/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Manager.h" #include "SampleDriver.h" #include "TestNeuralNetworksWrapper.h" #include <gtest/gtest.h> #include <cstdlib> #include <filesystem> #include <numeric> using namespace android::nn; using Result = test_wrapper::Result; using Type = test_wrapper::Type; using HidlToken = hidl_array<uint8_t, ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN>; const Timing kBadTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX}; template <typename T> using MQDescriptorSync = ::android::hardware::MQDescriptorSync<T>; namespace android::hardware::neuralnetworks::V1_0 { ::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) { return os << toString(errorStatus); } } // namespace android::hardware::neuralnetworks::V1_0 namespace { enum class HasCalledPrepareModel { NO, WITHOUT_CACHING, WITH_CACHING }; // Whether the driver supports caching based on the returns from getNumberOfCacheFilesNeeded. bool isCachingSupportedAndNoError(ErrorStatus error, uint32_t numModelCache, uint32_t numDataCache) { return error == ErrorStatus::NONE && numModelCache <= static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES) && numDataCache <= static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES) && (numModelCache != 0 || numDataCache != 0); } // This is an IDevice for testing purposes which overrides several methods from sample driver: // - supports all the operations and is faster than cpu fallback. // - overrides getNumberOfCacheFilesNeeded to report according to given parameters. // - overrides prepareModelFromCache to return error status according to // mErrorStatusPrepareFromCache. // - produces CachingPreparedModel on prepareModel and prepareModelFromCache. // // The cache entry is written by prepareModel_1_2 and is checked later by // CachingDriver::prepareModelFromCache. // // The CachingDriver has 2 flags mHasCalledPrepareModelFromCache and mHasCalledPrepareModel // to check if the correct methods are invoked by the runtime. class CachingDriver : public sample_driver::SampleDriver { private: static constexpr size_t kCacheSize = 256; class CachingPreparedModel : public IPreparedModel { public: CachingPreparedModel() = default; Return<ErrorStatus> execute(const Request&, const sp<V1_0::IExecutionCallback>&) override { return ErrorStatus::DEVICE_UNAVAILABLE; } Return<ErrorStatus> execute_1_2(const Request&, MeasureTiming, const sp<V1_2::IExecutionCallback>&) override { return ErrorStatus::DEVICE_UNAVAILABLE; } Return<void> executeSynchronously(const Request&, MeasureTiming, executeSynchronously_cb cb) override { cb(ErrorStatus::DEVICE_UNAVAILABLE, {}, kBadTiming); return Void(); } Return<void> configureExecutionBurst(const sp<V1_2::IBurstCallback>&, const MQDescriptorSync<V1_2::FmqRequestDatum>&, const MQDescriptorSync<V1_2::FmqResultDatum>&, configureExecutionBurst_cb cb) override { cb(ErrorStatus::DEVICE_UNAVAILABLE, nullptr); return Void(); } }; public: CachingDriver(const char* name, ErrorStatus errorStatusGetNumCacheFiles, uint32_t numModelCache, uint32_t numDataCache, ErrorStatus errorStatusPrepareFromCache) : SampleDriver(name), mErrorStatusGetNumCacheFiles(errorStatusGetNumCacheFiles), mNumModelCache(numModelCache), mNumDataCache(numDataCache), mErrorStatusPrepareFromCache(errorStatusPrepareFromCache) { mModelCacheData.resize(kCacheSize); std::iota(mModelCacheData.begin(), mModelCacheData.end(), 0); mDataCacheData.resize(kCacheSize); std::iota(mDataCacheData.begin(), mDataCacheData.end(), 1); } ~CachingDriver() override {} // Reports faster than cpu. Return<void> getCapabilities_1_2(getCapabilities_1_2_cb cb) override { android::nn::initVLogMask(); const PerformanceInfo kPerf = {.execTime = 0.1, .powerUsage = 0.1}; Capabilities capabilities = { .relaxedFloat32toFloat16PerformanceScalar = kPerf, .relaxedFloat32toFloat16PerformanceTensor = kPerf, .operandPerformance = android::nn::nonExtensionOperandPerformance(kPerf)}; cb(ErrorStatus::NONE, capabilities); return Void(); } // Reports supporting all operations. Return<void> getSupportedOperations_1_2(const Model& model, getSupportedOperations_cb cb) override { std::vector<bool> supported(model.operations.size(), true); cb(ErrorStatus::NONE, supported); return Void(); } // Reports according to mGetNumCacheFiles. Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override { cb(mErrorStatusGetNumCacheFiles, mNumModelCache, mNumDataCache); return Void(); } // Generates CachingPreparedModel. // Writes the cache entry per mCacheXData and sets mHasCalledPrepareModel. Return<ErrorStatus> prepareModel_1_2(const Model&, ExecutionPreference, const hidl_vec<hidl_handle>& modelCacheHandle, const hidl_vec<hidl_handle>& dataCacheHandle, const HidlToken&, const sp<IPreparedModelCallback>& cb) override { checkNumberOfCacheHandles(modelCacheHandle.size(), dataCacheHandle.size()); if (modelCacheHandle.size() != 0 || dataCacheHandle.size() != 0) { writeToCache(modelCacheHandle, mModelCacheData); writeToCache(dataCacheHandle, mDataCacheData); mHasCalledPrepareModel = HasCalledPrepareModel::WITH_CACHING; } else { mHasCalledPrepareModel = HasCalledPrepareModel::WITHOUT_CACHING; } cb->notify_1_2(ErrorStatus::NONE, new CachingPreparedModel()); return ErrorStatus::NONE; } // Checks if the cache entry is correct, notifies error status according to // mErrorStatusPrepareFromCache, sets mHasCalledPrepareModelFromCache. Return<ErrorStatus> prepareModelFromCache( const hidl_vec<hidl_handle>& modelCacheHandle, const hidl_vec<hidl_handle>& dataCacheHandle, const HidlToken&, const sp<V1_2::IPreparedModelCallback>& callback) override { readFromCache(modelCacheHandle, mModelCacheData); readFromCache(dataCacheHandle, mDataCacheData); mHasCalledPrepareModelFromCache = true; if (mErrorStatusPrepareFromCache == ErrorStatus::NONE) { callback->notify_1_2(mErrorStatusPrepareFromCache, new CachingPreparedModel()); } else { callback->notify_1_2(mErrorStatusPrepareFromCache, nullptr); } return ErrorStatus::NONE; }; bool hasCalledPrepareModelFromCache() const { return mHasCalledPrepareModelFromCache; } HasCalledPrepareModel hasCalledPrepareModel() const { return mHasCalledPrepareModel; } private: // Checks the number of cache files passed to the driver from runtime. void checkNumberOfCacheHandles(size_t modelCache, size_t dataCache) { if (isCachingSupportedAndNoError(mErrorStatusGetNumCacheFiles, mNumModelCache, mNumDataCache)) { if (modelCache != 0 || dataCache != 0) { ASSERT_EQ(modelCache, mNumModelCache); ASSERT_EQ(dataCache, mNumDataCache); } } else { ASSERT_EQ(modelCache, 0ul); ASSERT_EQ(dataCache, 0ul); } } void writeToCache(const hidl_vec<hidl_handle>& handles, const std::vector<uint8_t>& cache) { for (uint32_t i = 0; i < handles.size(); ++i) { ASSERT_EQ(handles[i]->numFds, 1); EXPECT_EQ(write(handles[i]->data[0], cache.data(), kCacheSize), static_cast<ssize_t>(kCacheSize)); } } void readFromCache(const hidl_vec<hidl_handle>& handles, const std::vector<uint8_t>& expected) { for (uint32_t i = 0; i < handles.size(); ++i) { ASSERT_EQ(handles[i]->numFds, 1); std::vector<uint8_t> actual(kCacheSize); EXPECT_EQ(read(handles[i]->data[0], actual.data(), kCacheSize), static_cast<ssize_t>(kCacheSize)); EXPECT_EQ(actual, expected); } } std::vector<uint8_t> mModelCacheData; std::vector<uint8_t> mDataCacheData; const