/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include <android/sharedmem.h> #include <gtest/gtest.h> #include <sys/mman.h> #include <future> #include <string> #ifndef NNTEST_ONLY_PUBLIC_API #include "NeuralNetworksExtensions.h" #include "TypeManager.h" #endif // This file tests all the validations done by the Neural Networks API. namespace { class ValidationTest : public ::testing::Test { protected: virtual void SetUp() {} }; class ValidationTestModel : public ValidationTest { protected: virtual void SetUp() { ValidationTest::SetUp(); ASSERT_EQ(ANeuralNetworksModel_create(&mModel), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksModel_free(mModel); ValidationTest::TearDown(); } uint32_t addScalarOperand(int32_t type = ANEURALNETWORKS_INT32) { ANeuralNetworksOperandType operandType = { .type = type, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &operandType), ANEURALNETWORKS_NO_ERROR); return mNumOperands++; } uint32_t addOperand(const ANeuralNetworksOperandType& operandType) { EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &operandType), ANEURALNETWORKS_NO_ERROR); return mNumOperands++; } uint32_t addTensorOperand(int32_t type = ANEURALNETWORKS_TENSOR_FLOAT32) { uint32_t dimensions[] = {2}; ANeuralNetworksOperandType operandType = { .type = type, .dimensionCount = sizeof(dimensions) / sizeof(dimensions[0]), .dimensions = dimensions, }; return addOperand(operandType); } void createModel() { addTensorOperand(); addTensorOperand(); addScalarOperand(); addTensorOperand(); uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_ADD, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); mNumOperations = 1; } uint32_t mNumOperands = 0; uint32_t mNumOperations = 0; ANeuralNetworksModel* mModel = nullptr; const uint32_t kDummyDimensionValue = 1; const ANeuralNetworksOperandType kInvalidTensorType1{ .type = ANEURALNETWORKS_TENSOR_FLOAT32, // dimensionCount must be consistent with dimensions. .dimensionCount = 1, .dimensions = nullptr, }; const ANeuralNetworksOperandType kInvalidTensorType2{ .type = ANEURALNETWORKS_TENSOR_FLOAT32, // dimensionCount must be consistent with dimensions. .dimensionCount = 0, .dimensions = &kDummyDimensionValue, }; }; #ifndef NNTEST_ONLY_PUBLIC_API constexpr const char* kTestExtensionName = "com.android.test_extension"; constexpr int32_t kTestExtensionTensorType = ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL; class ValidationTestModelExtensions : public ValidationTestModel { protected: virtual void SetUp() { ValidationTestModel::SetUp(); EXPECT_TRUE(::android::nn::TypeManager::get()->forTest_registerExtension({ .name = kTestExtensionName, .operandTypes = { { .type = kTestExtensionTensorType, .isTensor = true, .byteSize = 1, }, }, })); } virtual void TearDown() { ::android::nn::TypeManager::get()->forTest_reset(); ValidationTestModel::TearDown(); } int32_t getExtensionOperandType(uint16_t typeWithinExtension) { int32_t result; EXPECT_EQ(ANeuralNetworksModel_getExtensionOperandType(mModel, kTestExtensionName, typeWithinExtension, &result), ANEURALNETWORKS_NO_ERROR); return result; } }; #endif class ValidationTestIdentify : public ValidationTestModel { virtual void SetUp() { ValidationTestModel::SetUp(); uint32_t dimensions[]{1}; ANeuralNetworksOperandType tensorType{.type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; ANeuralNetworksOperandType scalarType{ .type = ANEURALNETWORKS_INT32, .dimensionCount = 0, .dimensions = nullptr}; ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &scalarType), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &tensorType), ANEURALNETWORKS_NO_ERROR); uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_ADD, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ValidationTestModel::TearDown(); } }; class ValidationTestCompilation : public ValidationTestModel { protected: virtual void SetUp() { ValidationTestModel::SetUp(); createModel(); ASSERT_EQ(ANeuralNetworksCompilation_create(mModel, &mCompilation), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksCompilation_free(mCompilation); ValidationTestModel::TearDown(); } ANeuralNetworksCompilation* mCompilation = nullptr; }; class ValidationTestExecution : public ValidationTestCompilation { protected: virtual void SetUp() { ValidationTestCompilation::SetUp(); ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksExecution_free(mExecution); ValidationTestCompilation::TearDown(); } ANeuralNetworksExecution* mExecution = nullptr; }; class ValidationTestBurst : public ValidationTestExecution { protected: virtual void SetUp() { ValidationTestExecution::SetUp(); ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &mBurst), ANEURALNETWORKS_NO_ERROR); } virtual void TearDown() { ANeuralNetworksBurst_free(mBurst); ValidationTestExecution::TearDown(); } ANeuralNetworksBurst* mBurst = nullptr; }; TEST_F(ValidationTest, CreateModel) { EXPECT_EQ(ANeuralNetworksModel_create(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestModel, AddOperand) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(nullptr, &floatType), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksOperandType quant8TypeInvalidScale{ .type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, .dimensionCount = 0, .dimensions = nullptr, // Scale has to be non-negative .scale = -1.0f, .zeroPoint = 0, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &quant8TypeInvalidScale), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksOperandType quant8TypeInvalidZeroPoint{ .type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, .dimensionCount = 0, .dimensions = nullptr, .scale = 1.0f, // zeroPoint has to be in [0, 255] .zeroPoint = -1, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &quant8TypeInvalidZeroPoint), ANEURALNETWORKS_BAD_DATA); const uint32_t dim = 2; ANeuralNetworksOperandType invalidScalarType{ .type = ANEURALNETWORKS_INT32, // a scalar type must have 0 dimensions. .dimensionCount = 1, .dimensions = &dim, }; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &invalidScalarType), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &kInvalidTensorType1), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &kInvalidTensorType2), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, SetOperandSymmPerChannelQuantParams) { const int32_t operandIndex = addTensorOperand(ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL); float scales[2] = {1.0, 2.0}; ANeuralNetworksSymmPerChannelQuantParams channelQuant = { .channelDim = 0, .scaleCount = 2, .scales = scales, }; EXPECT_EQ(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(nullptr, operandIndex, &channelQuant), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ( ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(mModel, operandIndex, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(mModel, operandIndex + 1, &channelQuant), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(mModel, operandIndex, &channelQuant), ANEURALNETWORKS_NO_ERROR); } #ifndef NNTEST_ONLY_PUBLIC_API TEST_F(ValidationTestModelExtensions, AddOperand_UnknownPrefix) { ANeuralNetworksOperandType type = {.type = -1}; ASSERT_EQ(ANeuralNetworksModel_addOperand(mModel, &type), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestModelExtensions, SetOperandSymmPerChannelQuantParams_ExtensionOperand) { const int32_t operandIndex = addTensorOperand(getExtensionOperandType(kTestExtensionTensorType)); float scales[2] = {1.0, 2.0}; ANeuralNetworksSymmPerChannelQuantParams channelQuant = { .channelDim = 0, .scaleCount = 2, .scales = scales, }; EXPECT_EQ(ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(mModel, operandIndex, &channelQuant), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestModelExtensions, SetOperandExtensionData) { const int32_t operandIndex = addTensorOperand(getExtensionOperandType(kTestExtensionTensorType)); const int32_t data = 42; const size_t dataLength = sizeof(data); EXPECT_EQ( ANeuralNetworksModel_setOperandExtensionData(nullptr, operandIndex, &data, dataLength), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ( ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex, nullptr, dataLength), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex, &data, 0), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex + 1, &data, dataLength), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex, &data, dataLength), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestModelExtensions, SetOperandExtensionData_Empty) { const int32_t operandIndex = addTensorOperand(getExtensionOperandType(kTestExtensionTensorType)); EXPECT_EQ(ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex, nullptr, 0), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestModelExtensions, SetOperandExtensionData_NonExtensionOperand) { const int32_t operandIndex = addTensorOperand(); const int32_t data = 42; const size_t dataLength = sizeof(data); EXPECT_EQ(ANeuralNetworksModel_setOperandExtensionData(mModel, operandIndex, &data, dataLength), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestModelExtensions, SetOperandValue_UnspecifiedDimension) { const uint32_t dimensions[2] = {3, 0}; ANeuralNetworksOperandType type = { .type = getExtensionOperandType(kTestExtensionTensorType), .dimensionCount = 2, .dimensions = dimensions, }; const int32_t operandIndex = addOperand(type); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, operandIndex, buffer, sizeof(buffer)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestModelExtensions, SetOperandValue_UnspecifiedRank) { ANeuralNetworksOperandType type = { .type = getExtensionOperandType(kTestExtensionTensorType), .dimensionCount = 0, .dimensions = nullptr, }; const int32_t operandIndex = addOperand(type); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, operandIndex, buffer, sizeof(buffer)), ANEURALNETWORKS_BAD_DATA); } #endif TEST_F(ValidationTestModel, SetOptionalOperand) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, nullptr, 0), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestModel, SetOperandValue) { ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_FLOAT32, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(nullptr, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, nullptr, sizeof(buffer)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since buffer is not the size of a float32. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_BAD_DATA); // This should succeed. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(float)), ANEURALNETWORKS_NO_ERROR); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 1, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(float)), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, SetOperandValueFromMemory) { uint32_t dimensions[]{1}; ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(nullptr, 0, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, -1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_STATE); // close memory close(memoryFd); } TEST_F(ValidationTestModel, SetOperandValueFromAHardwareBuffer) { uint32_t dimensions[]{1}; ANeuralNetworksOperandType quant8Type{.type = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM, .dimensionCount = 1, .dimensions = dimensions, .scale = 1.0, .zeroPoint = 0}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &quant8Type), ANEURALNETWORKS_NO_ERROR); AHardwareBuffer_Desc desc{ .width = 16, .height = 16, .layers = 1, .format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM, .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, }; AHardwareBuffer* buffer = nullptr; ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &memory), ANEURALNETWORKS_NO_ERROR); // This should fail, since non-BLOB AHardwareBuffer is not allowed. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, 0, sizeof(uint8_t)), ANEURALNETWORKS_UNMAPPABLE); AHardwareBuffer_release(buffer); } TEST_F(ValidationTestModel, SetOperandValueFromAHardwareBufferBlob) { uint32_t dimensions[]{1}; ANeuralNetworksOperandType floatType{ .type = ANEURALNETWORKS_TENSOR_FLOAT32, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &floatType), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; AHardwareBuffer_Desc desc{ .width = memorySize, .height = 1, .layers = 1, .format = AHARDWAREBUFFER_FORMAT_BLOB, .