#include <binder/Binder.h> #include <binder/IBinder.h> #include <binder/IPCThreadState.h> #include <binder/IServiceManager.h> #include <string> #include <cstring> #include <cstdlib> #include <cstdio> #include <iostream> #include <vector> #include <tuple> #include <unistd.h> #include <sys/wait.h> using namespace std; using namespace android; enum BinderWorkerServiceCode { BINDER_NOP = IBinder::FIRST_CALL_TRANSACTION, }; #define ASSERT_TRUE(cond) \ do { \ if (!(cond)) {\ cerr << __func__ << ":" << __LINE__ << " condition:" << #cond << " failed\n" << endl; \ exit(EXIT_FAILURE); \ } \ } while (0) class BinderWorkerService : public BBinder { public: BinderWorkerService() {} ~BinderWorkerService() {} virtual status_t onTransact(uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0) { (void)flags; (void)data; (void)reply; switch (code) { case BINDER_NOP: return NO_ERROR; default: return UNKNOWN_TRANSACTION; }; } }; class Pipe { int m_readFd; int m_writeFd; Pipe(int readFd, int writeFd) : m_readFd{readFd}, m_writeFd{writeFd} {} Pipe(const Pipe &) = delete; Pipe& operator=(const Pipe &) = delete; Pipe& operator=(const Pipe &&) = delete; public: Pipe(Pipe&& rval) noexcept { m_readFd = rval.m_readFd; m_writeFd = rval.m_writeFd; rval.m_readFd = 0; rval.m_writeFd = 0; } ~Pipe() { if (m_readFd) close(m_readFd); if (m_writeFd) close(m_writeFd); } void signal() { bool val = true; int error = write(m_writeFd, &val, sizeof(val)); ASSERT_TRUE(error >= 0); }; void wait() { bool val = false; int error = read(m_readFd, &val, sizeof(val)); ASSERT_TRUE(error >= 0); } template <typename T> void send(const T& v) { int error = write(m_writeFd, &v, sizeof(T)); ASSERT_TRUE(error >= 0); } template <typename T> void recv(T& v) { int error = read(m_readFd, &v, sizeof(T)); ASSERT_TRUE(error >= 0); } static tuple<Pipe, Pipe> createPipePair() { int a[2]; int b[2]; int error1 = pipe(a); int error2 = pipe(b); ASSERT_TRUE(error1 >= 0); ASSERT_TRUE(error2 >= 0); return make_tuple(Pipe(a[0], b[1]), Pipe(b[0], a[1])); } }; static const uint32_t num_buckets = 128; static uint64_t max_time_bucket = 50ull * 1000000; static uint64_t time_per_bucket = max_time_bucket / num_buckets; struct ProcResults { uint64_t m_worst = 0; uint32_t m_buckets[num_buckets] = {0}; uint64_t m_transactions = 0; uint64_t m_long_transactions = 0; uint64_t m_total_time = 0; uint64_t m_best = max_time_bucket; void add_time(uint64_t time) { if (time > max_time_bucket) { m_long_transactions++; } m_buckets[min(time, max_time_bucket-1) / time_per_bucket] += 1; m_best = min(time, m_best); m_worst = max(time, m_worst); m_transactions += 1; m_total_time += time; } static ProcResults combine(const ProcResults& a, const ProcResults& b) { ProcResults ret; for (int i = 0; i < num_buckets; i++) { ret.m_buckets[i] = a.m_buckets[i] + b.m_buckets[i]; } ret.m_worst = max(a.m_worst, b.m_worst); ret.m_best = min(a.m_best, b.m_best); ret.m_transactions = a.m_transactions + b.m_transactions; ret.m_long_transactions = a.m_long_transactions + b.m_long_transactions; ret.m_total_time = a.m_total_time + b.m_total_time; return ret; } void dump() { if (m_long_transactions > 0) { cout << (double)m_long_transactions / m_transactions << "% of transactions took longer " "than estimated max latency. Consider setting -m to be higher than " << m_worst / 1000 << " microseconds" << endl; } double best = (double)m_best / 1.0E6; double worst = (double)m_worst / 1.0E6; double average = (double)m_total_time / m_transactions / 1.0E6; cout << "average:" << average << "ms worst:" << worst << "ms best:" << best << "ms" << endl; uint64_t cur_total = 0; float time_per_bucket_ms = time_per_bucket / 1.0E6; for (int i = 0; i < num_buckets; i++) { float cur_time = time_per_bucket_ms * i + 0.5f * time_per_bucket_ms; if ((cur_total < 0.5f * m_transactions) && (cur_total + m_buckets[i] >= 0.5f * m_transactions)) { cout << "50%: " << cur_time << " "; } if ((cur_total < 0.9f * m_transactions) && (cur_total + m_buckets[i] >= 0.9f * m_transactions)) { cout << "90%: " << cur_time << " "; } if ((cur_total < 0.95f * m_transactions) && (cur_total + m_buckets[i] >= 0.95f * m_transactions)) { cout << "95%: " << cur_time << " "; } if ((cur_total < 0.99f * m_transactions) && (cur_total + m_buckets[i] >= 0.99f * m_transactions)) { cout << "99%: " << cur_time << " "; } cur_total += m_buckets[i]; } cout << endl; } }; String16 generateServiceName(int num) { char num_str[32]; snprintf(num_str, sizeof(num_str), "%d", num); String16 serviceName = String16("binderWorker") + String16(num_str); return serviceName; } void worker_fx(int num, int worker_count, int iterations, int payload_size, bool cs_pair, Pipe p) { // Create BinderWorkerService and for go. ProcessState::self()->startThreadPool(); sp<IServiceManager> serviceMgr = defaultServiceManager(); sp<BinderWorkerService> service = new BinderWorkerService; serviceMgr->addService(generateServiceName(num), service); srand(num); p.signal(); p.wait(); // If client/server pairs, then half the workers are // servers and half are clients int server_count = cs_pair ? worker_count / 2 : worker_count; // Get references to other binder services. cout << "Created BinderWorker" << num << endl; (void)worker_count; vector<sp<IBinder> > workers; for (int i = 0; i < server_count; i++) { if (num == i) continue; workers.push_back(serviceMgr->getService(generateServiceName(i))); } // Run the benchmark if client ProcResults results; chrono::time_point<chrono::high_resolution_clock> start, end; for (int i = 0; (!cs_pair || num >= server_count) && i < iterations; i++) { Parcel data, reply; int target = cs_pair ? num % server_count : rand() % workers.size(); int sz = payload_size; while (sz >= sizeof(uint32_t)) { data.writeInt32(0); sz -= sizeof(uint32_t); } start = chrono::high_resolution_clock::now(); status_t ret = workers[target]->transact(BINDER_NOP, data, &reply); end = chrono::high_resolution_clock::now(); uint64_t cur_time = uint64_t(chrono::duration_cast<chrono::nanoseconds>(end - start).count()); results.add_time(cur_time); if (ret != NO_ERROR) { cout << "thread " << num << " failed " << ret << "i : " << i << endl; exit(EXIT_FAILURE); } } // Signal completion to master and wait. p.signal(); p.wait(); // Send results to master and wait for go to exit. p.send(results); p.wait(); exit(EXIT_SUCCESS); } Pipe make_worker(int num, int iterations, int worker_count, int payload_size, bool cs_pair) { auto pipe_pair = Pipe::createPipePair(); pid_t pid = fork(); if (pid) { /* parent */ return move(get<0>(pipe_pair)); } else { /* child */ worker_fx(num, worker_count, iterations, payload_size, cs_pair, move(get<1>(pipe_pair))); /* never get here */ return move(get<0>(pipe_pair)); } } void wait_all(vector<Pipe>& v) { for (int i = 0; i < v.size(); i++) { v[i].wait(); } } void signal_all(vector<Pipe>& v) { for (int i = 0; i < v.size(); i++) { v[i].signal(); } } void run_main(int iterations, int workers, int payload_size, int cs_pair, bool training_round=false) { vector<Pipe> pipes; // Create all the workers and wait for them to spawn. for (int i = 0; i < workers; i++) { pipes.push_back(make_worker(i, iterations, workers, payload_size, cs_pair)); } wait_all(pipes); // Run the workers and wait for completion. chrono::time_point<chrono::high_resolution_clock> start, end; cout << "waiting for workers to complete" << endl; start = chrono::high_resolution_clock::now(); signal_all(pipes); wait_all(pipes); end = chrono::high_resolution_clock::now(); // Calculate overall throughput. double iterations_per_sec = double(iterations * workers) / (chrono::duration_cast<chrono::nanoseconds>(end - start).count() / 1.0E9); cout << "iterations per sec: " << iterations_per_sec << endl; // Collect all results from the workers. cout << "collecting results" << endl; signal_all(pipes); ProcResults tot_results; for (int i = 0; i < workers; i++) { ProcResults tmp_results; pipes[i].recv(tmp_results); tot_results = ProcResults::combine(tot_results, tmp_results); } // Kill all the workers. cout << "killing workers" << endl; signal_all(pipes); for (int i = 0; i < workers; i++) { int status; wait(&status); if (status != 0) { cout << "nonzero child status" << status << endl; } } if (training_round) { // sets max_time_bucket to 2 * m_worst from the training round. // Also needs to adjust time_per_bucket accordingly. max_time_bucket = 2 * tot_results.m_worst; time_per_bucket = max_time_bucket / num_buckets; cout << "Max latency during training: " << tot_results.m_worst / 1.0E6 << "ms" << endl; } else { tot_results.dump(); } } int main(int argc, char *argv[]) { int workers = 2; int iterations = 10000; int payload_size = 0; bool cs_pair = false; bool training_round = false; (void)argc; (void)argv; // Parse arguments. for (int i = 1; i < argc; i++) { if (string(argv[i]) == "--help") { cout << "Usage: binderThroughputTest [OPTIONS]" << endl; cout << "\t-i N : Specify number of iterations." << endl; cout << "\t-m N : Specify expected max latency in microseconds." << endl; cout << "\t-p : Split workers into client/server pairs." << endl; cout << "\t-s N : Specify payload size." << endl; cout << "\t-t N : Run training round." << endl; cout << "\t-w N : Specify total number of workers." << endl; return 0; } if (string(argv[i]) == "-w") { workers = atoi(argv[i+1]); i++; continue; } if (string(argv[i]) == "-i") { iterations = atoi(argv[i+1]); i++; continue; } if (string(argv[i]) == "-s") { payload_size = atoi(argv[i+1]); i++; } if (string(argv[i]) == "-p") { // client/server pairs instead of spreading // requests to all workers. If true, half // the workers become clients and half servers cs_pair = true; } if (string(argv[i]) == "-t") { // Run one training round before actually collecting data // to get an approximation of max latency. training_round = true; } if (string(argv[i]) == "-m") { // Caller specified the max latency in microseconds. // No need to run training round in this case. if (atoi(argv[i+1]) > 0) { max_time_bucket = strtoull(argv[i+1], (char **)nullptr, 10) * 1000; time_per_bucket = max_time_bucket / num_buckets; i++; } else { cout << "Max latency -m must be positive." << endl; exit(EXIT_FAILURE); } } } if (training_round) { cout << "Start training round" << endl; run_main(iterations, workers, payload_size, cs_pair, training_round=true); cout << "Completed training round" << endl << endl; } run_main(iterations, workers, payload_size, cs_pair); return 0; }