ErrorStatus mErrorStatusGetNumCacheFiles; const uint32_t mNumModelCache; const uint32_t mNumDataCache; const ErrorStatus mErrorStatusPrepareFromCache; bool mHasCalledPrepareModelFromCache = false; HasCalledPrepareModel mHasCalledPrepareModel = HasCalledPrepareModel::NO; }; void CreateBroadcastAddModel(test_wrapper::Model* model) { test_wrapper::OperandType matrixType(Type::TENSOR_FLOAT32, {2, 2}); test_wrapper::OperandType vectorType(Type::TENSOR_FLOAT32, {2}); test_wrapper::OperandType scalarType(Type::INT32, {}); int32_t activation(ANEURALNETWORKS_FUSED_NONE); auto a = model->addOperand(&matrixType); auto b = model->addOperand(&vectorType); auto c = model->addOperand(&matrixType); auto d = model->addOperand(&scalarType); model->setOperandValue(d, &activation, sizeof(activation)); model->addOperation(ANEURALNETWORKS_ADD, {a, b, d}, {c}); model->identifyInputsAndOutputs({a, b}, {c}); ASSERT_TRUE(model->isValid()); ASSERT_EQ(model->finish(), Result::NO_ERROR); } // Test model compilation with a driver parameterized with // - ErrorStatus returning from getNumberOfCacheFilesNeeded // - Number of model cache files returning from getNumberOfCacheFilesNeeded // - Number of data cache files returning from getNumberOfCacheFilesNeeded // - ErrorStatus returning from prepareModelFromCache using CompilationCachingTestParam = std::tuple<ErrorStatus, uint32_t, uint32_t, ErrorStatus>; class CompilationCachingTest : public ::testing::TestWithParam<CompilationCachingTestParam> { protected: virtual void SetUp() override { char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX"; char* cacheDir = mkdtemp(cacheDirTemp); ASSERT_NE(cacheDir, nullptr); mCacheDir = cacheDir; CreateBroadcastAddModel(&mModel); mToken = std::vector<uint8_t>(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0); mIsCachingSupportedAndNoError = isCachingSupportedAndNoError(kErrorStatusGetNumCacheFiles, kNumModelCache, kNumDataCache); } virtual void TearDown() override { if (!::testing::Test::HasFailure()) { std::filesystem::remove_all(mCacheDir); } } void compileModel(const sp<CachingDriver>& driver, bool withToken) { DeviceManager::get()->forTest_registerDevice(kDeviceName, driver); // Make device list including only a single driver device. uint32_t numDevices = 0; EXPECT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); EXPECT_GE(numDevices, (uint32_t)1); std::vector<ANeuralNetworksDevice*> devices; for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device = nullptr; EXPECT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); const char* buffer = nullptr; int result = ANeuralNetworksDevice_getName(device, &buffer); if (result == ANEURALNETWORKS_NO_ERROR && strcmp(buffer, kDeviceName) == 0) { devices.push_back(device); break; } } ASSERT_EQ(devices.size(), 1u); // Compile the model with the device. ANeuralNetworksCompilation* compilation = nullptr; ASSERT_EQ(ANeuralNetworksCompilation_createForDevices(mModel.getHandle(), devices.data(), devices.size(), &compilation), ANEURALNETWORKS_NO_ERROR); if (withToken) { ASSERT_EQ(ANeuralNetworksCompilation_setCaching(compilation, mCacheDir.c_str(), mToken.data()), ANEURALNETWORKS_NO_ERROR); } ASSERT_EQ(ANeuralNetworksCompilation_finish(compilation), ANEURALNETWORKS_NO_ERROR); DeviceManager::get()->forTest_reInitializeDeviceList(); } void createCache() { sp<CachingDriver> driver = new CachingDriver(kDeviceName, ErrorStatus::NONE, kNumModelCache, kNumDataCache, ErrorStatus::NONE); compileModel(driver, /*withToken=*/true); } static constexpr char kDeviceName[] = "deviceTestCompilationCaching"; const ErrorStatus