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, }; AHardwareBuffer* buffer = nullptr; ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &memory), ANEURALNETWORKS_NO_ERROR); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksModel_setOperandValueFromMemory(mModel, 0, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); AHardwareBuffer_release(buffer); } TEST_F(ValidationTestModel, AddOEMOperand) { ANeuralNetworksOperandType OEMScalarType{ .type = ANEURALNETWORKS_OEM_SCALAR, .dimensionCount = 0, .dimensions = nullptr}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMScalarType), ANEURALNETWORKS_NO_ERROR); char buffer[20]; EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 0, buffer, sizeof(buffer)), ANEURALNETWORKS_NO_ERROR); const size_t kByteSizeOfOEMTensor = 4; uint32_t dimensions[]{kByteSizeOfOEMTensor}; ANeuralNetworksOperandType OEMTensorType{ .type = ANEURALNETWORKS_TENSOR_OEM_BYTE, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_setOperandValue(mModel, 1, buffer, kByteSizeOfOEMTensor), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, AddOperation) { uint32_t input = 0; uint32_t output = 0; EXPECT_EQ(ANeuralNetworksModel_addOperation(nullptr, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 0, nullptr, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); ANeuralNetworksOperationType invalidOp = -1; EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, invalidOp, 1, &input, 1, &output), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksModel_finish(mModel); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_AVERAGE_POOL_2D, 1, &input, 1, &output), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, IdentifyInputsAndOutputs) { uint32_t input = 0; uint32_t output = 0; EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(nullptr, 1, &input, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 0, nullptr, 1, &output), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 1, &input, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); createModel(); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 1, &input, 1, &output), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, RelaxComputationFloat32toFloat16) { EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(nullptr, true), ANEURALNETWORKS_UNEXPECTED_NULL); createModel(); // This should fail, as the model is already finished. EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, true), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksModel_relaxComputationFloat32toFloat16(mModel, false), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, Finish) { EXPECT_EQ(ANeuralNetworksModel_finish(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); createModel(); EXPECT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, EmptyModel) { // An empty model is invalid EXPECT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestModel, CreateCompilation) { ANeuralNetworksCompilation* compilation = nullptr; EXPECT_EQ(ANeuralNetworksCompilation_create(nullptr, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_create(mModel, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_create(mModel, &compilation), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestModel, CreateCompilationForDevices) { createModel(); uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); if (numDevices > 0) { ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(0, &device), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksCompilation* compilation = nullptr; EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(nullptr, &device, 1, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, &device, 1, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); // empty device list EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, &device, 0, &compilation), ANEURALNETWORKS_BAD_DATA); // duplicate devices in the list. ANeuralNetworksDevice* invalidDevices[2] = {device, device}; EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, invalidDevices, 2, &compilation), ANEURALNETWORKS_BAD_DATA); // nullptr in the list. invalidDevices[1] = nullptr; EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, invalidDevices, 2, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); } ANeuralNetworksCompilation* compilation = nullptr; EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(nullptr, nullptr, 1, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, nullptr, 1, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, nullptr, 1, &compilation), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestModel, GetSupportedOperationsForDevices) { createModel(); uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); bool supportedOps[20]; ASSERT_LE(mNumOperations, sizeof(supportedOps) / sizeof(supportedOps[0])); if (numDevices > 0) { ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(0, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(nullptr, &device, 1, supportedOps), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ( ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, &device, 1, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); // empty device list EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, &device, 0, supportedOps), ANEURALNETWORKS_BAD_DATA); // duplicate devices in the list. ANeuralNetworksDevice* invalidDevices[2] = {device, device}; EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, invalidDevices, 2, supportedOps), ANEURALNETWORKS_BAD_DATA); // nullptr in the list. invalidDevices[1] = nullptr; EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, invalidDevices, 2, supportedOps), ANEURALNETWORKS_UNEXPECTED_NULL); } EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(nullptr, nullptr, 1, supportedOps), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, nullptr, 1, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ( ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, nullptr, 1, supportedOps), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestIdentify, Ok) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); } TEST_F(ValidationTestIdentify, InputIsOutput) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[2]{3, 0}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 2, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, OutputIsInput) { uint32_t inList[4]{0, 1, 2, 3}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 4, inList, 1, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, DuplicateInputs) { uint32_t inList[4]{0, 1, 2, 0}; uint32_t outList[1]{3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 4, inList, 1, outList), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestIdentify, DuplicateOutputs) { uint32_t inList[3]{0, 1, 2}; uint32_t outList[2]{3, 3}; ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 3, inList, 2, outList), ANEURALNETWORKS_BAD_DATA); } // Also see TEST_F(ValidationTestCompilationForDevices_1, SetPreference) TEST_F(ValidationTestCompilation, SetPreference) { EXPECT_EQ(ANeuralNetworksCompilation_setPreference(nullptr, ANEURALNETWORKS_PREFER_LOW_POWER), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, 40), ANEURALNETWORKS_BAD_DATA); } // Also see