/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "TestHarness.h" #include "TestNeuralNetworksWrapper.h" #include <gtest/gtest.h> #include <tuple> #include <vector> using namespace android::nn::test_wrapper; using namespace test_helper; namespace { const uint32_t INTENDED_SIZE = 3; const uint32_t OTHER_SIZE = 2; const uint32_t UNKNOWN_SIZE = 0; // We test three basic scenarios for each tensor dimension: // INTENDED_AT_COMPILE_AND_EXECUTE: set the dimension at compile // (addOperand) time to INTENDED_SIZE, use same size at execution // (setInput/setOutput) time. This should always work. // // INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE: set the dimension at compile // (addOperand) time to INTENDED_SIZE, give no size at execution time. // This should always work. // // UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE: don't set the dimension at // compile (addOperand) time, use INTENDED_SIZE at execute // (setInput/setOutput) time. Note for constants, this just means using an // unknown dimension at addOperand as there is no type parameter to // setOperandValue. This should work for inputs and outputs and give an // error for constants at compile time. // // UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE: don't set the dimension at compile // (addOperand) time, use OTHER_SIZE at execute (setInput/setOutput) time. // This should give an error at execute time (as the constant value will // have a different size). // // All relevant combinations of the basic scenarios are then iterated over in // TestAll. Note that we don't want to just use googletest's parametrized tests (TEST_P) as // the 16k combinations generated too many lines of output for the test // infrastructure to handle correctly. However, running all 16k in one test // makes the ASAN version take so long that the automatic test runner things the // command has become unresponsinve, so we split on the first level. enum class DimensionKind { INTENDED_AT_COMPILE_AND_EXECUTE, INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE, UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE, UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE }; typedef std::tuple<DimensionKind, DimensionKind> OperandParams; std::vector<DimensionKind> ioDimensionValues = { DimensionKind::INTENDED_AT_COMPILE_AND_EXECUTE, DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE, DimensionKind::UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE, DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE }; std::vector<DimensionKind> constantDimensionValues = { DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE, DimensionKind::UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE }; std::vector<OperandParams> Combine(const std::vector<DimensionKind>& firsts, const std::vector<DimensionKind>& seconds); auto ioValues = Combine(ioDimensionValues, ioDimensionValues); auto constantValues = Combine(constantDimensionValues, constantDimensionValues); class UnknownDimensionsTest : public ::testing::TestWithParam<OperandParams> { protected: template <class T, Type TensorType> void TestOne(const OperandParams& paramsForInput0, const OperandParams& paramsForInput1, const OperandParams& paramsForConst, const OperandParams& paramsForOutput); template <class T, Type TensorType> void TestAll(); template <typename T> void CompareResults(std::map<int, std::vector<T>>& expected, std::map<int, std::vector<T>>& actual); }; template <> void UnknownDimensionsTest::CompareResults<float>(std::map<int, std::vector<float>>& golden, std::map<int, std::vector<float>>& test) { size_t totalNumberOfErrors = 0; float fpAtol = 1e-5f, fpRtol = 1e-5f; compare_<float>(golden, test, [&totalNumberOfErrors, fpAtol, fpRtol](float expected, float actual) { // Compute the range based on both absolute tolerance and relative tolerance float fpRange = fpAtol + fpRtol * std::abs(expected); if (totalNumberOfErrors < gMaximumNumberOfErrorMessages) { EXPECT_NEAR(expected, actual, fpRange); } if (std::abs(expected - actual) > fpRange) { totalNumberOfErrors++; } }); EXPECT_EQ(size_t{0}, totalNumberOfErrors); } template <> void UnknownDimensionsTest::CompareResults<uint8_t>(std::map<int, std::vector<uint8_t>>& golden, std::map<int, std::vector<uint8_t>>& test) { size_t totalNumberOfErrors = 