/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Provides C++ classes to more easily use the Neural Networks API. // TODO(b/117845862): this should be auto generated from NeuralNetworksWrapper.h. #ifndef ANDROID_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H #define ANDROID_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H #include "NeuralNetworks.h" #include "NeuralNetworksWrapper.h" #include "NeuralNetworksWrapperExtensions.h" #include <math.h> #include <optional> #include <string> #include <vector> namespace android { namespace nn { namespace test_wrapper { using wrapper::Event; using wrapper::ExecutePreference; using wrapper::ExtensionModel; using wrapper::ExtensionOperandParams; using wrapper::ExtensionOperandType; using wrapper::Memory; using wrapper::Model; using wrapper::OperandType; using wrapper::Result; using wrapper::SymmPerChannelQuantParams; using wrapper::Type; class Compilation { public: Compilation(const Model* model) { int result = ANeuralNetworksCompilation_create(model->getHandle(), &mCompilation); if (result != 0) { // TODO Handle the error } } Compilation() {} ~Compilation() { ANeuralNetworksCompilation_free(mCompilation); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Compilation(const Compilation&) = delete; Compilation& operator=(const Compilation&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Compilation(Compilation&& other) { *this = std::move(other); } Compilation& operator=(Compilation&& other) { if (this != &other) { ANeuralNetworksCompilation_free(mCompilation); mCompilation = other.mCompilation; other.mCompilation = nullptr; } return *this; } Result setPreference(ExecutePreference preference) { return static_cast<Result>(ANeuralNetworksCompilation_setPreference( mCompilation, static_cast<int32_t>(preference))); } Result setCaching(const std::string& cacheDir, const std::vector<uint8_t>& token) { if (token.size() != ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN) { return Result::BAD_DATA; } return static_cast<Result>(ANeuralNetworksCompilation_setCaching( mCompilation, cacheDir.c_str(), token.data())); } Result finish() { return static_cast<Result>(ANeuralNetworksCompilation_finish(mCompilation)); } ANeuralNetworksCompilation* getHandle() const { return mCompilation; } protected: ANeuralNetworksCompilation* mCompilation = nullptr; }; class Execution { public: Execution(const Compilation* compilation) : mCompilation(compilation->getHandle()) { int result = ANeuralNetworksExecution_create(compilation->getHandle(), &mExecution); if (result != 0) { // TODO Handle the error } } ~Execution() { ANeuralNetworksExecution_free(mExecution); } // Disallow copy semantics to ensure the runtime object can only be freed // once. Copy semantics could be enabled if some sort of reference counting // or deep-copy system for runtime objects is added later. Execution(const Execution&) = delete; Execution& operator=(const Execution&) = delete; // Move semantics to remove access to the runtime object from the wrapper // object that is being moved. This ensures the runtime object will be // freed only once. Execution(Execution&& other) { *this = std::move(other); } Execution& operator=(Execution&& other) { if (this != &other) { ANeuralNetworksExecution_free(mExecution); mCompilation = other.mCompilation; other.mCompilation = nullptr; mExecution = other.mExecution; other.mExecution = nullptr; } return *this; } Result setInput(uint32_t index, const void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>( ANeuralNetworksExecution_setInput(mExecution, index, type, buffer, length)); } Result setInputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>(ANeuralNetworksExecution_setInputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result setOutput(uint32_t index, void* buffer, size_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>( ANeuralNetworksExecution_setOutput(mExecution, index, type, buffer, length)); } Result setOutputFromMemory(uint32_t index, const Memory* memory, uint32_t offset, uint32_t length, const ANeuralNetworksOperandType* type = nullptr) { return static_cast<Result>(ANeuralNetworksExecution_setOutputFromMemory( mExecution, index, type, memory->get(), offset, length)); } Result startCompute(Event* event) { ANeuralNetworksEvent* ev = nullptr; Result result = static_cast<Result>(ANeuralNetworksExecution_startCompute(mExecution, &ev)); event->set(ev); return result; } Result compute() { switch (mComputeMode) { case ComputeMode::SYNC: { return static_cast<Result>(ANeuralNetworksExecution_compute(mExecution)); } case ComputeMode::ASYNC: { ANeuralNetworksEvent* event = nullptr; Result result = static_cast<Result>( ANeuralNetworksExecution_startCompute(mExecution, &event)); if (result != Result::NO_ERROR) { return result; } // TODO how to manage the lifetime of events when multiple waiters is not // clear. result = static_cast<Result>(ANeuralNetworksEvent_wait(event)); ANeuralNetworksEvent_free(event); return result; } case ComputeMode::BURST: { ANeuralNetworksBurst* burst = nullptr; Result result = static_cast<Result>(ANeuralNetworksBurst_create(mCompilation, &burst)); if (result != Result::NO_ERROR) { return result; } result = static_cast<Result>( ANeuralNetworksExecution_burstCompute(mExecution, burst)); ANeuralNetworksBurst_free(burst); return result; } } return Result::BAD_DATA; } // By default, compute() uses the synchronous API. setComputeMode() can be // used to change the behavior of compute() to either: // - use the asynchronous API and then wait for computation to complete // or // - use the burst API // Returns the previous ComputeMode. enum class ComputeMode { SYNC, ASYNC, BURST }; static ComputeMode setComputeMode(ComputeMode mode) { ComputeMode oldComputeMode = mComputeMode; mComputeMode = mode; return oldComputeMode; } Result getOutputOperandDimensions(uint32_t index, std::vector<uint32_t>* dimensions) { uint32_t rank = 0; Result result = static_cast<Result>( ANeuralNetworksExecution_getOutputOperandRank(mExecution, index, &rank)); dimensions->resize(rank); if ((result != Result::NO_ERROR && result != Result::OUTPUT_INSUFFICIENT_SIZE) || rank == 0) { return result; } result = static_cast<Result>(ANeuralNetworksExecution_getOutputOperandDimensions( mExecution, index, dimensions->data())); return result; } private: ANeuralNetworksCompilation* mCompilation = nullptr; ANeuralNetworksExecution* mExecution = nullptr; // Initialized to ComputeMode::SYNC in TestNeuralNetworksWrapper.cpp. static ComputeMode mComputeMode; }; } // namespace test_wrapper } // namespace nn } // namespace android #endif // ANDROID_ML_NN_RUNTIME_TEST_TEST_NEURAL_NETWORKS_WRAPPER_H