TEST_F(ValidationTestCompilationForDevices_1, SetCaching) TEST_F(ValidationTestCompilation, SetCaching) { std::vector<uint8_t> token(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(nullptr, "/data/local/tmp", token.data()), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, nullptr, token.data()), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, "/data/local/tmp", nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } // Also see TEST_F(ValidationTestCompilationForDevices_1, CreateExecution) TEST_F(ValidationTestCompilation, CreateExecution) { ANeuralNetworksExecution* execution = nullptr; EXPECT_EQ(ANeuralNetworksExecution_create(nullptr, &execution), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_BAD_STATE); } // Also see TEST_F(ValidationTestCompilationForDevices_1, Finish) TEST_F(ValidationTestCompilation, Finish) { EXPECT_EQ(ANeuralNetworksCompilation_finish(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER), ANEURALNETWORKS_BAD_STATE); std::vector<uint8_t> token(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, "/data/local/tmp", token.data()), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_STATE); } // Also see TEST_F(ValidationTestCompilationForDevices_1, ExecutionTiming) // Also see TEST_F(ValidationTestCompilationForDevices_2, ExecutionTiming) TEST_F(ValidationTestCompilation, ExecutionTiming) { ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution* execution; ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); // Cannot setMeasureTiming() with Compilation rather than CompilationForDevices. EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, false), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, true), ANEURALNETWORKS_BAD_DATA); } // Also see TEST_F(ValidationTestCompilationForDevices_1, ExecutionTiming) TEST_F(ValidationTestCompilation, ExecutionUsability) { ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); enum class ExecutionType : uint32_t { ASYNC, SYNC, BURST }; for (auto executionType : {ExecutionType::ASYNC, ExecutionType::SYNC, ExecutionType::BURST}) { SCOPED_TRACE(static_cast<uint32_t>(executionType)); ANeuralNetworksExecution* execution; ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); float in0[] = {0.0f, 0.0f}, in1[] = {1.0f, 1.0f}, out0[2]; int in2 = 0; ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, &in0, sizeof(in0)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 1, nullptr, &in1, sizeof(in1)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 2, nullptr, &in2, sizeof(in2)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setOutput(execution, 0, nullptr, &out0, sizeof(out0)), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = std::max(sizeof(in0), sizeof(out0)); int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); auto testTooLate = [this, execution, &in0, &out0, memory] { // Try a bunch of things that are impermissible if the execution has started. // Set inputs and outputs. ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, &in0, sizeof(in0)), ANEURALNETWORKS_BAD_STATE); ASSERT_EQ( ANeuralNetworksExecution_setOutput(execution, 0, nullptr, &out0, sizeof(out0)), ANEURALNETWORKS_BAD_STATE); ASSERT_EQ(ANeuralNetworksExecution_setInputFromMemory(execution, 0, nullptr, memory, 0, sizeof(in0)), ANEURALNETWORKS_BAD_STATE); ASSERT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, 0, sizeof(out0)), ANEURALNETWORKS_BAD_STATE); // Reuse for asynchronous execution. { ANeuralNetworksEvent* event; ASSERT_EQ(ANeuralNetworksExecution_startCompute(execution, &event), ANEURALNETWORKS_BAD_STATE); } // Reuse for synchronous execution. ASSERT_EQ(ANeuralNetworksExecution_compute(execution), ANEURALNETWORKS_BAD_STATE); // Reuse for burst execution. { ANeuralNetworksBurst* burst; ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_burstCompute(execution, burst), ANEURALNETWORKS_BAD_STATE); ANeuralNetworksBurst_free(burst); } }; // Compute. switch (executionType) { case ExecutionType::ASYNC: { ANeuralNetworksEvent* event; ASSERT_EQ(ANeuralNetworksExecution_startCompute(execution, &event), ANEURALNETWORKS_NO_ERROR); testTooLate(); ASSERT_EQ(ANeuralNetworksEvent_wait(event), ANEURALNETWORKS_NO_ERROR); testTooLate(); ANeuralNetworksEvent_free(event); break; } case ExecutionType::SYNC: { ASSERT_EQ(ANeuralNetworksExecution_compute(execution), ANEURALNETWORKS_NO_ERROR); testTooLate(); break; } case ExecutionType::BURST: { ANeuralNetworksBurst* burst; ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_burstCompute(execution, burst), ANEURALNETWORKS_NO_ERROR); testTooLate(); ANeuralNetworksBurst_free(burst); break; } default: FAIL() << "Unreachable"; } } } TEST_F(ValidationTestExecution, SetInput) { char buffer[20]; EXPECT_EQ(ANeuralNetworksExecution_setInput(nullptr, 0, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, nullptr, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, buffer, 20), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 999, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, -1, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, &kInvalidTensorType1, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, &kInvalidTensorType2, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, SetOutput) { char buffer[20]; EXPECT_EQ(ANeuralNetworksExecution_setOutput(nullptr, 0, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, nullptr, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, buffer, 20), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 999, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, as this operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, -1, nullptr, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, &kInvalidTensorType1, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, &kInvalidTensorType2, buffer, sizeof(float)), ANEURALNETWORKS_BAD_DATA); } TEST_F(ValidationTestExecution, SetInputFromMemory) { const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(nullptr, 0, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 999, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, -1, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, &kInvalidTensorType1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, &kInvalidTensorType2, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // close memory close(memoryFd); } TEST_F(ValidationTestExecution, SetInputFromAHardwareBufferBlob) { const size_t memorySize = 20; AHardwareBuffer_Desc desc{ .width = memorySize, .height = 1, .layers = 1, .format = AHARDWAREBUFFER_FORMAT_BLOB, .