const { return false; } bool isRemovedFromCurrentState() const; void writeToProto(LayerProto* layerInfo, LayerVector::StateSet stateSet, uint32_t traceFlags = SurfaceTracing::TRACE_ALL); void writeToProto(LayerProto* layerInfo, const sp<DisplayDevice>& displayDevice, uint32_t traceFlags = SurfaceTracing::TRACE_ALL); virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; } virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; } virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; } virtual ui::Transform getActiveTransform(const Layer::State& s) const { return s.active_legacy.transform; } virtual Region getActiveTransparentRegion(const Layer::State& s) const { return s.activeTransparentRegion_legacy; } virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; } protected: virtual bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, bool useIdentityTransform, Region& clearRegion, const bool supportProtectedContent, renderengine::LayerSettings& layer); public: /* * compositionengine::LayerFE overrides */ void latchCompositionState(compositionengine::LayerFECompositionState&, bool includeGeometry) const override; void onLayerDisplayed(const sp<Fence>& releaseFence) override; const char* getDebugName() const override; protected: void latchGeometry(compositionengine::LayerFECompositionState& outState) const; public: virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} virtual bool isHdrY410() const { return false; } void forceClientComposition(const sp<DisplayDevice>& display); bool getForceClientComposition(const sp<DisplayDevice>& display); virtual void setPerFrameData(const sp<const DisplayDevice>& display, const ui::Transform& transform, const Rect& viewport, int32_t supportedPerFrameMetadata, const ui::Dataspace targetDataspace) = 0; // callIntoHwc exists so we can update our local state and call // acceptDisplayChanges without unnecessarily updating the device's state void setCompositionType(const sp<const DisplayDevice>& display, Hwc2::IComposerClient::Composition type); Hwc2::IComposerClient::Composition getCompositionType( const sp<const DisplayDevice>& display) const; bool getClearClientTarget(const sp<const DisplayDevice>& display) const; void updateCursorPosition(const sp<const DisplayDevice>& display); virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } virtual void setTransformHint(uint32_t /*orientation*/) const { } /* * called before composition. * returns true if the layer has pending updates. */ virtual bool onPreComposition(nsecs_t refreshStartTime) = 0; /* * called after composition. * returns true if the layer latched a new buffer this frame. */ virtual bool onPostComposition(const std::optional<DisplayId>& /*displayId*/, const std::shared_ptr<FenceTime>& /*glDoneFence*/, const std::shared_ptr<FenceTime>& /*presentFence*/, const CompositorTiming& /*compositorTiming*/) { return false; } // If a buffer was replaced this frame, release the former buffer virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } /* * prepareClientLayer - populates a renderengine::LayerSettings to passed to * RenderEngine::drawLayers. Returns true if the layer can be used, and * false otherwise. */ bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, Region& clearRegion, const bool supportProtectedContent, renderengine::LayerSettings& layer); bool prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform, Region& clearRegion, const bool supportProtectedContent, renderengine::LayerSettings& layer); /* * doTransaction - process the transaction. This is a good place to figure * out which attributes of the surface have changed. */ uint32_t doTransaction(uint32_t transactionFlags); /* * setVisibleRegion - called to set the new visible region. This gives * a chance to update the new visible region or record the fact it changed. */ void setVisibleRegion(const Region& visibleRegion); /* * setCoveredRegion - called when the covered region changes. The covered * region corresponds to any area of the surface that is covered * (transparently or not) by another surface. */ void setCoveredRegion(const Region& coveredRegion); /* * setVisibleNonTransparentRegion - called when the visible and * non-transparent region changes. */ void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion); /* * Clear the visible, covered, and non-transparent regions. */ void clearVisibilityRegions(); /* * latchBuffer - called each time the screen is redrawn and returns whether * the visible regions need to be recomputed (this is a fairly heavy * operation, so this should be set only if needed). Typically this is used * to figure out if the content or size of a surface has changed. */ virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) { return {}; } virtual bool isBufferLatched() const { return false; } /* * Remove relative z for the layer if its relative parent is not part of the * provided layer tree. */ void removeRelativeZ(const std::vector<Layer*>& layersInTree); /* * Remove from current state and mark for removal. */ void removeFromCurrentState(); /* * called with the state lock from a binder thread when the layer is * removed from the current list to the pending removal list */ void onRemovedFromCurrentState(); /* * Called when the layer is added back to the current state list. */ void addToCurrentState(); // Updates the transform hint in our SurfaceFlingerConsumer to match // the current orientation of the display device. void updateTransformHint(const sp<const DisplayDevice>& display) const; /* * returns the rectangle that crops the content of the layer and scales it * to the layer's size. */ Rect