/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "CompilationBuilder.h" #include "ExecutionBurstServer.h" #include "HalInterfaces.h" #include "Manager.h" #include "NeuralNetworks.h" #include "NeuralNetworksOEM.h" #include "SampleDriver.h" #include "TestNeuralNetworksWrapper.h" #include "Utils.h" #include "ValidateHal.h" #include <gtest/gtest.h> #include <iterator> #include <map> #include <queue> #include <set> namespace { using namespace ::android; using CompilationBuilder = nn::CompilationBuilder; using Device = nn::Device; using DeviceManager = nn::DeviceManager; using ExecutePreference = nn::test_wrapper::ExecutePreference; using ExecutionBurstServer = nn::ExecutionBurstServer; using HidlModel = hardware::neuralnetworks::V1_2::Model; using HidlToken = hardware::hidl_array<uint8_t, ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN>; using PreparedModelCallback = hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback; using Result = nn::test_wrapper::Result; using SampleDriver = nn::sample_driver::SampleDriver; using SamplePreparedModel = nn::sample_driver::SamplePreparedModel; using WrapperModel = nn::test_wrapper::Model; using WrapperOperandType = nn::test_wrapper::OperandType; using WrapperType = nn::test_wrapper::Type; template <typename T> using MQDescriptorSync = hardware::MQDescriptorSync<T>; const Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX}; // This is an IDevice for testing purposes. The test driver has customized // getCapabilities_1_1 and getSupportedOperations_1_2. class TestDriver : public SampleDriver { public: TestDriver(const char* name, Capabilities capabilities, const std::vector<bool>& supportedOps) : SampleDriver(name), mCapabilities(capabilities), mSupportedOps(supportedOps) {} ~TestDriver() override {} Return<void> getCapabilities_1_2(getCapabilities_1_2_cb cb) override { cb(ErrorStatus::NONE, mCapabilities); return Void(); } Return<void> getSupportedOperations_1_2(const Model& model, getSupportedOperations_cb cb) override { if (!android::nn::validateModel(model)) { cb(ErrorStatus::INVALID_ARGUMENT, std::vector<bool>()); return Void(); } const size_t count = model.operations.size(); std::vector<bool> supported(count); std::transform( model.operations.begin(), model.operations.end(), supported.begin(), [this](Operation op) { return mSupportedOps[static_cast<int32_t>(op.type)]; }); cb(ErrorStatus::NONE, supported); return Void(); } private: Capabilities mCapabilities; std::vector<bool> mSupportedOps; }; class IntrospectionControlTest : public ::testing::Test { protected: virtual void SetUp() {} virtual void TearDown() { if (mEvent) { ANeuralNetworksEvent_free(mEvent); } if (mExecution) { ANeuralNetworksExecution_free(mExecution); } if (mCompilation) { ANeuralNetworksCompilation_free(mCompilation); } DeviceManager::get()->forTest_reInitializeDeviceList(); } struct DeviceSpecification { DeviceSpecification(const std::string& name, float perf, std::vector<bool>& supportedOps) : mName(name), mSupportedOps(supportedOps) { PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf}; mCapabilities = {.relaxedFloat32toFloat16PerformanceScalar = perfInfo, .relaxedFloat32toFloat16PerformanceTensor = perfInfo, .operandPerformance = nn::nonExtensionOperandPerformance(perfInfo)}; } std::string mName; Capabilities mCapabilities; std::vector<bool> mSupportedOps; }; // From a vector of DeviceSpecification, register new Devices. void registerDevices(std::vector<DeviceSpecification> specifications) { for (const auto& specification : specifications) { DeviceManager::get()->forTest_registerDevice( specification.mName.c_str(), new TestDriver(specification.mName.c_str(), specification.mCapabilities, specification.mSupportedOps)); } } bool selectDeviceByName(const std::string& name) { uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); EXPECT_GE(numDevices, (uint32_t)1); for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device = nullptr; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); const char* buffer = nullptr; int result = ANeuralNetworksDevice_getName(device, &buffer); if (result == ANEURALNETWORKS_NO_ERROR && name.compare(buffer) == 0) { mDevices.push_back(device); return true; } } return false; } bool isSupportedOpListExpected(const std::vector<bool>& expected) { const uint32_t kMaxNumberOperations = 256; EXPECT_LE(expected.size(), kMaxNumberOperations); ANeuralNetworksModel* modelHandle = mModel.getHandle(); bool supported[kMaxNumberOperations] = {false}; EXPECT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices( modelHandle, mDevices.data(), mDevices.size(), supported), ANEURALNETWORKS_NO_ERROR); return std::equal(expected.begin(), expected.end(), supported); } int prepareForExecution(bool measureTiming = false) { ANeuralNetworksModel* modelHandle = mModel.getHandle(); int result = ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(), mDevices.size(), &mCompilation); if (result != ANEURALNETWORKS_NO_ERROR) { return result; } EXPECT_EQ(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_create(mCompilation, &mExecution), ANEURALNETWORKS_NO_ERROR); if (measureTiming) { // Don't call setMeasureTiming unless we need to -- cannot call this // API unless there is exactly one device. EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), ANEURALNETWORKS_NO_ERROR); } return ANEURALNETWORKS_NO_ERROR; } std::vector<ANeuralNetworksDevice*> mDevices; ANeuralNetworksEvent* mEvent = nullptr; ANeuralNetworksExecution* mExecution = nullptr; ANeuralNetworksCompilation* mCompilation = nullptr; WrapperModel mModel; }; void createSimpleAddModel(WrapperModel* model) { WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2}); WrapperOperandType type1(WrapperType::INT32, {}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto op3 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(act_init)); model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); // Phase 3, inputs and outputs model->identifyInputsAndOutputs({op1, op2}, {op3}); model->finish(); ASSERT_TRUE(model->isValid()); } // This test verifies that a simple ADD model is able to run on a single device that claims being // able to handle all operations. TEST_F(IntrospectionControlTest, SimpleAddModel) { // This is needed before we have the CPU fallback path being treated as a Device. // TODO(miaowang): remove once b/72506261 is fixed. if (DeviceManager::get()->getUseCpuOnly()) { GTEST_SKIP(); } createSimpleAddModel(&mModel); std::string driverName = "test-all"; std::vector<bool> ops(android::nn::kNumberOfOperationTypes, true); registerDevices({{driverName, 0.9, ops}}); EXPECT_TRUE(selectDeviceByName(driverName)); EXPECT_TRUE(isSupportedOpListExpected({true})); EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR); // Verify that the mCompilation is actually using the "test-all" device. CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(mCompilation); const char* deviceNameBuffer = c->forTest_getExecutionPlan().forTest_simpleGetDevice()->getName(); EXPECT_TRUE(driverName.compare(deviceNameBuffer) == 0); float input1[2] = {1.0f, 2.0f}; float input2[2] = {3.0f, 4.0f}; float output[2]; EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(output[0], input1[0] + input2[0]); EXPECT_EQ(output[1], input1[1] + input2[1]); uint64_t timeOnHardware, timeInDriver; EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE, &timeOnHardware), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER, &timeInDriver), ANEURALNETWORKS_NO_ERROR); if (timeOnHardware != UINT64_MAX && timeInDriver != UINT64_MAX) { EXPECT_LE(timeOnHardware, timeInDriver); } } /*-- Begin timing tests -------------------------------------------------------------------------*/ namespace timing_tests { constexpr Timing kGoodTiming = {.timeOnDevice = 123, .timeInDriver = 456}; enum class DriverKind { CPU, OLD, // too old to support timing (1.1 or earlier) NEW // new enough to support timing (1.2 or later) }; std::ostream& operator<<(std::ostream& os, DriverKind kind) { const char* names[] = {"CPU", "OLD", "NEW"}; const uint32_t index = static_cast<uint32_t>(kind); CHECK(index < std::size(names)); return