/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "BufferStateLayer" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include <limits> #include <compositionengine/Display.h> #include <compositionengine/Layer.h> #include <compositionengine/OutputLayer.h> #include <compositionengine/impl/LayerCompositionState.h> #include <compositionengine/impl/OutputLayerCompositionState.h> #include <gui/BufferQueue.h> #include <private/gui/SyncFeatures.h> #include <renderengine/Image.h> #include "BufferStateLayer.h" #include "ColorLayer.h" #include "TimeStats/TimeStats.h" namespace android { // clang-format off const std::array<float, 16> BufferStateLayer::IDENTITY_MATRIX{ 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 }; // clang-format on BufferStateLayer::BufferStateLayer(const LayerCreationArgs& args) : BufferLayer(args), mHwcSlotGenerator(new HwcSlotGenerator()) { mOverrideScalingMode = NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW; mCurrentState.dataspace = ui::Dataspace::V0_SRGB; } BufferStateLayer::~BufferStateLayer() { if (mActiveBuffer != nullptr) { auto& engine(mFlinger->getRenderEngine()); engine.unbindExternalTextureBuffer(mActiveBuffer->getId()); } } // ----------------------------------------------------------------------- // Interface implementation for Layer // ----------------------------------------------------------------------- void BufferStateLayer::onLayerDisplayed(const sp<Fence>& releaseFence) { // The previous release fence notifies the client that SurfaceFlinger is done with the previous // buffer that was presented on this layer. The first transaction that came in this frame that // replaced the previous buffer on this layer needs this release fence, because the fence will // let the client know when that previous buffer is removed from the screen. // // Every other transaction on this layer does not need a release fence because no other // Transactions that were set on this layer this frame are going to have their preceeding buffer // removed from the display this frame. // // For example, if we have 3 transactions this frame. The first transaction doesn't contain a // buffer so it doesn't need a previous release fence because the layer still needs the previous // buffer. The second transaction contains a buffer so it needs a previous release fence because // the previous buffer will be released this frame. The third transaction also contains a // buffer. It replaces the buffer in the second transaction. The buffer in the second // transaction will now no longer be presented so it is released immediately and the third // transaction doesn't need a previous release fence. for (auto& handle : mDrawingState.callbackHandles) { if (handle->releasePreviousBuffer) { handle->previousReleaseFence = releaseFence; break; } } } void BufferStateLayer::setTransformHint(uint32_t /*orientation*/) const { // TODO(marissaw): send the transform hint to buffer owner return; } void BufferStateLayer::releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { mFlinger->getTransactionCompletedThread().addPresentedCallbackHandles( mDrawingState.callbackHandles); mDrawingState.callbackHandles = {}; } bool BufferStateLayer::shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { if (getSidebandStreamChanged() || getAutoRefresh()) { return true; } return hasFrameUpdate(); } bool BufferStateLayer::willPresentCurrentTransaction() const { // Returns true if the most recent Transaction applied to CurrentState will be presented. return getSidebandStreamChanged() || getAutoRefresh() || (mCurrentState.modified && (mCurrentState.buffer != nullptr || mCurrentState.bgColorLayer != nullptr)); } bool BufferStateLayer::getTransformToDisplayInverse() const { return mCurrentState.transformToDisplayInverse; } void BufferStateLayer::pushPendingState() { if (!mCurrentState.modified) { return; } mPendingStates.push_back(mCurrentState); ATRACE_INT(mTransactionName.string(), mPendingStates.size()); } bool BufferStateLayer::applyPendingStates(Layer::State* stateToCommit) { const