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, }; AHardwareBuffer* buffer = nullptr; ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &memory), ANEURALNETWORKS_NO_ERROR); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, &kInvalidTensorType1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setInputFromMemory(mExecution, 0, &kInvalidTensorType2, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); AHardwareBuffer_release(buffer); } TEST_F(ValidationTestExecution, SetOutputFromMemory) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); const size_t memorySize = 20; int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(nullptr, 0, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, nullptr, 0, sizeof(float)), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 999, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, -1, nullptr, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, &kInvalidTensorType1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, &kInvalidTensorType2, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // close memory close(memoryFd); } TEST_F(ValidationTestExecution, SetOutputFromAHardwareBufferBlob) { const size_t memorySize = 20; AHardwareBuffer_Desc desc{ .width = memorySize, .height = 1, .layers = 1, .format = AHARDWAREBUFFER_FORMAT_BLOB, .usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, }; AHardwareBuffer* buffer = nullptr; ASSERT_EQ(AHardwareBuffer_allocate(&desc, &buffer), 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromAHardwareBuffer(buffer, &memory), ANEURALNETWORKS_NO_ERROR); // This should fail, since memory is not the size of a float32. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(mExecution, 0, nullptr, memory, 0, memorySize), ANEURALNETWORKS_BAD_DATA); // This should fail, since offset is larger than memorySize. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(mExecution, 0, nullptr, memory, memorySize + 1, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // This should fail, since requested size is larger than the memory. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(mExecution, 0, nullptr, memory, memorySize - 3, sizeof(float)), ANEURALNETWORKS_BAD_DATA); // These should fail, since the tensor types are invalid. EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(mExecution, 0, &kInvalidTensorType1, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(mExecution, 0, &kInvalidTensorType2, memory, 0, sizeof(float)), ANEURALNETWORKS_BAD_DATA); AHardwareBuffer_release(buffer); } TEST_F(ValidationTestExecution, Compute) { EXPECT_EQ(ANeuralNetworksExecution_compute(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestExecution, StartCompute) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksEvent* event; EXPECT_EQ(ANeuralNetworksExecution_startCompute(nullptr, &event), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_startCompute(execution, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestExecution, EventWait) { EXPECT_EQ(ANeuralNetworksEvent_wait(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestExecution, GetOutputOperandRankAndDimensions) { ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); float input0[] = {1.0f, 1.0f}, input1[] = {2.0f, 2.0f}, output0[2]; int32_t input2[] = {0}; EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, input0, sizeof(input0)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 1, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 2, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutput(execution, 0, nullptr, output0, sizeof(output0)), ANEURALNETWORKS_NO_ERROR); uint32_t rank, dims[4], expectedRank = 1, expectedDims = 2; // This should fail, since the execution has not yet started to compute. EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(execution, 0, &rank), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(execution, 0, dims), ANEURALNETWORKS_BAD_STATE); ANeuralNetworksEvent* event; EXPECT_EQ(ANeuralNetworksExecution_startCompute(execution, &event), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksEvent_wait(event), ANEURALNETWORKS_NO_ERROR); // This should fail, since unexpected nullptr. EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(nullptr, 0, &rank), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(nullptr, 0, dims), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(execution, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(execution, 0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); // This should fail, since the operand does not exist. EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(execution, -1, &rank), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(execution, 999, &rank), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(execution, -1, dims), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(execution, 999, dims), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandRank(execution, 0, &rank), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_getOutputOperandDimensions(execution, 0, dims), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(rank, expectedRank); EXPECT_EQ(dims[0], expectedDims); } TEST_F(ValidationTestBurst, BurstComputeNull) { EXPECT_EQ(ANeuralNetworksExecution_burstCompute(mExecution, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_burstCompute(nullptr, mBurst), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST_F(ValidationTestBurst, BurstComputeBadCompilation) { ANeuralNetworksCompilation* compilation; ASSERT_EQ(ANeuralNetworksCompilation_create(mModel, &compilation), ANEURALNETWORKS_NO_ERROR); // NOTE: ANeuralNetworksCompilation_finish not called ANeuralNetworksBurst* burst; EXPECT_EQ(ANeuralNetworksBurst_create(compilation, &burst), ANEURALNETWORKS_BAD_STATE); } TEST_F(ValidationTestBurst, BurstComputeDifferentCompilations) { ANeuralNetworksCompilation* secondCompilation; ASSERT_EQ(ANeuralNetworksCompilation_create(mModel, &secondCompilation), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksCompilation_finish(secondCompilation), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(secondCompilation, &execution), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_burstCompute(execution, mBurst), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksExecution_free(execution); ANeuralNetworksCompilation_free(secondCompilation); } TEST_F(ValidationTestBurst, BurstComputeConcurrent) { ANeuralNetworksExecution* secondExecution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &secondExecution), ANEURALNETWORKS_NO_ERROR); // set