os << names[index]; } enum class Success { // ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::NONE and timing // SYNC, BURST: Return ErrorStatus::NONE and timing PASS_NEITHER, // timing = kBadTiming PASS_DEVICE, // timing = kGoodTiming.timeOnDevice, kBadTiming.timeInDriver PASS_DRIVER, // timing = kBadTiming.timeOnDevice, kGoodTiming.timeInDriver PASS_BOTH, // timing = kGoodTiming PASS_CPU, // timing = { kBadTiming.timeOnDevice or 0, kBadTiming.timeInDriver or 0 } // ASYNC: Return ErrorStatus::GENERAL_FAILURE; notify ErrorStatus::GENERAL_FAILURE and // kBadTiming // SYNC, BURST: Return ErrorStatus::GENERAL_FAILURE and kBadTiming FAIL_LAUNCH, // ASYNC: Return ErrorStatus::NONE; notify ErrorStatus::GENERAL_FAILURE and kBadTiming FAIL_WAIT }; std::ostream& operator<<(std::ostream& os, Success success) { const char* names[] = {"PASS_NEITHER", "PASS_DEVICE", "PASS_DRIVER", "PASS_BOTH", "PASS_CPU", "FAIL_LAUNCH", "FAIL_WAIT"}; const uint32_t index = static_cast<uint32_t>(success); CHECK(index < std::size(names)); return os << names[index]; } std::map<Success, Timing> expectedTimingMap = { {Success::PASS_NEITHER, kBadTiming}, {Success::PASS_DEVICE, {.timeOnDevice = kGoodTiming.timeOnDevice, .timeInDriver = kBadTiming.timeInDriver}}, {Success::PASS_DRIVER, {.timeOnDevice = kBadTiming.timeOnDevice, .timeInDriver = kGoodTiming.timeInDriver}}, {Success::PASS_BOTH, kGoodTiming}, {Success::FAIL_LAUNCH, kBadTiming}, {Success::FAIL_WAIT, kBadTiming}}; std::set<Success> expectedPassSet = {Success::PASS_NEITHER, Success::PASS_DEVICE, Success::PASS_DRIVER, Success::PASS_BOTH, Success::PASS_CPU}; enum class Compute { ASYNC, SYNC, BURST }; std::ostream& operator<<(std::ostream& os, Compute compute) { const char* names[] = {"ASYNC", "SYNC", "BURST"}; const uint32_t index = static_cast<uint32_t>(compute); CHECK(index < std::size(names)); return os << names[index]; } // For these tests we don't care about actually running an inference -- we // just want to dummy up execution status and timing results. class TestPreparedModel12 : public SamplePreparedModel { public: TestPreparedModel12(const HidlModel& model, const SampleDriver* driver, Success success) : SamplePreparedModel(model, driver), mSuccess(success) {} Return<ErrorStatus> execute(const Request&, const sp<V1_0::IExecutionCallback>& callback) override { switch (mSuccess) { case Success::PASS_NEITHER: callback->notify(ErrorStatus::NONE); return ErrorStatus::NONE; case Success::FAIL_LAUNCH: callback->notify(ErrorStatus::GENERAL_FAILURE); return ErrorStatus::GENERAL_FAILURE; case Success::FAIL_WAIT: callback->notify(ErrorStatus::GENERAL_FAILURE); return ErrorStatus::NONE; default: ADD_FAILURE() << "Unexpected Success kind"; return ErrorStatus::GENERAL_FAILURE; } } Return<ErrorStatus> execute_1_2(const Request&, MeasureTiming measure, const sp<V1_2::IExecutionCallback>& callback) override { EXPECT_EQ(measure, MeasureTiming::YES); switch (mSuccess) { case Success::PASS_NEITHER: case Success::PASS_DEVICE: case Success::PASS_DRIVER: case Success::PASS_BOTH: callback->notify_1_2(ErrorStatus::NONE, {}, expectedTimingMap.at(mSuccess)); return ErrorStatus::NONE; case Success::FAIL_LAUNCH: callback->notify(ErrorStatus::GENERAL_FAILURE); return ErrorStatus::GENERAL_FAILURE; case Success::FAIL_WAIT: callback->notify(ErrorStatus::GENERAL_FAILURE); return ErrorStatus::NONE; default: ADD_FAILURE() << "Unexpected Success kind"; return ErrorStatus::GENERAL_FAILURE; } } Return<void> executeSynchronously(const Request&, MeasureTiming measure, executeSynchronously_cb cb) override { EXPECT_EQ(measure, MeasureTiming::YES); switch (mSuccess) { case Success::PASS_NEITHER: case Success::PASS_DEVICE: case Success::PASS_DRIVER: case Success::PASS_BOTH: cb(ErrorStatus::NONE, {}, expectedTimingMap.at(mSuccess)); return Void(); case Success::FAIL_LAUNCH: case Success::FAIL_WAIT: // While this is a synchronous execution method, the NNAPI // runtime may call it even for asynchronous execution, so we // need to tolerate Success::FAIL_WAIT here, not just // Success::FAIL_LAUNCH. cb(ErrorStatus::GENERAL_FAILURE, {}, kBadTiming); return Void(); default: ADD_FAILURE() << "Unexpected Success kind"; cb(ErrorStatus::GENERAL_FAILURE, {}, kBadTiming); return Void(); } } // ExecutionBurstServer::create has an overload that will use // IPreparedModel::executeSynchronously(), so we can rely on that, rather // than having to implement ExecutionBurstServer::IExecutorWithCache. Return<void> configureExecutionBurst( const sp<V1_2::IBurstCallback>& callback, const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel, const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel, configureExecutionBurst_cb cb) override { const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(callback, requestChannel, resultChannel, this); cb(burst == nullptr ? ErrorStatus::GENERAL_FAILURE : ErrorStatus::NONE, burst); return Void(); } private: Success mSuccess; }; // Like TestPreparedModel12, but implementing 1.0 class TestPreparedModel10 : public V1_0::IPreparedModel { public: TestPreparedModel10(const HidlModel& model, const SampleDriver* driver, Success success) : m12PreparedModel(new TestPreparedModel12(model, driver, success)) {} Return<ErrorStatus> execute(const Request& request, const sp<V1_0::IExecutionCallback>& callback) override { return m12PreparedModel->execute(request, callback); } private: const sp<V1_2::IPreparedModel> m12PreparedModel; }; // Behaves like SampleDriver, except that it produces customized IPrepareModel. class TestDriver12 : public SampleDriver { public: TestDriver12(const std::string& name, Success success) : SampleDriver(name.c_str()), mSuccess(success) {} Return<void> getCapabilities_1_2(getCapabilities_1_2_cb _hidl_cb) override { android::nn::initVLogMask(); const PerformanceInfo kPerf = {.execTime = 0.75f, .powerUsage = 0.75f}; Capabilities capabilities = { .relaxedFloat32toFloat16PerformanceScalar = kPerf, .relaxedFloat32toFloat16PerformanceTensor = kPerf, .operandPerformance = nn::nonExtensionOperandPerformance(kPerf)}; _hidl_cb(ErrorStatus::NONE, capabilities); return Void(); } Return<void> getSupportedOperations_1_2(const HidlModel& model, getSupportedOperations_1_2_cb cb) override { if (nn::validateModel(model)) { std::vector<bool> supported(model.operations.size(), true); cb(ErrorStatus::NONE, supported); } else { std::vector<bool> supported; cb(ErrorStatus::INVALID_ARGUMENT, supported); } return Void(); } Return<ErrorStatus> prepareModel_1_2(const HidlModel& model, ExecutionPreference, const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const HidlToken&, const sp<IPreparedModelCallback>& callback) override { callback->notify_1_2(ErrorStatus::NONE, new TestPreparedModel12(model, this, mSuccess)); return ErrorStatus::NONE; } Return<ErrorStatus> prepareModel_1_1( const V1_1::Model& model, ExecutionPreference, const sp<V1_0::IPreparedModelCallback>& callback) override { callback->notify(ErrorStatus::NONE, new TestPreparedModel10(nn::convertToV1_2(model), this, mSuccess)); return ErrorStatus::NONE; } Return<ErrorStatus> prepareModel(const V1_0::Model& model, const sp<V1_0::IPreparedModelCallback>& callback) override { return prepareModel_1_1(nn::convertToV1_1(model), ExecutionPreference::FAST_SINGLE_ANSWER, callback); } private: Success mSuccess; }; // Like TestDriver, but implementing 1.1 class TestDriver11 : public V1_1::IDevice { public: TestDriver11(const std::string& name, Success success) : m12Driver(new TestDriver12(name, success)) {} Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override { return m12Driver->getCapabilities_1_1(_hidl_cb); } Return<void> getSupportedOperations_1_1(const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override { return m12Driver->getSupportedOperations_1_1(model, _hidl_cb); } Return<ErrorStatus> prepareModel_1_1( const V1_1::Model& model, ExecutionPreference preference, const sp<V1_0::IPreparedModelCallback>& actualCallback) override { return m12Driver->prepareModel_1_1(model, preference, actualCallback); } Return<DeviceStatus> getStatus() override { return