bool stateUpdateAvailable = !mPendingStates.empty(); while (!mPendingStates.empty()) { popPendingState(stateToCommit); } mCurrentStateModified = stateUpdateAvailable && mCurrentState.modified; mCurrentState.modified = false; return stateUpdateAvailable; } // Crop that applies to the window Rect BufferStateLayer::getCrop(const Layer::State& /*s*/) const { return Rect::INVALID_RECT; } bool BufferStateLayer::setTransform(uint32_t transform) { if (mCurrentState.transform == transform) return false; mCurrentState.transform = transform; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setTransformToDisplayInverse(bool transformToDisplayInverse) { if (mCurrentState.transformToDisplayInverse == transformToDisplayInverse) return false; mCurrentState.sequence++; mCurrentState.transformToDisplayInverse = transformToDisplayInverse; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setCrop(const Rect& crop) { Rect c = crop; if (c.left < 0) { c.left = 0; } if (c.top < 0) { c.top = 0; } // If the width and/or height are < 0, make it [0, 0, -1, -1] so the equality comparision below // treats all invalid rectangles the same. if (!c.isValid()) { c.makeInvalid(); } if (mCurrentState.crop == c) return false; mCurrentState.crop = c; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setFrame(const Rect& frame) { int x = frame.left; int y = frame.top; int w = frame.getWidth(); int h = frame.getHeight(); if (x < 0) { x = 0; w = frame.right; } if (y < 0) { y = 0; h = frame.bottom; } if (mCurrentState.active.transform.tx() == x && mCurrentState.active.transform.ty() == y && mCurrentState.active.w == w && mCurrentState.active.h == h) { return false; } if (!frame.isValid()) { x = y = w = h = 0; } mCurrentState.active.transform.set(x, y); mCurrentState.active.w = w; mCurrentState.active.h = h; mCurrentState.sequence++; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setBuffer(const sp<GraphicBuffer>& buffer, nsecs_t postTime, nsecs_t desiredPresentTime, const client_cache_t& clientCacheId) { if (mCurrentState.buffer) { mReleasePreviousBuffer = true; } mCurrentState.buffer = buffer; mCurrentState.clientCacheId = clientCacheId; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); mFlinger->mTimeStats->setPostTime(getSequence(), getFrameNumber(), getName().c_str(), postTime); mDesiredPresentTime = desiredPresentTime; if (mFlinger->mUseSmart90ForVideo) { const nsecs_t presentTime = (mDesiredPresentTime == -1) ? 0 : mDesiredPresentTime; mFlinger->mScheduler->addLayerPresentTimeAndHDR(mSchedulerLayerHandle, presentTime, mCurrentState.hdrMetadata.validTypes != 0); } return true; } bool BufferStateLayer::setAcquireFence(const sp<Fence>& fence) { // The acquire fences of BufferStateLayers have already signaled before they are set mCallbackHandleAcquireTime = fence->getSignalTime(); mCurrentState.acquireFence = fence; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setDataspace(ui::Dataspace dataspace) { if (mCurrentState.dataspace == dataspace) return false; mCurrentState.dataspace = dataspace; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setHdrMetadata(const HdrMetadata& hdrMetadata) { if (mCurrentState.hdrMetadata == hdrMetadata) return false; mCurrentState.hdrMetadata = hdrMetadata; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setSurfaceDamageRegion(const Region& surfaceDamage) { mCurrentState.surfaceDamageRegion = surfaceDamage; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setApi(int32_t api) { if (mCurrentState.api == api) return false; mCurrentState.api = api; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } bool BufferStateLayer::setSidebandStream(const sp<NativeHandle>& sidebandStream) { if (mCurrentState.sidebandStream == sidebandStream) return false; mCurrentState.sidebandStream = sidebandStream; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); if (!mSidebandStreamChanged.exchange(true)) { // mSidebandStreamChanged was false mFlinger->signalLayerUpdate(); } return true; } bool