inputs of first execution float inputA0[] = {1.0f, 1.0f}, inputA1[] = {2.0f, 2.0f}, outputA0[2]; int32_t inputA2[] = {0}; EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, inputA0, sizeof(inputA0)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, inputA1, sizeof(inputA1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 2, nullptr, inputA2, sizeof(inputA2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ( ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, outputA0, sizeof(outputA0)), ANEURALNETWORKS_NO_ERROR); // set inputs of second execution float inputB0[] = {1.0f, 1.0f}, inputB1[] = {2.0f, 2.0f}, outputB0[2]; int32_t inputB2[] = {0}; EXPECT_EQ(ANeuralNetworksExecution_setInput(secondExecution, 0, nullptr, inputB0, sizeof(inputB0)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(secondExecution, 1, nullptr, inputB1, sizeof(inputB1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(secondExecution, 2, nullptr, inputB2, sizeof(inputB2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutput(secondExecution, 0, nullptr, outputB0, sizeof(outputB0)), ANEURALNETWORKS_NO_ERROR); // Execute on the same burst concurrently. At least one result must be // ANEURALNETWORKS_NO_ERROR. One may return ANEURALNETWORKS_BAD_STATE if the // other is already executing on the burst. auto first = std::async(std::launch::async, [this] { return ANeuralNetworksExecution_burstCompute(mExecution, mBurst); }); auto second = std::async(std::launch::async, [this, secondExecution] { return ANeuralNetworksExecution_burstCompute(secondExecution, mBurst); }); const int result1 = first.get(); const int result2 = second.get(); EXPECT_TRUE(result1 == ANEURALNETWORKS_BAD_STATE || result1 == ANEURALNETWORKS_NO_ERROR); EXPECT_TRUE(result2 == ANEURALNETWORKS_BAD_STATE || result2 == ANEURALNETWORKS_NO_ERROR); EXPECT_TRUE(result1 == ANEURALNETWORKS_NO_ERROR || result2 == ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution_free(secondExecution); } // The burst object maintains a local cache of memory objects. Because the burst // is intended to live for multiple executions, and because memory might be // created and freed for each execution, burst includes internal mechanisms to // purge memory objects from its cache that have been freed by the NNAPI client. // The following two test cases (FreeMemoryBeforeBurst and // FreeBurstBeforeMemory) ensure that this internal cleanup is tested in both // freeing orders. // // These two test cases explicitly create a new burst object and a new execution // object so that the order of freeing can be specified. If these tests instead // relied on the provided mExecution and mBurst, mBurst would always be freed // before mExecution. TEST_F(ValidationTestBurst, FreeMemoryBeforeBurst) { ANeuralNetworksBurst* burst; EXPECT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); // prepare data for execution float input0[] = {1.0f, 1.0f}, input1[] = {2.0f, 2.0f}, output0[2]; int32_t input2[] = {0}; const size_t memorySize = sizeof(output0); int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); // create and configure execution ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, input0, sizeof(input0)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 1, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 2, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, 0, sizeof(output0)), ANEURALNETWORKS_NO_ERROR); // preform execution to cache memory into burst EXPECT_EQ(ANeuralNetworksExecution_burstCompute(execution, burst), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution_free(execution); // free memory before burst ANeuralNetworksMemory_free(memory); ANeuralNetworksBurst_free(burst); // close memory close(memoryFd); } TEST_F(ValidationTestBurst, FreeBurstBeforeMemory) { ANeuralNetworksBurst* burst; EXPECT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); // prepare data for execution float input0[] = {1.0f, 1.0f}, input1[] = {2.0f, 2.0f}, output0[2]; int32_t input2[] = {0}; const size_t memorySize = sizeof(output0); int memoryFd = ASharedMemory_create("nnMemory", memorySize); ASSERT_GT(memoryFd, 0); ANeuralNetworksMemory* memory; EXPECT_EQ(ANeuralNetworksMemory_createFromFd(memorySize, PROT_READ | PROT_WRITE, memoryFd, 0, &memory), ANEURALNETWORKS_NO_ERROR); // create and configure execution ANeuralNetworksExecution* execution; EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, input0, sizeof(input0)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 1, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(execution, 2, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutputFromMemory(execution, 0, nullptr, memory, 0, sizeof(output0)), ANEURALNETWORKS_NO_ERROR); // preform execution to cache memory into burst EXPECT_EQ(ANeuralNetworksExecution_burstCompute(execution, burst), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution_free(execution); // free burst before memory ANeuralNetworksBurst_free(burst); ANeuralNetworksMemory_free(memory); // close memory close(memoryFd); } TEST(ValidationTestIntrospection, GetNumDevices) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworks_getDeviceCount(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST(ValidationTestIntrospection, GetDevice) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksDevice* device = nullptr; for (uint32_t i = 0; i < numDevices; i++) { SCOPED_TRACE(i); EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_NE(device, nullptr); } EXPECT_EQ(ANeuralNetworks_getDevice(0, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworks_getDevice(numDevices, &device), ANEURALNETWORKS_BAD_DATA); } static void deviceStringCheck(std::function<int(const ANeuralNetworksDevice*, const char**)> func) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); const char* buffer; for (uint32_t i = 0; i < numDevices; i++) { SCOPED_TRACE(i); ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(func(device, &buffer), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(func(device, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } EXPECT_EQ(func(nullptr, &buffer), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(func(nullptr, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST(ValidationTestIntrospection, DeviceGetName) { deviceStringCheck(ANeuralNetworksDevice_getName); } TEST(ValidationTestIntrospection, DeviceGetNameUnique) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); std::set<std::string> deviceNames; for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device = nullptr; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); const char* buffer = nullptr; EXPECT_EQ(ANeuralNetworksDevice_getName(device, &buffer), ANEURALNETWORKS_NO_ERROR); std::string name(buffer); EXPECT_EQ(deviceNames.count(name), (uint32_t)0); deviceNames.insert(name); } } TEST(ValidationTestIntrospection, DeviceGetVersion) { deviceStringCheck(ANeuralNetworksDevice_getVersion); } TEST(ValidationTestIntrospection, DeviceGetFeatureLevel) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); int64_t featureLevel; for (uint32_t i = 0; i < numDevices; i++) { SCOPED_TRACE(i); ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } EXPECT_EQ(ANeuralNetworksDevice_getFeatureLevel(nullptr, &featureLevel), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksDevice_getFeatureLevel(nullptr, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } TEST(ValidationTestIntrospection, DeviceGetType) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); int32_t validTypes[] = {ANEURALNETWORKS_DEVICE_UNKNOWN, ANEURALNETWORKS_DEVICE_OTHER, ANEURALNETWORKS_DEVICE_CPU, ANEURALNETWORKS_DEVICE_GPU, ANEURALNETWORKS_DEVICE_ACCELERATOR}; int32_t deviceType; for (uint32_t i = 0; i < numDevices; i++) { SCOPED_TRACE(i); // Initialize the deviceType to be an invalid type. deviceType = -1; ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksDevice_getType(device, &deviceType), ANEURALNETWORKS_NO_ERROR); EXPECT_TRUE(std::find(std::begin(validTypes), std::end(validTypes), deviceType) != std::end(validTypes)); EXPECT_EQ(ANeuralNetworksDevice_getType(device, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } EXPECT_EQ(ANeuralNetworksDevice_getType(nullptr, &deviceType), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksDevice_getType(nullptr, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } class ValidationTestCompilationForDevices_1 : public ValidationTestModel { protected: virtual void SetUp() override { ValidationTestModel::SetUp(); createModel(); uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); if (numDevices > 0) { EXPECT_EQ(ANeuralNetworks_getDevice(0, &mDevice), ANEURALNETWORKS_NO_ERROR); bool supported = false; ASSERT_EQ(mNumOperations, static_cast<uint32_t>(1)); EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, &mDevice, 1, &supported), ANEURALNETWORKS_NO_ERROR); if (supported) { ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, &mDevice, 1, &mCompilation), ANEURALNETWORKS_NO_ERROR); } } } virtual void TearDown() { ANeuralNetworksCompilation_free(mCompilation); ValidationTestModel::TearDown(); } ANeuralNetworksDevice* mDevice = nullptr; ANeuralNetworksCompilation* mCompilation = nullptr; }; // Also see TEST_F(ValidationTestCompilation, SetPreference) TEST_F(ValidationTestCompilationForDevices_1, SetPreference) { EXPECT_EQ(ANeuralNetworksCompilation_setPreference(nullptr, ANEURALNETWORKS_PREFER_LOW_POWER), ANEURALNETWORKS_UNEXPECTED_NULL); if (!mCompilation) { return; } EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, 40), ANEURALNETWORKS_BAD_DATA); } // Also see TEST_F(ValidationTestCompilation, SetCaching) TEST_F(ValidationTestCompilationForDevices_1, SetCaching) { std::vector<uint8_t> token(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(nullptr, "/data/local/tmp", token.data()), ANEURALNETWORKS_UNEXPECTED_NULL); if (!mCompilation) { return; } EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, nullptr, token.data()), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, "/data/local/tmp", nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); } // Also see TEST_F(ValidationTestCompilation, CreateExecution) TEST_F(ValidationTestCompilationForDevices_1, CreateExecution) { ANeuralNetworksExecution* execution = nullptr; EXPECT_EQ(ANeuralNetworksExecution_create(nullptr, &execution), ANEURALNETWORKS_UNEXPECTED_NULL); if (!mCompilation) { return; } EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_BAD_STATE); } // Also see TEST_F(ValidationTestCompilation, Finish) TEST_F(ValidationTestCompilationForDevices_1, Finish) { EXPECT_EQ(ANeuralNetworksCompilation_finish(nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); if (!mCompilation) { return; } EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksCompilation_setPreference(mCompilation, ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER), ANEURALNETWORKS_BAD_STATE); std::vector<uint8_t> token(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); EXPECT_EQ(ANeuralNetworksCompilation_setCaching(mCompilation, "/data/local/tmp", token.data()), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_BAD_STATE); } class ValidationTestCompilationForDevices_2 : public ValidationTestModel { protected: virtual void SetUp() override { ValidationTestModel::SetUp(); createModel(); uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); if (numDevices > 1) { EXPECT_EQ(ANeuralNetworks_getDevice(0, &mDevices[0]), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworks_getDevice(1, &mDevices[1]), ANEURALNETWORKS_NO_ERROR); bool supported = false; ASSERT_EQ(mNumOperations, static_cast<uint32_t>(1)); EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, mDevices, 2, &supported), ANEURALNETWORKS_NO_ERROR); if (supported) { ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, mDevices, 2, &mCompilation), ANEURALNETWORKS_NO_ERROR); } } } virtual void TearDown() { ANeuralNetworksCompilation_free(mCompilation); ValidationTestModel::TearDown(); } ANeuralNetworksDevice* mDevices[2] = {nullptr, nullptr}; ANeuralNetworksCompilation* mCompilation = nullptr; }; // Also see TEST_F(ValidationTestCompilation, ExecutionTiming) // Also see TEST_F(ValidationTestCompilationForDevices_1, ExecutionTiming) TEST_F(ValidationTestCompilationForDevices_2, ExecutionTiming) { if (!mCompilation) { return; } ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); ANeuralNetworksExecution* execution; ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); // Cannot setMeasureTiming() if there are two or more devices. EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, false), ANEURALNETWORKS_BAD_DATA); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, true), ANEURALNETWORKS_BAD_DATA); } class ValidationTestInvalidCompilation : public ValidationTestModel { protected: virtual void SetUp() override { ValidationTestModel::SetUp(); // Create a model with an OEM operation uint32_t