# # Copyright (C) 2018 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np num_values = 300 values = list(np.linspace(-10, 10, num_values)) for input_type in ["TENSOR_FLOAT32", "TENSOR_FLOAT16"]: for scale, offset in [(1.0, 0), (1.0, 1), (0.01, 120), (10.0, 120)]: input0 = Input("input0", input_type, "{%d}" % num_values) output0 = Output("output0", input_type, "{%d}" % num_values) model = Model().Operation("QUANTIZE", input0).To(output0) quantizeOutput = DataTypeConverter().Identify({ output0: ["TENSOR_QUANT8_ASYMM", scale, offset], }) Example({ input0: values, output0: values, }).AddVariations(quantizeOutput, includeDefault=False) # Zero-sized input # Use BOX_WITH_NMS_LIMIT op to generate a zero-sized internal tensor for box cooridnates. p1 = Parameter("scores", "TENSOR_FLOAT32", "{1, 2}", [0.90, 0.10]) # scores p2 = Parameter("roi", "TENSOR_FLOAT32", "{1, 8}", [1, 1, 10, 10, 0, 0, 10, 10]) # roi o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out tmp1 = Internal("roiOut", "TENSOR_FLOAT32", "{0, 4}") # roi out tmp2 = Internal("batchSplitOut", "TENSOR_INT32", "{0}") # batch split out model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, tmp1, o2, tmp2) # Use ROI_ALIGN op to convert into zero-sized feature map. layout = BoolScalar("layout", False) # NHWC i1 = Input("in", "TENSOR_FLOAT32", "{1, 1, 1, 1}") zero_sized = Internal("featureMap", "TENSOR_FLOAT32", "{0, 2, 2, 1}") model = model.Operation("ROI_ALIGN", i1, tmp1, tmp2, 2, 2, 2.0, 2.0, 4, 4, layout).To(zero_sized) # QUANTIZE op with numBatches = 0. o3 = Output("out", "TENSOR_QUANT8_ASYMM", "{0, 2, 2, 1}, 0.1f, 128") # out model = model.Operation("QUANTIZE", zero_sized).To(o3) # Create test case with dummy values. Example({ i1: [1], o1: [0], o2: [0], o3: [0], }).AddVariations("relaxed", "float16")