m12Driver->getStatus(); } Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override { return m12Driver->getCapabilities(_hidl_cb); } Return<void> getSupportedOperations(const V1_0::Model& model, getSupportedOperations_cb _hidl_cb) override { return m12Driver->getSupportedOperations(model, _hidl_cb); } Return<ErrorStatus> prepareModel( const V1_0::Model& model, const sp<V1_0::IPreparedModelCallback>& actualCallback) override { return m12Driver->prepareModel(model, actualCallback); } private: const sp<V1_2::IDevice> m12Driver; }; class TimingTest : public IntrospectionControlTest, public ::testing::WithParamInterface<std::tuple<DriverKind, Success, Compute>> { public: TimingTest() : kDriverKind(std::get<0>(GetParam())), kSuccess(std::get<1>(GetParam())), kCompute(std::get<2>(GetParam())) {} protected: const DriverKind kDriverKind; const Success kSuccess; const Compute kCompute; }; TEST_P(TimingTest, Test) { // There's no straightforward way to force CPU execution to fail. ASSERT_EQ(kDriverKind == DriverKind::CPU, kSuccess == Success::PASS_CPU); // FAIL_WAIT only makes sense for ASYNC. ASSERT_TRUE(kCompute == Compute::ASYNC || kSuccess != Success::FAIL_WAIT); if (DeviceManager::get()->getUseCpuOnly() != (kDriverKind == DriverKind::CPU)) { // We don't have an elegant way to request the CPU driver. Therefore, // we rely on our test framework to make the choice between CPU and // non-CPU. GTEST_SKIP(); } createSimpleAddModel(&mModel); switch (kDriverKind) { case DriverKind::CPU: { // There should be only one driver -- the CPU const char* name = DeviceManager::get()->getDrivers()[0]->getName(); ASSERT_TRUE(selectDeviceByName(name)); break; } case DriverKind::OLD: { static const char name[] = "old"; DeviceManager::get()->forTest_registerDevice(name, new TestDriver11(name, kSuccess)); ASSERT_TRUE(selectDeviceByName(name)); break; } case DriverKind::NEW: { static const char name[] = "new"; DeviceManager::get()->forTest_registerDevice(name, new TestDriver12(name, kSuccess)); ASSERT_TRUE(selectDeviceByName(name)); break; } default: FAIL() << "Unexpected DriverKind"; } EXPECT_EQ(prepareForExecution(true /*measureTiming*/), ANEURALNETWORKS_NO_ERROR); float input1[2] = {1.0f, 2.0f}; float input2[2] = {3.0f, 4.0f}; float output[2]; EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setMeasureTiming(mExecution, true), ANEURALNETWORKS_NO_ERROR); auto Check = [](bool expectPass, int result) { if (expectPass) { ASSERT_EQ(result, ANEURALNETWORKS_NO_ERROR); } else { ASSERT_NE(result, ANEURALNETWORKS_NO_ERROR); } }; const bool isPass = expectedPassSet.count(kSuccess) != 0; switch (kCompute) { case Compute::ASYNC: { // Ideally what we'd like to do here is // // Check(kSuccess != Success::FAIL_LAUNCH, // ANeuralNetworksExecution_startCompute(mExecution, &mEvent)); // Check(isPass, ANeuralNetworksEvent_wait(mEvent)); // // However, in the current implementation of the runtime, a launch // failure at the HAL level does not show up as a launch failure at // the NDK level ("startCompute"): The NNAPI runtime does not call a // driver until it (the runtime) begins execution, so a launch // failure at the HAL level looks like an execution failure at the // NDK level ("wait"). SCOPED_TRACE("ASYNC startCompute"); Check(true, // rather than kSuccess != Success::FAIL_LAUNCH ANeuralNetworksExecution_startCompute(mExecution, &mEvent)); SCOPED_TRACE("ASYNC wait"); Check(isPass, ANeuralNetworksEvent_wait(mEvent)); break; } case Compute::SYNC: { SCOPED_TRACE("SYNC"); Check(isPass, ANeuralNetworksExecution_compute(mExecution)); break; } case Compute::BURST: { SCOPED_TRACE("BURST"); ANeuralNetworksBurst* burst; ASSERT_EQ(ANeuralNetworksBurst_create(mCompilation, &burst), ANEURALNETWORKS_NO_ERROR); Check(isPass, ANeuralNetworksExecution_burstCompute(mExecution, burst)); ANeuralNetworksBurst_free(burst); break; } default: FAIL() << "unreachable"; } uint64_t timeOnHardware, timeInDriver; EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_ON_HARDWARE, &timeOnHardware), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_getDuration(mExecution, ANEURALNETWORKS_DURATION_IN_DRIVER, &timeInDriver), ANEURALNETWORKS_NO_ERROR); switch (kDriverKind) { case DriverKind::CPU: { // TODO: Should we require timing to be reported as 0? EXPECT_TRUE(timeOnHardware == 0 || timeOnHardware == UINT64_MAX) << "timeOnHardware = " << timeOnHardware; EXPECT_TRUE(timeInDriver == 0 || timeInDriver == UINT64_MAX) << "timeInDriver = " << timeOnHardware; break; } case DriverKind::OLD: { EXPECT_EQ(timeOnHardware, UINT64_MAX); EXPECT_EQ(timeInDriver, UINT64_MAX); break; } case DriverKind::NEW: { auto microsToNanos = [](uint64_t micros) { constexpr uint64_t kNanosPerMicro = 1000; return micros == UINT64_MAX ? UINT64_MAX : kNanosPerMicro * micros; }; const Timing expectedTiming = expectedTimingMap.at(kSuccess); EXPECT_EQ(timeOnHardware, microsToNanos(expectedTiming.timeOnDevice)); EXPECT_EQ(timeInDriver, microsToNanos(expectedTiming.timeInDriver)); break; } default: FAIL() << "unreachable"; } if (timeOnHardware != UINT64_MAX && timeInDriver != UINT64_MAX) { EXPECT_LE(timeOnHardware, timeInDriver); } } auto kTimingTestValues = ::testing::Values( // NOTE: We cannot force CPU execution to fail std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::ASYNC), std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::SYNC), std::make_tuple(DriverKind::CPU, Success::PASS_CPU, Compute::BURST), // NOTE: OLD driver does not provide timing std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::ASYNC), std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::SYNC), std::make_tuple(DriverKind::OLD, Success::PASS_NEITHER, Compute::BURST), std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::ASYNC), std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::SYNC), std::make_tuple(DriverKind::OLD, Success::FAIL_LAUNCH, Compute::BURST), // NOTE: Only ASYNC is paired with a wait std::make_tuple(DriverKind::OLD, Success::FAIL_WAIT, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::SYNC), std::make_tuple(DriverKind::NEW, Success::PASS_NEITHER, Compute::BURST), std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::SYNC), std::make_tuple(DriverKind::NEW, Success::PASS_DEVICE, Compute::BURST), std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::SYNC), std::make_tuple(DriverKind::NEW, Success::PASS_DRIVER, Compute::BURST), std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::SYNC), std::make_tuple(DriverKind::NEW, Success::PASS_BOTH, Compute::BURST), std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::ASYNC), std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::SYNC), std::make_tuple(DriverKind::NEW, Success::FAIL_LAUNCH, Compute::BURST), // NOTE: Only ASYNC is paired with a wait std::make_tuple(DriverKind::NEW, Success::FAIL_WAIT, Compute::ASYNC)); INSTANTIATE_TEST_CASE_P(Flavor, TimingTest, kTimingTestValues); } // namespace timing_tests /*-- End timing tests -------------------------------------------------------------------------*/ const float kSimpleMultiplier = 2.0f; void createAddMulModel(WrapperModel* model, bool reverseOrder) { WrapperOperandType type0(WrapperType::TENSOR_FLOAT32, {2}); WrapperOperandType type1(WrapperType::INT32, {}); // Phase 1, operands auto op1 = model->addOperand(&type0); auto op2 = model->addOperand(&type0); auto act = model->addOperand(&type1); auto op3 = model->addOperand(&type0); auto op4 = model->addOperand(&type0); auto op5 = model->addOperand(&type0); // Phase 2, operations static int32_t act_init[] = {0}; model->setOperandValue(act, act_init, sizeof(act_init)); static float multiplier[] = {kSimpleMultiplier, kSimpleMultiplier}; model->setOperandValue(op4, multiplier, sizeof(multiplier)); if (reverseOrder) { // In this case, add MUL first, but the execution order is still ADD -> MUL. model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5}); model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); } else { model->addOperation(ANEURALNETWORKS_ADD, {op1, op2, act}, {op3}); model->addOperation(ANEURALNETWORKS_MUL, {op3, op4, act}, {op5}); } // Phase 3, inputs and outputs