/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "TestNeuralNetworksWrapper.h" //#include <android-base/logging.h> #include <gtest/gtest.h> using namespace android::nn::test_wrapper; namespace { typedef float Matrix3x4[3][4]; typedef float Matrix4[4]; class TrivialTest : public ::testing::Test { protected: virtual void SetUp() {} const Matrix3x4 matrix1 = {{1.f, 2.f, 3.f, 4.f}, {5.f, 6.f, 7.f, 8.f}, {9.f, 10.f, 11.f, 12.f}}; const Matrix3x4 matrix2 = {{100.f, 200.f, 300.f, 400.f}, {500.f, 600.f, 700.f, 800.f}, {900.f, 1000.f, 1100.f, 1200.f}}; const Matrix4 matrix2b = {100.f, 200.f, 300.f, 400.f}; const Matrix3x4 matrix3 = {{20.f, 30.f, 40.f, 50.f}, {21.f, 22.f, 23.f, 24.f}, {31.f, 32.f, 33.f, 34.f}}; const Matrix3x4 expected2 = {{101.f, 202.f, 303.f, 404.f}, {505.f, 606.f, 707.f, 808.f}, {909.f, 1010.f, 1111.f, 1212.f}}; const Matrix3x4 expected2b = {{101.f, 202.f, 303.f, 404.f}, {105.f, 206.f, 307.f, 408.f}, {109.f, 210.f, 311.f, 412.f}}; const Matrix3x4 expected2c = {{100.f, 400.f, 900.f, 1600.f}, {500.f, 1200.f, 2100.f, 3200.f}, {900.f, 2000.f, 3300.f, 4800.f}}; const Matrix3x4 expected3 = {{121.f, 232.f, 343.f, 454.f}, {526.f, 628.f, 730.f, 832.f}, {940.f, 1042.f, 1144.f, 1246.f}}; const Matrix3x4 expected3b = {{22.f, 34.f, 46.f, 58.f}, {31.f, 34.f, 37.f, 40.f}, {49.f, 52.f, 55.f, 58.f}}; }; // Create a model that can add two tensors using a one node graph. void CreateAddTwoTensorModel(Model* model) { OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4}); OperandType scalarType(Type::INT32, {}); int32_t activation(ANEURALNETWORKS_FUSED_NONE); auto a = model->addOperand(&matrixType); auto b = model->addOperand(&matrixType); auto c = model->addOperand(&matrixType); auto d = model->addOperand(&scalarType); model->setOperandValue(d, &activation, sizeof(activation)); model->addOperation(ANEURALNETWORKS_ADD, {a, b, d}, {c}); model->identifyInputsAndOutputs({a, b}, {c}); ASSERT_TRUE(model->isValid()); model->finish(); } // Create a model that can add three tensors using a two node graph, // with one tensor set as part of the model. void CreateAddThreeTensorModel(Model* model, const Matrix3x4 bias) { OperandType matrixType(Type::TENSOR_FLOAT32, {3, 4}); OperandType scalarType(Type::INT32, {}); int32_t activation(ANEURALNETWORKS_FUSED_NONE); auto a = model->addOperand(&matrixType); auto b = model->addOperand(&matrixType); auto c = model->addOperand(&matrixType); auto d = model->addOperand(&matrixType); auto e = model->addOperand(&matrixType); auto f = model->addOperand(&scalarType); model->setOperandValue(e, bias, sizeof(Matrix3x4)); model->setOperandValue(f, &activation, sizeof(activation)); model->addOperation(ANEURALNETWORKS_ADD, {a, c, f}, {b}); model->addOperation(ANEURALNETWORKS_ADD, {b, e, f}, {d}); model->identifyInputsAndOutputs({c, a}, {d}); ASSERT_TRUE(model->isValid()); model->finish(); } // Check that the values are the same. This works only if dealing with integer // value, otherwise we should accept values that are similar if not exact. int CompareMatrices(const Matrix3x4& expected, const Matrix3x4& actual) { int errors = 0; for (int i = 0; i < 3; i++) { for (int j = 0; j < 4; j++) { if (expected[i][j] != actual[i][j]) { printf("expected[%d][%d] != actual[%d][%d], %f != %f\n", i, j, i, j, static_cast<double>(expected[i][j]), static_cast<double>(actual[i][j])); errors++; } } } return errors; } TEST_F(TrivialTest, AddTwo) { Model modelAdd2; CreateAddTwoTensorModel(&modelAdd2); // Test the one node model. Matrix3x4 actual; memset(&actual, 0, sizeof(actual)); Compilation compilation(&modelAdd2); compilation.finish(); Execution execution(&compilation); ASSERT_EQ(execution.