BufferStateLayer::setTransactionCompletedListeners( const std::vector<sp<CallbackHandle>>& handles) { // If there is no handle, we will not send a callback so reset mReleasePreviousBuffer and return if (handles.empty()) { mReleasePreviousBuffer = false; return false; } const bool willPresent = willPresentCurrentTransaction(); for (const auto& handle : handles) { // If this transaction set a buffer on this layer, release its previous buffer handle->releasePreviousBuffer = mReleasePreviousBuffer; // If this layer will be presented in this frame if (willPresent) { // If this transaction set an acquire fence on this layer, set its acquire time handle->acquireTime = mCallbackHandleAcquireTime; // Notify the transaction completed thread that there is a pending latched callback // handle mFlinger->getTransactionCompletedThread().registerPendingCallbackHandle(handle); // Store so latched time and release fence can be set mCurrentState.callbackHandles.push_back(handle); } else { // If this layer will NOT need to be relatched and presented this frame // Notify the transaction completed thread this handle is done mFlinger->getTransactionCompletedThread().addUnpresentedCallbackHandle(handle); } } mReleasePreviousBuffer = false; mCallbackHandleAcquireTime = -1; return willPresent; } bool BufferStateLayer::setTransparentRegionHint(const Region& transparent) { mCurrentState.transparentRegionHint = transparent; mCurrentState.modified = true; setTransactionFlags(eTransactionNeeded); return true; } Rect BufferStateLayer::getBufferSize(const State& s) const { // for buffer state layers we use the display frame size as the buffer size. if (getActiveWidth(s) < UINT32_MAX && getActiveHeight(s) < UINT32_MAX) { return Rect(getActiveWidth(s), getActiveHeight(s)); } // if the display frame is not defined, use the parent bounds as the buffer size. const auto& p = mDrawingParent.promote(); if (p != nullptr) { Rect parentBounds = Rect(p->getBounds(Region())); if (!parentBounds.isEmpty()) { return parentBounds; } } return Rect::INVALID_RECT; } FloatRect BufferStateLayer::computeSourceBounds(const FloatRect& parentBounds) const { const State& s(getDrawingState()); // for buffer state layers we use the display frame size as the buffer size. if (getActiveWidth(s) < UINT32_MAX && getActiveHeight(s) < UINT32_MAX) { return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); } // if the display frame is not defined, use the parent bounds as the buffer size. return parentBounds; } // ----------------------------------------------------------------------- // ----------------------------------------------------------------------- // Interface implementation for BufferLayer // ----------------------------------------------------------------------- bool BufferStateLayer::fenceHasSignaled() const { if (latchUnsignaledBuffers()) { return true; } return getDrawingState().acquireFence->getStatus() == Fence::Status::Signaled; } bool BufferStateLayer::framePresentTimeIsCurrent() const { if (!hasFrameUpdate() || isRemovedFromCurrentState()) { return true; } return mDesiredPresentTime <= mFlinger->mScheduler->expectedPresentTime(); } nsecs_t BufferStateLayer::getDesiredPresentTime() { return mDesiredPresentTime; } std::shared_ptr<FenceTime> BufferStateLayer::getCurrentFenceTime() const { return std::make_shared<FenceTime>(getDrawingState().acquireFence); } void BufferStateLayer::getDrawingTransformMatrix(float *matrix) { std::copy(std::begin(mTransformMatrix), std::end(mTransformMatrix), matrix); } uint32_t BufferStateLayer::getDrawingTransform() const { return getDrawingState().transform; } ui::Dataspace BufferStateLayer::getDrawingDataSpace() const { return getDrawingState().dataspace; } // Crop that applies to the buffer Rect BufferStateLayer::getDrawingCrop() const { const State& s(getDrawingState()); if (s.crop.isEmpty() && s.buffer) { return s.buffer->getBounds(); } else if (s.buffer) { Rect crop = s.crop; crop.left = std::max(crop.left, 0); crop.top = std::max(crop.top, 0); uint32_t bufferWidth = s.buffer->getWidth(); uint32_t bufferHeight = s.buffer->getHeight(); if (bufferHeight <= std::numeric_limits<int32_t>::max() && bufferWidth <= std::numeric_limits<int32_t>::max()) { crop.right = std::min(crop.right, static_cast<int32_t>(bufferWidth)); crop.bottom = std::min(crop.bottom, static_cast<int32_t>(bufferHeight)); } if (!crop.isValid()) { // Crop rect is out of bounds, return whole buffer return s.buffer->getBounds(); } return crop; } return s.crop; } uint32_t BufferStateLayer::getDrawingScalingMode() const { return NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW; } Region BufferStateLayer::getDrawingSurfaceDamage() const { return getDrawingState().surfaceDamageRegion; } const HdrMetadata& BufferStateLayer::getDrawingHdrMetadata() const { return getDrawingState().hdrMetadata; } int BufferStateLayer::getDrawingApi() const { return getDrawingState().api; } PixelFormat BufferStateLayer::getPixelFormat() const { if (!mActiveBuffer) { return PIXEL_FORMAT_NONE; } return mActiveBuffer->format; } uint64_t BufferStateLayer::getFrameNumber() const { return mFrameNumber; } bool BufferStateLayer::getAutoRefresh() const { // TODO(marissaw): support shared buffer mode return false; } bool BufferStateLayer::getSidebandStreamChanged() const { return mSidebandStreamChanged.load(); } bool BufferStateLayer::latchSidebandStream(bool& recomputeVisibleRegions) { if (mSidebandStreamChanged.exchange(false)) { const State& s(getDrawingState()); // mSidebandStreamChanged was true LOG_ALWAYS_FATAL_IF(!getCompositionLayer()); mSidebandStream = s.sidebandStream; getCompositionLayer()->editState().frontEnd.sidebandStream = mSidebandStream; if (mSidebandStream != nullptr) { setTransactionFlags(eTransactionNeeded); mFlinger->setTransactionFlags(eTraversalNeeded); } recomputeVisibleRegions = true; return true; } return false; } bool BufferStateLayer::hasFrameUpdate() const { const State& c(getCurrentState()); return mCurrentStateModified && (c.buffer != nullptr || c.bgColorLayer != nullptr); } void BufferStateLayer::setFilteringEnabled(bool enabled) { GLConsumer::computeTransformMatrix(mTransformMatrix.data(), mActiveBuffer, mCurrentCrop, mCurrentTransform, enabled); } status_t BufferStateLayer::bindTextureImage() { const State& s(getDrawingState()); auto& engine(mFlinger->getRenderEngine()); return engine.bindExternalTextureBuffer(mTextureName, s.buffer, s.acquireFence); } status_t BufferStateLayer::updateTexImage(bool& /*recomputeVisibleRegions*/, nsecs_t latchTime) { const State& s(getDrawingState()); if (!s.buffer) { if (s.bgColorLayer) { for (auto& handle : mDrawingState.callbackHandles) { handle->latchTime = latchTime; } } return NO_ERROR; } const int32_t layerID = getSequence(); // Reject if the layer is invalid uint32_t bufferWidth = s.buffer->width; uint32_t bufferHeight = s.buffer->height; if (s.transform & ui::Transform::ROT_90) { std::swap(bufferWidth, bufferHeight); } if (s.transformToDisplayInverse) { uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); if (invTransform & ui::Transform::ROT_90) { std::swap(bufferWidth, bufferHeight); } } if (getEffectiveScalingMode() == NATIVE_WINDOW_SCALING_MODE_FREEZE && (s.active.w != bufferWidth || s.active.h != bufferHeight)) { ALOGE("[%s] rejecting buffer: " "bufferWidth=%d, bufferHeight=%d, front.active.{w=%d, h=%d}", mName.string(), bufferWidth, bufferHeight, s.active.w, s.active.h); mFlinger->mTimeStats->removeTimeRecord(layerID, getFrameNumber()); return BAD_VALUE; } for (auto& handle : mDrawingState.callbackHandles) { handle->latchTime = latchTime; } if (!SyncFeatures::getInstance().useNativeFenceSync()) { // Bind the new buffer to the GL texture. // // Older devices require the "implicit" synchronization provided // by glEGLImageTargetTexture2DOES, which this method calls. Newer // devices will either call this in Layer::onDraw, or (if it's not // a GL-composited layer) not at all. status_t err = bindTextureImage(); if (err != NO_ERROR) { mFlinger->mTimeStats->onDestroy(layerID); return