getContentCrop() const; /* * Returns if a frame is ready */ virtual bool hasReadyFrame() const { return false; } virtual int32_t getQueuedFrameCount() const { return 0; } // ----------------------------------------------------------------------- bool hasHwcLayer(const sp<const DisplayDevice>& displayDevice); HWC2::Layer* getHwcLayer(const sp<const DisplayDevice>& displayDevice); inline const State& getDrawingState() const { return mDrawingState; } inline const State& getCurrentState() const { return mCurrentState; } inline State& getCurrentState() { return mCurrentState; } LayerDebugInfo getLayerDebugInfo() const; /* always call base class first */ static void miniDumpHeader(std::string& result); void miniDump(std::string& result, const sp<DisplayDevice>& display) const; void dumpFrameStats(std::string& result) const; void dumpFrameEvents(std::string& result); void clearFrameStats(); void logFrameStats(); void getFrameStats(FrameStats* outStats) const; virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { return {}; } void onDisconnect(); void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, FrameEventHistoryDelta* outDelta); virtual bool getTransformToDisplayInverse() const { return false; } ui::Transform getTransform() const; // Returns the Alpha of the Surface, accounting for the Alpha // of parent Surfaces in the hierarchy (alpha's will be multiplied // down the hierarchy). half getAlpha() const; half4 getColor() const; // Returns how rounded corners should be drawn for this layer. // This will traverse the hierarchy until it reaches its root, finding topmost rounded // corner definition and converting it into current layer's coordinates. // As of now, only 1 corner radius per display list is supported. Subsequent ones will be // ignored. RoundedCornerState getRoundedCornerState() const; void traverseInReverseZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); /** * Traverse only children in z order, ignoring relative layers that are not children of the * parent. */ void traverseChildrenInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); size_t getChildrenCount() const; void addChild(const sp<Layer>& layer); // Returns index if removed, or negative value otherwise // for symmetry with Vector::remove ssize_t removeChild(const sp<Layer>& layer); sp<Layer> getParent() const { return mCurrentParent.promote(); } bool hasParent() const { return getParent() != nullptr; } Rect getScreenBounds(bool reduceTransparentRegion = true) const; bool setChildLayer(const sp<Layer>& childLayer, int32_t z); bool setChildRelativeLayer(const sp<Layer>& childLayer, const sp<IBinder>& relativeToHandle, int32_t relativeZ); // Copy the current list of children to the drawing state. Called by // SurfaceFlinger to complete a transaction. void commitChildList(); int32_t getZ() const; virtual void pushPendingState(); /** * Returns active buffer size in the correct orientation. Buffer size is determined by undoing * any buffer transformations. If the layer has no buffer then return INVALID_RECT. */ virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } /** * Returns the source bounds. If the bounds are not defined, it is inferred from the * buffer size. Failing that, the bounds are determined from the passed in parent bounds. * For the root layer, this is the display viewport size. */ virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const { return parentBounds; } compositionengine::OutputLayer* findOutputLayerForDisplay( const sp<const DisplayDevice>& display) const; protected: // constant sp<SurfaceFlinger> mFlinger; /* * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) * is called. */ class LayerCleaner { sp<SurfaceFlinger> mFlinger; sp<Layer> mLayer; protected: ~LayerCleaner() { // destroy client resources mFlinger->onHandleDestroyed(mLayer); } public: LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) : mFlinger(flinger), mLayer(layer) {} }; friend class impl::SurfaceInterceptor; // For unit tests friend class TestableSurfaceFlinger; virtual void commitTransaction(const State& stateToCommit); uint32_t getEffectiveUsage(uint32_t usage) const; /** * Setup rounded corners coordinates of this layer, taking into account the layer bounds and * crop coordinates, transforming them into layer space. */ void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; void setParent(const sp<Layer>& layer); LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); void addZOrderRelative(const wp<Layer>& relative); void removeZOrderRelative(const wp<Layer>& relative); class SyncPoint { public: explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer) : mFrameNumber(frameNumber), mFrameIsAvailable(false), mTransactionIsApplied(false), mRequestedSyncLayer(requestedSyncLayer) {} uint64_t getFrameNumber() const { return mFrameNumber; } bool frameIsAvailable() const { return mFrameIsAvailable; } void setFrameAvailable() { mFrameIsAvailable = true; } bool transactionIsApplied() const { return mTransactionIsApplied; } void setTransactionApplied() { mTransactionIsApplied = true; } sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); } private: const uint64_t mFrameNumber; std::atomic<bool> mFrameIsAvailable; std::atomic<bool> mTransactionIsApplied; wp<Layer> mRequestedSyncLayer; }; // SyncPoints which will be signaled when the correct frame is at the head // of the queue and dropped after the frame has been latched. Protected by // mLocalSyncPointMutex. Mutex mLocalSyncPointMutex; std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; // SyncPoints which will be signaled and then dropped when the transaction // is applied