dimensions[]{1}; ANeuralNetworksOperandType OEMTensorType{.type = ANEURALNETWORKS_TENSOR_OEM_BYTE, .dimensionCount = 1, .dimensions = dimensions}; EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksModel_addOperand(mModel, &OEMTensorType), ANEURALNETWORKS_NO_ERROR); uint32_t inList[1]{0}; uint32_t outList[1]{1}; ASSERT_EQ(ANeuralNetworksModel_addOperation(mModel, ANEURALNETWORKS_OEM_OPERATION, 1, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_identifyInputsAndOutputs(mModel, 1, inList, 1, outList), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksModel_finish(mModel), ANEURALNETWORKS_NO_ERROR); // Find a device that cannot handle OEM operation and create compilation on that uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); bool supported = false; EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(mModel, &device, 1, &supported), ANEURALNETWORKS_NO_ERROR); if (!supported) { ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel, &device, 1, &mInvalidCompilation), ANEURALNETWORKS_NO_ERROR); break; } } } virtual void TearDown() { ANeuralNetworksCompilation_free(mInvalidCompilation); ValidationTestModel::TearDown(); } ANeuralNetworksCompilation* mInvalidCompilation = nullptr; }; TEST_F(ValidationTestInvalidCompilation, CreateExecutionWithInvalidCompilation) { if (!mInvalidCompilation) { return; } ASSERT_EQ(ANeuralNetworksCompilation_finish(mInvalidCompilation), ANEURALNETWORKS_BAD_DATA); ANeuralNetworksExecution* execution = nullptr; EXPECT_EQ(ANeuralNetworksExecution_create(mInvalidCompilation, &execution), ANEURALNETWORKS_BAD_STATE); } // Also see TEST_F(ValidationTestCompilation, ExecutionTiming) // Also see TEST_F(ValidationTestCompilationForDevices_2, ExecutionTiming) // Also see TEST_F(ValidationTestCompilation, ExecutionUsability) TEST_F(ValidationTestCompilationForDevices_1, ExecutionTiming) { if (!mCompilation) { return; } ASSERT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); enum class ExecutionType : uint32_t { ASYNC, SYNC, BURST }; for (auto executionType : {ExecutionType::ASYNC, ExecutionType::SYNC, ExecutionType::BURST}) { SCOPED_TRACE(static_cast<uint32_t>(executionType)); ANeuralNetworksExecution* execution; ASSERT_EQ(ANeuralNetworksExecution_create(mCompilation, &execution), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(nullptr, false), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(nullptr, true), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, false), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, true), ANEURALNETWORKS_NO_ERROR); float in0[] = {0.0f, 0.0f}, in1[] = {1.0f, 1.0f}, out0[2]; int in2 = 0; ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 0, nullptr, &in0, sizeof(in0)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 1, nullptr, &in1, sizeof(in1)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setInput(execution, 2, nullptr, &in2, sizeof(in2)), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_setOutput(execution, 0, nullptr, &out0, sizeof(out0)), ANEURALNETWORKS_NO_ERROR); // Cannot getDuration until the execution has finished. uint64_t duration; EXPECT_EQ(ANeuralNetworksExecution_getDuration( execution, ANEURALNETWORKS_DURATION_ON_HARDWARE, &duration), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksExecution_getDuration( execution, ANEURALNETWORKS_DURATION_IN_DRIVER, &duration), ANEURALNETWORKS_BAD_STATE); auto testMeasureTooLate = [execution] { // Cannot setMeasureTiming if the execution has started. EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, false), ANEURALNETWORKS_BAD_STATE); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(execution, true), ANEURALNETWORKS_BAD_STATE); }; // Compute. switch (executionType) { case ExecutionType::ASYNC: { ANeuralNetworksEvent* event; ASSERT_EQ(ANeuralNetworksExecution_startCompute(execution, &event), ANEURALNETWORKS_NO_ERROR); testMeasureTooLate(); ASSERT_EQ(ANeuralNetworksEvent_wait(event), ANEURALNETWORKS_NO_ERROR); testMeasureTooLate(); ANeuralNetworksEvent_free(event); break; } case ExecutionType::SYNC: { ASSERT_EQ(ANeuralNetworksExecution_compute(execution), ANEURALNETWORKS_NO_ERROR); testMeasureTooLate(); break; } case ExecutionType::BURST: { ANeuralNetworksBurst* burst; ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksExecution_burstCompute(execution, burst), ANEURALNETWORKS_NO_ERROR); testMeasureTooLate(); ANeuralNetworksBurst_free(burst); break; } default: FAIL() << "Unreachable"; } auto testDuration = [](ANeuralNetworksExecution* e, int32_t durationCode, bool nullDuration) { SCOPED_TRACE(e); SCOPED_TRACE(durationCode); SCOPED_TRACE(nullDuration); // Strictly speaking, a duration COULD have this value, but it is // exceedingly unlikely. We'll use it as an initial value that we expect // to be modified by getDuration(). const uint64_t kBogusDuration = UINT64_MAX - 1; uint64_t duration = kBogusDuration; uint64_t* durationPtr = nullDuration ? nullptr : &duration; int expectedResultCode = ANEURALNETWORKS_NO_ERROR; if (e == nullptr | durationPtr == nullptr) { expectedResultCode = ANEURALNETWORKS_UNEXPECTED_NULL; } else if (durationCode < 0) { expectedResultCode = ANEURALNETWORKS_BAD_DATA; } EXPECT_EQ(ANeuralNetworksExecution_getDuration(e, durationCode, durationPtr), expectedResultCode); if (expectedResultCode == ANEURALNETWORKS_NO_ERROR) { EXPECT_NE(duration, kBogusDuration); } }; std::vector<ANeuralNetworksExecution*> executions = {nullptr, execution}; std::vector<int32_t> durationCodes = {-1, ANEURALNETWORKS_DURATION_ON_HARDWARE, ANEURALNETWORKS_DURATION_IN_DRIVER}; std::vector<bool> nullDurations = {false, true}; for (auto e : executions) { for (auto d : durationCodes) { for (auto n : nullDurations) { testDuration(e, d, n); } } } } } #ifndef NNTEST_ONLY_PUBLIC_API TEST(ValidationTestDevice, GetExtensionSupport) { bool result; EXPECT_EQ(ANeuralNetworksDevice_getExtensionSupport(nullptr, kTestExtensionName, &result), ANEURALNETWORKS_UNEXPECTED_NULL); uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); for (uint32_t i = 0; i < numDevices; i++) { SCOPED_TRACE(i); ANeuralNetworksDevice* device; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksDevice_getExtensionSupport(device, kTestExtensionName, nullptr), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksDevice_getExtensionSupport(device, nullptr, &result), ANEURALNETWORKS_UNEXPECTED_NULL); EXPECT_EQ(ANeuralNetworksDevice_getExtensionSupport(device, kTestExtensionName, &result), ANEURALNETWORKS_NO_ERROR); } } #endif } // namespace