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.setInput(1, matrix2, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.compute(), Result::NO_ERROR); ASSERT_EQ(CompareMatrices(expected2, actual), 0); } TEST_F(TrivialTest, AddThree) { Model modelAdd3; CreateAddThreeTensorModel(&modelAdd3, matrix3); // Test the three node model. Matrix3x4 actual; memset(&actual, 0, sizeof(actual)); Compilation compilation2(&modelAdd3); compilation2.finish(); Execution execution2(&compilation2); ASSERT_EQ(execution2.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution2.setInput(1, matrix2, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution2.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution2.compute(), Result::NO_ERROR); ASSERT_EQ(CompareMatrices(expected3, actual), 0); // Test it a second time to make sure the model is reusable. memset(&actual, 0, sizeof(actual)); Compilation compilation3(&modelAdd3); compilation3.finish(); Execution execution3(&compilation3); ASSERT_EQ(execution3.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution3.setInput(1, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution3.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution3.compute(), Result::NO_ERROR); ASSERT_EQ(CompareMatrices(expected3b, actual), 0); } TEST_F(TrivialTest, BroadcastAddTwo) { Model modelBroadcastAdd2; // activation: NONE. int32_t activation_init[] = {ANEURALNETWORKS_FUSED_NONE}; OperandType scalarType(Type::INT32, {}); auto activation = modelBroadcastAdd2.addOperand(&scalarType); modelBroadcastAdd2.setOperandValue(activation, activation_init, sizeof(int32_t) * 1); OperandType matrixType(Type::TENSOR_FLOAT32, {1, 1, 3, 4}); OperandType matrixType2(Type::TENSOR_FLOAT32, {4}); auto a = modelBroadcastAdd2.addOperand(&matrixType); auto b = modelBroadcastAdd2.addOperand(&matrixType2); auto c = modelBroadcastAdd2.addOperand(&matrixType); modelBroadcastAdd2.addOperation(ANEURALNETWORKS_ADD, {a, b, activation}, {c}); modelBroadcastAdd2.identifyInputsAndOutputs({a, b}, {c}); ASSERT_TRUE(modelBroadcastAdd2.isValid()); modelBroadcastAdd2.finish(); // Test the one node model. Matrix3x4 actual; memset(&actual, 0, sizeof(actual)); Compilation compilation(&modelBroadcastAdd2); compilation.finish(); Execution execution(&compilation); ASSERT_EQ(execution.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.setInput(1, matrix2b, sizeof(Matrix4)), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.compute(), Result::NO_ERROR); ASSERT_EQ(CompareMatrices(expected2b, actual), 0); } TEST_F(TrivialTest, BroadcastMulTwo) { Model modelBroadcastMul2; // activation: NONE. int32_t activation_init[] = {ANEURALNETWORKS_FUSED_NONE}; OperandType scalarType(Type::INT32, {}); auto activation = modelBroadcastMul2.addOperand(&scalarType); modelBroadcastMul2.setOperandValue(activation, activation_init, sizeof(int32_t) * 1); OperandType matrixType(Type::TENSOR_FLOAT32, {1, 1, 3, 4}); OperandType matrixType2(Type::TENSOR_FLOAT32, {4}); auto a = modelBroadcastMul2.addOperand(&matrixType); auto b = modelBroadcastMul2.addOperand(&matrixType2); auto c = modelBroadcastMul2.addOperand(&matrixType); modelBroadcastMul2.addOperation(ANEURALNETWORKS_MUL, {a, b, activation}, {c}); modelBroadcastMul2.identifyInputsAndOutputs({a, b}, {c}); ASSERT_TRUE(modelBroadcastMul2.isValid()); modelBroadcastMul2.finish(); // Test the one node model. Matrix3x4 actual; memset(&actual, 0, sizeof(actual)); Compilation compilation(&modelBroadcastMul2); compilation.finish(); Execution execution(&compilation); ASSERT_EQ(execution.setInput(0, matrix1, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.setInput(1, matrix2b, sizeof(Matrix4)), Result::NO_ERROR); ASSERT_EQ(execution.setOutput(0, actual, sizeof(Matrix3x4)), Result::NO_ERROR); ASSERT_EQ(execution.compute(), Result::NO_ERROR); ASSERT_EQ(CompareMatrices(expected2c, actual), 0); } } // end namespace