std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; // Returns false if the relevant frame has already been latched bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); void popPendingState(State* stateToCommit); virtual bool applyPendingStates(State* stateToCommit); virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit); // Returns mCurrentScaling mode (originating from the // Client) or mOverrideScalingMode mode (originating from // the Surface Controller) if set. virtual uint32_t getEffectiveScalingMode() const { return 0; } public: /* * The layer handle is just a BBinder object passed to the client * (remote process) -- we don't keep any reference on our side such that * the dtor is called when the remote side let go of its reference. * * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for * this layer when the handle is destroyed. */ class Handle : public BBinder, public LayerCleaner { public: Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) : LayerCleaner(flinger, layer), owner(layer) {} wp<Layer> owner; }; // Creates a new handle each time, so we only expect // this to be called once. sp<IBinder> getHandle(); const String8& getName() const; virtual void notifyAvailableFrames() {} virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } bool getPremultipledAlpha() const; bool mPendingHWCDestroy{false}; void setInputInfo(const InputWindowInfo& info); InputWindowInfo fillInputInfo(); bool hasInput() const; protected: // ----------------------------------------------------------------------- bool usingRelativeZ(LayerVector::StateSet stateSet) const; bool mPremultipliedAlpha{true}; String8 mName; String8 mTransactionName; // A cached version of "TX - " + mName for systraces bool mPrimaryDisplayOnly = false; // these are protected by an external lock State mCurrentState; State mDrawingState; std::atomic<uint32_t> mTransactionFlags{0}; // Accessed from main thread and binder threads Mutex mPendingStateMutex; Vector<State> mPendingStates; // Timestamp history for UIAutomation. Thread safe. FrameTracker mFrameTracker; // Timestamp history for the consumer to query. // Accessed by both consumer and producer on main and binder threads. Mutex mFrameEventHistoryMutex; ConsumerFrameEventHistory mFrameEventHistory; FenceTimeline mAcquireTimeline; FenceTimeline mReleaseTimeline; // main thread sp<NativeHandle> mSidebandStream; // Active buffer fields sp<GraphicBuffer> mActiveBuffer; sp<Fence> mActiveBufferFence; // False if the buffer and its contents have been previously used for GPU // composition, true otherwise. bool mIsActiveBufferUpdatedForGpu = true; ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN; Rect mCurrentCrop; uint32_t mCurrentTransform{0}; // We encode unset as -1. int32_t mOverrideScalingMode{-1}; std::atomic<uint64_t> mCurrentFrameNumber{0}; bool mFrameLatencyNeeded{false}; // Whether filtering is needed b/c of the drawingstate bool mNeedsFiltering{false}; std::atomic<bool> mRemovedFromCurrentState{false}; // page-flip thread (currently main thread) bool mProtectedByApp{false}; // application requires protected path to external sink // protected by mLock mutable Mutex mLock; const wp<Client> mClientRef; // This layer can be a cursor on some displays. bool mPotentialCursor{false}; bool mFreezeGeometryUpdates{false}; // Child list about to be committed/used for editing. LayerVector mCurrentChildren{LayerVector::StateSet::Current}; // Child list used for rendering. LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; wp<Layer> mCurrentParent; wp<Layer> mDrawingParent; // Can only be accessed with the SF state lock held. bool mLayerDetached{false}; // Can only be accessed with the SF state lock held. bool mChildrenChanged{false}; // Window types from WindowManager.LayoutParams const int mWindowType; // This is populated if the layer is registered with Scheduler for tracking purposes. std::unique_ptr<scheduler::LayerHistory::LayerHandle> mSchedulerLayerHandle; private: /** * Returns an unsorted vector of all layers that are part of this tree. * That includes the current layer and all its descendants. */ std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); /** * Traverses layers that are part of this tree in the correct z order. * layersInTree must be sorted before calling this method. */ void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, const std::vector<Layer*>& layersInTree); /** * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return * INVALID_RECT if the layer has no buffer and no crop. * A layer with an invalid buffer size and no crop is considered to be boundless. The layer * bounds are constrained by its parent bounds. */ Rect getCroppedBufferSize(const Layer::State& s) const; // Cached properties computed from drawing state // Effective transform taking into account parent transforms and any parent scaling. ui::Transform mEffectiveTransform; // Bounds of the layer before any transformation is applied and before it has been cropped // by its parents. FloatRect mSourceBounds; // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and // its parent bounds. FloatRect mBounds; // Layer bounds in screen space. FloatRect mScreenBounds; void setZOrderRelativeOf(const wp<Layer>& relativeOf); bool mGetHandleCalled = false; void removeRemoteSyncPoints(); }; } // namespace android #define RETURN_IF_NO_HWC_LAYER(displayDevice, ...) \ do { \ if (!hasHwcLayer(displayDevice)) { \ ALOGE("[%s] %s failed: no HWC layer found for display %s", mName.string(), \ __FUNCTION__, displayDevice->getDebugName().c_str()); \ return __VA_ARGS__; \ } \ } while (false) #endif // ANDROID_LAYER_H