model->identifyInputsAndOutputs({op1, op2}, {op5}); model->finish(); ASSERT_TRUE(model->isValid()); } // TODO(miaowang): add a test to make sure ANNCompilation_create() has CPU // fallback. // This test verifies that a device that could only handle ADD would correctly report that an // ADD->MUL model could not be fully supported. TEST_F(IntrospectionControlTest, PartialModelNotSupported) { // This is needed before we have the CPU fallback path being treated as a Device. // TODO(miaowang): remove once b/72506261 is fixed. if (DeviceManager::get()->getUseCpuOnly()) { GTEST_SKIP(); } createAddMulModel(&mModel, false); std::string addOnlyDriver = "test-onlyAdd"; std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); addOnlyOp[ANEURALNETWORKS_ADD] = true; registerDevices({{addOnlyDriver, 0.9, addOnlyOp}}); EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); EXPECT_TRUE(isSupportedOpListExpected({true, false})); ANeuralNetworksModel* modelHandle = mModel.getHandle(); EXPECT_EQ(ANeuralNetworksCompilation_createForDevices(modelHandle, mDevices.data(), mDevices.size(), &mCompilation), ANEURALNETWORKS_NO_ERROR); // The compilation must fail as there is no fallback when using // Introspection API. EXPECT_NE(ANeuralNetworksCompilation_finish(mCompilation), ANEURALNETWORKS_NO_ERROR); } // This test verifies that a device that could only handle ADD would correctly report that an // ADD->MUL model could not be fully supported. Also verifies that the indices of returned // supported op list correctly map to the order of operations being added by the user. TEST_F(IntrospectionControlTest, PartialModelNotSupportedOrder) { // This is needed before we have the CPU fallback path being treated as a Device. // TODO(miaowang): remove once b/72506261 is fixed. if (DeviceManager::get()->getUseCpuOnly()) { GTEST_SKIP(); } createAddMulModel(&mModel, true); std::string addOnlyDriver = "test-onlyAdd"; std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); addOnlyOp[ANEURALNETWORKS_ADD] = true; registerDevices({{addOnlyDriver, 0.9, addOnlyOp}}); EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); EXPECT_TRUE(isSupportedOpListExpected({false, true})); } // TODO(miaowang): update the test to make sure the model is actually running on the test devices. // This test verifies that an ADD->MUL model is able to run on two selected devices that together // can handle all operations. TEST_F(IntrospectionControlTest, ModelNeedTwoDevices) { // This is needed before we have the CPU fallback path being treated as a Device. // TODO(miaowang): remove once b/72506261 is fixed. if (DeviceManager::get()->getUseCpuOnly()) { GTEST_SKIP(); } createAddMulModel(&mModel, false); std::string addOnlyDriver = "test-onlyAdd"; std::vector<bool> addOnlyOp(android::nn::kNumberOfOperationTypes, false); addOnlyOp[ANEURALNETWORKS_ADD] = true; std::string mulOnlyDriver = "test-onlyMul"; std::vector<bool> mulOnlyOp(android::nn::kNumberOfOperationTypes, false); mulOnlyOp[ANEURALNETWORKS_MUL] = true; registerDevices({ {addOnlyDriver, 0.9, addOnlyOp}, {mulOnlyDriver, 0.9, mulOnlyOp}, }); EXPECT_TRUE(selectDeviceByName(addOnlyDriver)); EXPECT_TRUE(selectDeviceByName(mulOnlyDriver)); EXPECT_TRUE(isSupportedOpListExpected({true, true})); EXPECT_EQ(prepareForExecution(), ANEURALNETWORKS_NO_ERROR); float input1[2] = {1.0f, 2.0f}; float input2[2] = {3.0f, 4.0f}; float output[2]; EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 0, nullptr, input1, sizeof(input1)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setInput(mExecution, 1, nullptr, input2, sizeof(input2)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_setOutput(mExecution, 0, nullptr, output, sizeof(output)), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksExecution_startCompute(mExecution, &mEvent), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(ANeuralNetworksEvent_wait(mEvent), ANEURALNETWORKS_NO_ERROR); EXPECT_EQ(output[0], kSimpleMultiplier * (input1[0] + input2[0])); EXPECT_EQ(output[1], kSimpleMultiplier * (input1[1] + input2[1])); } } // namespace