0; compare_<uint8_t>(golden, test, [&totalNumberOfErrors](uint8_t expected, uint8_t actual) { if (totalNumberOfErrors < gMaximumNumberOfErrorMessages) { EXPECT_NEAR(expected, actual, 1); } if (std::abs(expected - actual) > 1) { totalNumberOfErrors++; } }); EXPECT_EQ(size_t{0}, totalNumberOfErrors); } template <> void UnknownDimensionsTest::CompareResults<_Float16>(std::map<int, std::vector<_Float16>>& golden, std::map<int, std::vector<_Float16>>& test) { size_t totalNumberOfErrors = 0; float fpAtol = 5.0f * 0.0009765625f, fpRtol = 5.0f * 0.0009765625f; compare_<_Float16>(golden, test, [&totalNumberOfErrors, fpAtol, fpRtol](_Float16 expected, _Float16 actual) { // Compute the range based on both absolute tolerance and relative // tolerance float fpRange = fpAtol + fpRtol * std::abs(static_cast<float>(expected)); if (totalNumberOfErrors < gMaximumNumberOfErrorMessages) { EXPECT_NEAR(expected, actual, fpRange); } if (std::abs(static_cast<float>(expected - actual)) > fpRange) { totalNumberOfErrors++; } }); EXPECT_EQ(size_t{0}, totalNumberOfErrors); } template<class T, Type TensorType> void UnknownDimensionsTest::TestOne( const OperandParams& paramsForInput0, const OperandParams& paramsForInput1, const OperandParams& paramsForConst, const OperandParams& paramsForOutput) { typedef T IntendedMatrix[INTENDED_SIZE][INTENDED_SIZE]; static const IntendedMatrix ones = { { 1, 1, 1 }, { 1, 1, 1 }, { 1, 1, 1 } }; static const IntendedMatrix twos = { { 2, 2, 2 }, { 2, 2, 2 }, { 2, 2, 2 } }; static const IntendedMatrix fives = { { 5, 5, 5 }, { 5, 5, 5 }, { 5, 5, 5 } }; const float scale = TensorType == Type::TENSOR_QUANT8_ASYMM ? 1.f : 0.f; Model model; std::string input0Scope("Input 0:"), input1Scope("Input 1:"), constantScope("Constant:"), outputScope("Output:"); auto getDimForCompile = [](DimensionKind kind, std::string* scope) { switch (kind) { case DimensionKind::INTENDED_AT_COMPILE_AND_EXECUTE: if (scope) scope->append(" INTENDED_AT_COMPILE_AND_EXECUTE"); return INTENDED_SIZE; case DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE: if (scope) scope->append(" INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE"); return INTENDED_SIZE; case DimensionKind::UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE: if (scope) scope->append(" UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE"); return UNKNOWN_SIZE; case DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE: if (scope) scope->append(" UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE"); return UNKNOWN_SIZE; } }; auto addOperand = [&model, &getDimForCompile, scale](OperandParams params, std::string* scope = nullptr) { OperandType matrixTypeWithPotentiallyUnknownDims( TensorType, { getDimForCompile(std::get<0>(params), scope), getDimForCompile(std::get<1>(params), scope) }, scale); return model.addOperand(&matrixTypeWithPotentiallyUnknownDims); }; auto inputOpd0 = addOperand(paramsForInput0, &input0Scope); auto inputOpd1 = addOperand(paramsForInput1, &input1Scope); auto intermediateOpd0 = addOperand(OperandParams{ // Dimensions for intermediate operand actually deduced at execution time DimensionKind::UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE, DimensionKind::UNKNOWN_AT_COMPILE_INTENDED_AT_EXECUTE}); auto constantOpd0 = addOperand(paramsForConst, &constantScope); auto outputOpd0 = addOperand(paramsForOutput, &outputScope); // Make the gtest failure easier to read SCOPED_TRACE(input0Scope); SCOPED_TRACE(input1Scope); SCOPED_TRACE(constantScope); SCOPED_TRACE(outputScope); OperandType scalarType(Type::INT32, {}); int32_t activation(ANEURALNETWORKS_FUSED_NONE); auto activationOpd0 = model.addOperand(&scalarType); model.setOperandValue(activationOpd0, &activation, sizeof(activation)); model.setOperandValue(constantOpd0, twos, sizeof(twos)); model.addOperation(ANEURALNETWORKS_ADD, {inputOpd0, inputOpd1, activationOpd0}, {intermediateOpd0}); model.addOperation(ANEURALNETWORKS_ADD, {intermediateOpd0, constantOpd0, activationOpd0}, {outputOpd0}); model.identifyInputsAndOutputs({inputOpd0, inputOpd1}, {outputOpd0}); if (std::get<0>(paramsForConst) == DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE && std::get<1>(paramsForConst) == DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE) { ASSERT_TRUE(model.isValid()); ASSERT_EQ(model.finish(), Result::NO_ERROR); } else { ASSERT_FALSE(model.isValid()); // There