kErrorStatusGetNumCacheFiles = std::get<0>(GetParam()); const uint32_t kNumModelCache = std::get<1>(GetParam()); const uint32_t kNumDataCache = std::get<2>(GetParam()); const ErrorStatus kErrorStatusPrepareFromCache = std::get<3>(GetParam()); bool mIsCachingSupportedAndNoError; test_wrapper::Model mModel; std::string mCacheDir; std::vector<uint8_t> mToken; }; TEST_P(CompilationCachingTest, TokenProvidedAndCacheNotExist) { if (DeviceManager::get()->getUseCpuOnly()) { return; } sp<CachingDriver> driver = new CachingDriver(kDeviceName, kErrorStatusGetNumCacheFiles, kNumModelCache, kNumDataCache, kErrorStatusPrepareFromCache); compileModel(driver, /*withToken=*/true); // When cache file does not exist, the runtime should never call prepareModelFromCache. EXPECT_EQ(driver->hasCalledPrepareModelFromCache(), false); // The runtime should call prepareModel_1_2. It should request caching iff caching supported. EXPECT_EQ(driver->hasCalledPrepareModel(), mIsCachingSupportedAndNoError ? HasCalledPrepareModel::WITH_CACHING : HasCalledPrepareModel::WITHOUT_CACHING); } TEST_P(CompilationCachingTest, TokenProvidedAndCacheExist) { if (DeviceManager::get()->getUseCpuOnly()) { return; } createCache(); sp<CachingDriver> driver = new CachingDriver(kDeviceName, kErrorStatusGetNumCacheFiles, kNumModelCache, kNumDataCache, kErrorStatusPrepareFromCache); compileModel(driver, /*withToken=*/true); // When cache files exist, the runtime should call prepareModelFromCache iff caching supported. EXPECT_EQ(driver->hasCalledPrepareModelFromCache(), mIsCachingSupportedAndNoError); HasCalledPrepareModel expectHasCalledPrepareModel; if (mIsCachingSupportedAndNoError) { if (kErrorStatusPrepareFromCache == ErrorStatus::NONE) { // The runtime should not call prepareModel_1_2 iff caching supported and // prepareModelFromCache succeeds. expectHasCalledPrepareModel = HasCalledPrepareModel::NO; } else { // The runtime should call prepareModel_1_2 and request caching iff caching supported // but prepareModelFromCache fails. expectHasCalledPrepareModel = HasCalledPrepareModel::WITH_CACHING; } } else { // The runtime should call prepareModel_1_2 without caching iff caching not supported. expectHasCalledPrepareModel = HasCalledPrepareModel::WITHOUT_CACHING; } EXPECT_EQ(driver->hasCalledPrepareModel(), expectHasCalledPrepareModel); } TEST_P(CompilationCachingTest, TokenNotProvided) { if (DeviceManager::get()->getUseCpuOnly()) { return; } sp<CachingDriver> driver = new CachingDriver(kDeviceName, kErrorStatusGetNumCacheFiles, kNumModelCache, kNumDataCache, kErrorStatusPrepareFromCache); compileModel(driver, /*withToken=*/false); // When no NDK token is provided by the client, the runtime should never call // prepareModelFromCache or request caching with prepareModel_1_2. EXPECT_EQ(driver->hasCalledPrepareModelFromCache(), false); EXPECT_EQ(driver->hasCalledPrepareModel(), HasCalledPrepareModel::WITHOUT_CACHING); } static const auto kErrorStatusGetNumCacheFilesChoices = testing::Values(ErrorStatus::NONE, ErrorStatus::DEVICE_UNAVAILABLE); static const auto kNumCacheChoices = testing::Values(0ul, 1ul, static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES), static_cast<uint32_t>(Constant::MAX_NUMBER_OF_CACHE_FILES) + 1); static const auto kErrorStatusPrepareFromCacheChoices = testing::Values(ErrorStatus::NONE, ErrorStatus::GENERAL_FAILURE, ErrorStatus::DEVICE_UNAVAILABLE, ErrorStatus::INVALID_ARGUMENT); INSTANTIATE_TEST_CASE_P(TestCompilationCaching, CompilationCachingTest, testing::Combine(kErrorStatusGetNumCacheFilesChoices, kNumCacheChoices, kNumCacheChoices, kErrorStatusPrepareFromCacheChoices)); } // end namespace