BAD_VALUE; } } mFlinger->mTimeStats->setAcquireFence(layerID, getFrameNumber(), getCurrentFenceTime()); mFlinger->mTimeStats->setLatchTime(layerID, getFrameNumber(), latchTime); mCurrentStateModified = false; return NO_ERROR; } status_t BufferStateLayer::updateActiveBuffer() { const State& s(getDrawingState()); if (s.buffer == nullptr) { return BAD_VALUE; } if (mActiveBuffer != nullptr) { // todo: get this to work with BufferStateLayerCache auto& engine(mFlinger->getRenderEngine()); engine.unbindExternalTextureBuffer(mActiveBuffer->getId()); } mActiveBuffer = s.buffer; mActiveBufferFence = s.acquireFence; auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; layerCompositionState.buffer = mActiveBuffer; layerCompositionState.bufferSlot = 0; return NO_ERROR; } status_t BufferStateLayer::updateFrameNumber(nsecs_t /*latchTime*/) { // TODO(marissaw): support frame history events mCurrentFrameNumber = mFrameNumber; return NO_ERROR; } void BufferStateLayer::setHwcLayerBuffer(const sp<const DisplayDevice>& display) { const auto outputLayer = findOutputLayerForDisplay(display); LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc); auto& hwcInfo = *outputLayer->editState().hwc; auto& hwcLayer = hwcInfo.hwcLayer; const State& s(getDrawingState()); uint32_t hwcSlot; sp<GraphicBuffer> buffer; hwcInfo.hwcBufferCache.getHwcBuffer(mHwcSlotGenerator->getHwcCacheSlot(s.clientCacheId), s.buffer, &hwcSlot, &buffer); auto error = hwcLayer->setBuffer(hwcSlot, buffer, s.acquireFence); if (error != HWC2::Error::None) { ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), s.buffer->handle, to_string(error).c_str(), static_cast<int32_t>(error)); } mFrameNumber++; } void BufferStateLayer::onFirstRef() { BufferLayer::onFirstRef(); if (const auto display = mFlinger->getDefaultDisplayDevice()) { updateTransformHint(display); } } void BufferStateLayer::HwcSlotGenerator::bufferErased(const client_cache_t& clientCacheId) { std::lock_guard lock(mMutex); if (!clientCacheId.isValid()) { ALOGE("invalid process, failed to erase buffer"); return; } eraseBufferLocked(clientCacheId); } uint32_t BufferStateLayer::HwcSlotGenerator::getHwcCacheSlot(const client_cache_t& clientCacheId) { std::lock_guard<std::mutex> lock(mMutex); auto itr = mCachedBuffers.find(clientCacheId); if (itr == mCachedBuffers.end()) { return addCachedBuffer(clientCacheId); } auto& [hwcCacheSlot, counter] = itr->second; counter = mCounter++; return hwcCacheSlot; } uint32_t BufferStateLayer::HwcSlotGenerator::addCachedBuffer(const client_cache_t& clientCacheId) REQUIRES(mMutex) { if (!clientCacheId.isValid()) { ALOGE("invalid process, returning invalid slot"); return BufferQueue::INVALID_BUFFER_SLOT; } ClientCache::getInstance().registerErasedRecipient(clientCacheId, wp<ErasedRecipient>(this)); uint32_t hwcCacheSlot = getFreeHwcCacheSlot(); mCachedBuffers[clientCacheId] = {hwcCacheSlot, mCounter++}; return hwcCacheSlot; } uint32_t BufferStateLayer::HwcSlotGenerator::getFreeHwcCacheSlot() REQUIRES(mMutex) { if (mFreeHwcCacheSlots.empty()) { evictLeastRecentlyUsed(); } uint32_t hwcCacheSlot = mFreeHwcCacheSlots.top(); mFreeHwcCacheSlots.pop(); return hwcCacheSlot; } void BufferStateLayer::HwcSlotGenerator::evictLeastRecentlyUsed() REQUIRES(mMutex) { uint64_t minCounter = UINT_MAX; client_cache_t minClientCacheId = {}; for (const auto& [clientCacheId, slotCounter] : mCachedBuffers) { const auto& [hwcCacheSlot, counter] = slotCounter; if (counter < minCounter) { minCounter = counter; minClientCacheId = clientCacheId; } } eraseBufferLocked(minClientCacheId); ClientCache::getInstance().unregisterErasedRecipient(minClientCacheId, this); } void BufferStateLayer::HwcSlotGenerator::eraseBufferLocked(const client_cache_t& clientCacheId) REQUIRES(mMutex) { auto itr = mCachedBuffers.find(clientCacheId); if (itr == mCachedBuffers.end()) { return; } auto& [hwcCacheSlot, counter] = itr->second; // TODO send to hwc cache and resources mFreeHwcCacheSlots.push(hwcCacheSlot); mCachedBuffers.erase(clientCacheId); } } // namespace android