is no contract (yet) for specific errors in NeuralNetworks.h, // so we just assert on not being successful. ASSERT_NE(model.finish(), Result::NO_ERROR); return; } Compilation compilation(&model); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); IntendedMatrix actual = { { 10, 10, 10 }, { 10, 10, 10 }, { 10, 10, 10 } }; Execution execution(&compilation); OperandType matrixTypeIntended(TensorType, {INTENDED_SIZE, INTENDED_SIZE}, scale); OperandType matrixTypeFirstOther(TensorType, {OTHER_SIZE, INTENDED_SIZE}, scale); OperandType matrixTypeSecondOther(TensorType, {INTENDED_SIZE, OTHER_SIZE}, scale); OperandType matrixTypeBothOther(TensorType, {OTHER_SIZE, OTHER_SIZE}, scale); bool allAreIntendedSizeAtExecution = true; // Helper to return appropriate "type" parameter to setInput/setOutput based // on OperandParams auto typeAtSet = [&](OperandParams params) { auto first = std::get<0>(params), second = std::get<1>(params); if (first == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE && second == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE) { allAreIntendedSizeAtExecution = false; return &matrixTypeBothOther.operandType; } else if (first == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE) { allAreIntendedSizeAtExecution = false; return &matrixTypeFirstOther.operandType; } else if (second == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE) { allAreIntendedSizeAtExecution = false; return &matrixTypeSecondOther.operandType; } else if (first == DimensionKind::INTENDED_AT_COMPILE_AND_EXECUTE && second == DimensionKind::INTENDED_AT_COMPILE_AND_EXECUTE) { return &matrixTypeIntended.operandType; } else if (first == DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE && second == DimensionKind::INTENDED_AT_COMPILE_NOT_SET_AT_EXECUTE) { return static_cast<ANeuralNetworksOperandType*>(nullptr); } else { return &matrixTypeIntended.operandType; } }; // Helper to return appropriate "size" parameter to setInput/setOutput based // on OperandParams auto sizeAtSet = [](OperandParams params) { auto first = std::get<0>(params), second = std::get<1>(params); size_t firstDim = (first == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE) ? OTHER_SIZE : INTENDED_SIZE; size_t secondDim = (second == DimensionKind::UNKNOWN_AT_COMPILE_OTHER_AT_EXECUTE) ? OTHER_SIZE : INTENDED_SIZE; return firstDim * secondDim * sizeof(fives[0][0]); }; ASSERT_EQ(execution.setInput(0, ones, sizeAtSet(paramsForInput0), typeAtSet(paramsForInput0)), Result::NO_ERROR); ASSERT_EQ(execution.setInput(1, twos, sizeAtSet(paramsForInput1), typeAtSet(paramsForInput1)), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, actual, sizeAtSet(paramsForOutput), typeAtSet(paramsForOutput)), Result::NO_ERROR); if (allAreIntendedSizeAtExecution) { ASSERT_EQ(execution.compute(), Result::NO_ERROR); } else { // There is no contract (yet) for specific errors in NeuralNetworks.h, // so we just assert on not being successful. ASSERT_NE(execution.compute(), Result::NO_ERROR); return; } typedef std::vector<T> vec; typedef std::map<int, vec> Operands; constexpr size_t count = sizeof(fives) / sizeof(fives[0][0]); Operands expected_opds{{0, vec{&fives[0][0], &fives[0][0] + count}}}; Operands actual_opds{{0, vec{&actual[0][0], &actual[0][0] + count}}}; CompareResults(expected_opds, actual_opds); } std::vector<OperandParams> Combine(const std::vector<DimensionKind>& firsts, const std::vector<DimensionKind>& seconds) { std::vector<OperandParams> ret; for (auto first: firsts) { for (auto second: seconds) { ret.push_back({first, second}); } } return ret; } template<class T, Type TensorType> void UnknownDimensionsTest::TestAll() { const OperandParams paramsForInput0 = GetParam(); for (auto paramsForInput1: ioValues) { for (auto paramsForConst: constantValues) { for (auto paramsForOutput: ioValues) { TestOne<T, TensorType>(paramsForInput0, paramsForInput1, paramsForConst, paramsForOutput); } } } } TEST_P(UnknownDimensionsTest, Float) { TestAll<float, Type::TENSOR_FLOAT32>(); } TEST_P(UnknownDimensionsTest, Quantized) { TestAll<uint8_t, Type::TENSOR_QUANT8_ASYMM>(); } TEST_P(UnknownDimensionsTest, Float16) { TestAll<_Float16, Type::TENSOR_FLOAT16>(); } INSTANTIATE_TEST_CASE_P(UnknownCombinationsTest, UnknownDimensionsTest, ::testing::ValuesIn(ioValues)); } // end namespace